# Simulative Investigation of the Risk of Smearing Damage for a WT Gearbox Roller Bearing during Rotor-Induced Excitations

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Approach

## 3. Results

#### 3.1. Nominal Conditions

#### 3.2. Sinusoidal Torque Excitations

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Conflicts of Interest

## References

- Rohrig, K. Powering the 21st century by wind energy. Appl. Phys. Rev.
**2019**, 6, 031303. [Google Scholar] [CrossRef] - Dao, C.; Kazemtabrizi, B.; Crabtree, C. Wind turbine reliability data review and impacts on levelised cost of energy. Wind Energy
**2019**, 22, 1848–1871. [Google Scholar] [CrossRef] [Green Version] - Shuangwen, S. Wind Turbine Gearbox Reliability Database, Condition Monitoring, and Operation and Maintenance Research Update. In Proceedings of the Drivetrain Reliability Collaborative Workshop, Golden, CO, USA, 16–17 February 2016. [Google Scholar]
- Van Bussel, G.J.W.; Zaaijer, M.B. Reliability, Availability and Maintenance aspects of large-scale offshore wind farms, a concepts study. In Proceedings of the MAREC, New Castle, UK, 27 March 2001. [Google Scholar]
- SKF. Bearing Damage and Failure Analysis; SKF: Gothenburg, Sweden, 2017. [Google Scholar]
- Evans, R.D.; Barr, T.A.; Houpert, L.; Boyd, S.V. Prevention of Smearing Damage in Cylindrical Roller Bearings. Tribol. Trans.
**2013**, 56, 703–716. [Google Scholar] [CrossRef] - Van Lier, H.; Hentschke, C.; Jacobs, G. Schädlicher Wälzlagerschlupf: Wann ist Wälzlagerschlupf Schädlich und Führt Zum Ausfall des Wälzlagers? RWTH-2015-02827, FVA-Nr. 663 Schädlicher Wälzlagerschlupf; FVA: Frankfurt/Main, Germany, 2015. [Google Scholar]
- Bruno, J.S.; Jürgen, Z. A Study on the Smearing and Slip Behavior of Radial Cylindrycal Bearings. 2001. Available online: https://opus4.kobv.de/opus4-ohm/frontdoor/index/index/docId/58 (accessed on 16 April 2022).
- Hamer, J.C. Smearing in Rolling Element Bearings. 1991. Available online: https://spiral.imperial.ac.uk/bitstream/10044/1/46801/2/Hamer-C-1991-PhD-Thesis.pdf (accessed on 16 April 2022).
- Wadewitz, M. Ursachen der Anschmierungen im Wälz-, Gleitkontakt. Forschungsvereinigung Antriebstechnik e.V.: Frankfurt/Main, Germany, 1993. [Google Scholar]
- Bujoreanu, C.; Cret, S.; Nelias, D. Scuffing Behavior in Angular Contact Ball-Bearings. Ann. Dunarea de Jos Univ. Galati
**2003**, II, 33–39. [Google Scholar] - Stuhler, P.; Nagler, N. Stand der Technik: Anschmierungen in Radial-Zylinderrollenlagern. Forsch. im Ing.
**2022**, 86, 1–20. [Google Scholar] [CrossRef] - Fowell, M.; Ioannides, S.; Kadiric, A. An Experimental Investigation into the Onset of Smearing Damage in Nonconformal Contacts with Application to Roller Bearings. Tribol. Trans.
**2014**, 57, 472–488. [Google Scholar] [CrossRef] - Stuhler, P.; Nagler, N. Smearing in full complement roller bearings: Parameter study and damage analysis. Proc. Inst. Mech. Engineers. J. Eng. Tribol.
**2022**. [Google Scholar] [CrossRef] - Ralf, H. Anschmiererscheinungen in Wälzlagern bei Fettschmierung; VDI-Verlag: Düsseldorf, Germany, 2000. [Google Scholar]
- Burton, T. Wind Energy Handbook, 2nd ed.; Chichester West Sussex; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Hau, E. Windkraftanlagen; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Eglinger, M. Einflus des Schmierstoffes und der Rollenbeschaffenheit auf Die Entstehung von Anschmierungen. 1995. Available online: https://books.google.com.sg/books/about/Einfluss_des_Schmierstoffes_und_der_Roll.html?id=Ui4ZcgAACAAJ&redir_esc=y (accessed on 16 April 2022).
- Zhang, Q.; Luo, J.; Xie, X.-Y.; Xu, J.; Ye, Z.-H. Experimental Study on the Skidding Damage of a Cylindrical Roller Bearing. Materials
**2020**, 13, 18. [Google Scholar] [CrossRef] [PubMed] - Röder, J.; Jacobs, G.; Duda, T.; Bosse, D.; Herzog, F. Simulative investigation of wind turbine gearbox loads during power converter fault. Forsch. Im Ing.
**2021**, 85, 251–256. [Google Scholar] [CrossRef] - Röder, J.; Jacobs, G.; Duda, T.; Bosse, D. Simulative investigation of the load propagation in a wind turbine drive train during a power converter fault. J. Phys. Conf. Ser.
**2020**, 1618, 32028. [Google Scholar] [CrossRef] - Röder, J. Investigation of Dynamic Loads in Wind Turbine Drive Trains Due to Grid and Power Converter Faults. Energies
**2021**, 14, 8542. [Google Scholar] [CrossRef] - Duda, T.; Jacobs, G.; Bosse, D. Investigation of dynamic drivetrain behaviour of a wind turbine during a power converter fault. J. Phys. Conf. Ser.
**2018**, 1037, 52031. [Google Scholar] [CrossRef] - Jöckel, A.; Bosse, D. FVA-Gondel: Belastungen an den Antriebskomponenten von Windenergieanlagen: Forschungsvorhaben Nr 730. 2019. Available online: https://www.acs.eonerc.rwth-aachen.de/go/id/lcok/ (accessed on 16 April 2022).
- Matzke, D.; Jacobs, G.; Schelenz, R. Validation of MBS modeling methods to calculate bearing and tooth loads in the planetary gear stage of a wind turbine. In Proceedings of the Conference for Wind Power Drives-CWD2019, Aachen, Germany, 12–13 March 2019. [Google Scholar]
- Timo, K.; Jörg, W.; Matthias, M.; Dirk, A. Zylinderrollenlagermodul für Simpack: Entwicklung eines Berechnungsmoduls zur Dynamiksimulation und Betriebsanalyse von Zylinderrollenlagern unter Berücksichtigung der Umgebungskonstruktion in Simpack; FVA Forschungsvorhaben Nr. 625 II. final report 1124; FVA: Frankfurt/Main, Germany, 2017. [Google Scholar]
- SKF. Katalog Wälzlager PUB BU/P1 17000; SKF: Gothenburg, Sweden, 2014. [Google Scholar]
- Doug, H. Transient Wind Events and Their Effect on Drive-Train Loads: A Study of Torsional Reversals Caused Through Wind Events and Operating Conditions. Wind. Int.
**2015**, 11, 3. [Google Scholar] - Länger-Möller, A. Simulation of Transient Gusts on the NREL5 MW Wind Turbine Using CFD. In Proceedings of the Wind Energy Science Conference, Kopenhagen, Denmark, 26–29 June 2017. [Google Scholar]
- Zhang, H.; Ortiz de Luna, R.; Pilas, M.; Wenske, J. A study of mechanical torque measurement on the wind turbine drive train-ways and feasibilities. Wind. Energy
**2018**, 21, 1406–1422. [Google Scholar] [CrossRef] - Dąbrowski, D.; Natarajan, A. Assessment of Gearbox Operational Loads and Reliability under High Mean Wind Speeds. Energy Procedia
**2015**, 80, 38–46. [Google Scholar] [CrossRef] [Green Version]

**Figure 1.**MBS model of the research nacelle (

**left**) and its gearbox with integrated detailed bearing model (no. 1) (

**right**).

**Figure 7.**The smearing criterion for multiple excitation frequencies and amplitudes (amplitudes normalized to nominal torque).

**Figure 9.**Difference in circumferential velocity, maximum Hertzian contact pressure and resulting smearing criterion for the first roller (excitation frequency: 6 Hz, normalized excitation amplitude: 1.0).

**Figure 10.**Radial load component of HSS bearing (excitation frequency 6 Hz, normalized excitation amplitude 1.0).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Euler, J.; Jacobs, G.; Röder, J.; Bosse, D.
Simulative Investigation of the Risk of Smearing Damage for a WT Gearbox Roller Bearing during Rotor-Induced Excitations. *Wind* **2022**, *2*, 348-356.
https://doi.org/10.3390/wind2020019

**AMA Style**

Euler J, Jacobs G, Röder J, Bosse D.
Simulative Investigation of the Risk of Smearing Damage for a WT Gearbox Roller Bearing during Rotor-Induced Excitations. *Wind*. 2022; 2(2):348-356.
https://doi.org/10.3390/wind2020019

**Chicago/Turabian Style**

Euler, Jan, Georg Jacobs, Julian Röder, and Dennis Bosse.
2022. "Simulative Investigation of the Risk of Smearing Damage for a WT Gearbox Roller Bearing during Rotor-Induced Excitations" *Wind* 2, no. 2: 348-356.
https://doi.org/10.3390/wind2020019