Biomarkers for Assessing Diet-Related Neurocognitive Deficits in Children—A Systematic Review
Abstract
:1. Introduction
2. Method
2.1. Literature Search
2.2. Selection of Studies
2.2.1. Eligibility Criteria
2.2.2. Exclusion Criteria
2.3. Data Extraction
3. Results
3.1. Literature Search Results
3.2. Study Designs
3.3. Study Population, Setting, and Country
3.4. Biomarkers Considered in This Study
3.5. Main Findings
4. Discussion
4.1. Research Gaps
4.2. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dhakal, A.; Bobrin, B.D. Cognitive Deficits; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Vance, D.E.; Fazeli, P.L.; Kaur, J.; Pearce, P.; McGuinness, T. Neuropsychology and cognitive health in healthy older adults: A brief overview for psychiatric nurses. J. Psychosoc. Nurs. Ment. Health Serv. 2012, 50, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Domellöf, M. Nutritional care of premature infants: Microminerals. World Rev. Nutr. Diet. 2014, 110, 121–139. [Google Scholar] [PubMed]
- Rao, R.; Georgieff, M.K. Early nutrition and brain development. In The Effects of Early Adversity on Neurobehavioral Development; Psychology Press: London, UK, 2000; pp. 1–30. [Google Scholar]
- Inguaggiato, E.; Sgandurra, G.; Cioni, G. Brain plasticity and early development: Implications for early intervention in neurodevelopmental disorders. Neuropsychiatr. L’enfance L’adolescence 2017, 65, 299–306. [Google Scholar] [CrossRef]
- Cohen, J.F.; Gorski, M.T.; Gruber, S.A.; Kurdziel, L.; Rimm, E.B. The effect of healthy dietary consumption on executive cognitive functioning in children and adolescents: A systematic review. Br. J. Nutr. 2016, 116, 989–1000. [Google Scholar] [CrossRef] [PubMed]
- Palojoki, P.; Tuomi-Gröhn, T. The complexity of food choices in an everyday context. Int. J. Consum. Stud. 2001, 25, 15–23. [Google Scholar] [CrossRef]
- Stevenson, R.J.; Prescott, J. Human diet and cognition. Wiley Interdiscip. Rev. Cogn. Sci. 2014, 5, 463–475. [Google Scholar] [CrossRef]
- Fatyga, P.; Pac, A.; Fedyk-Łukasik, M.; Grodzicki, T.; Skalska, A. The relationship between malnutrition risk and inflammatory biomarkers in outpatient geriatric population. Eur. Geriatr. Med. 2020, 11, 383–391. [Google Scholar] [CrossRef]
- Annan, R.A.; Apprey, C.; Asamoah-Boakye, O.; Okonogi, S.; Yamauchi, T.; Sakurai, T. The relationship between dietary micronutrients intake and cognition test performance among school-aged children in government-owned primary schools in Kumasi metropolis, Ghana. Food Sci. Nutr. 2019, 7, 3042–3051. [Google Scholar] [CrossRef]
- Park, S.; Cho, S.-C.; Hong, Y.-C.; Oh, S.-Y.; Kim, J.-W.; Shin, M.-S.; Kim, B.-N.; Yoo, H.-J.; Cho, I.-H.; Bhang, S.-Y. Association between dietary behaviors and attention-deficit/hyperactivity disorder and learning disabilities in school-aged children. Psychiatry Res. 2012, 198, 468–476. [Google Scholar] [CrossRef]
- Sinn, N. Nutritional and dietary influences on attention deficit hyperactivity disorder. Nutr. Rev. 2008, 66, 558–568. [Google Scholar] [CrossRef]
- O’Bryant, S.E.; Mielke, M.M.; Rissman, R.A.; Lista, S.; Vanderstichele, H.; Zetterberg, H.; Lewczuk, P.; Posner, H.; Hall, J.; Johnson, L.; et al. Blood-based biomarkers in Alzheimer disease: Current state of the science and a novel collaborative paradigm for advancing from discovery to clinic. Alzheimer’s & Dementia 2017, 13, 45–58. [Google Scholar]
- Mantey, A.A.; Annan, R.A.; Lutterodt, H.E.; Twumasi, P. Iron status predicts cognitive test performance of primary school children from Kumasi, Ghana. PLoS ONE 2021, 16, e0251335. [Google Scholar] [CrossRef]
- Dighriri, I.M.; Alsubaie, A.M.; Hakami, F.M.; Hamithi, D.M.; Alshekh, M.M.; Khobrani, F.A.; Dalak, F.E.; Hakami, A.A.; Alsueaadi, E.H.; Alsaawi, L.S. Effects of omega-3 polyunsaturated fatty acids on brain functions: A systematic review. Cureus 2022, 14, e30091. [Google Scholar] [CrossRef]
- Arce Rentería, M.; Gillett, S.R.; McClure, L.A.; Wadley, V.G.; Glasser, S.P.; Howard, V.J.; Kissela, B.M.; Unverzagt, F.W.; Jenny, N.S.; Manly, J.J. C-reactive protein and risk of cognitive decline: The REGARDS study. PLoS ONE 2020, 15, e0244612. [Google Scholar] [CrossRef]
- Nikolac Perkovic, M.; Borovecki, F.; Filipcic, I.; Vuic, B.; Milos, T.; Nedic Erjavec, G.; Konjevod, M.; Tudor, L.; Mimica, N.; Uzun, S. Relationship between brain-derived neurotrophic factor and cognitive decline in patients with mild cognitive impairment and dementia. Biomolecules 2023, 13, 570. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, Z.; Sachdev, P.S.; Kochan, N.A.; O’Leary, F.; Brodaty, H. Association of Dietary Patterns with Cognitive Function and Cognitive Decline in Sydney Memory and Ageing Study: A Longitudinal Analysis. J. Acad. Nutr. Diet. 2022, 122, 949–960.e915. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.D.; Refsum, H. Homocysteine, B vitamins, and cognitive impairment. Annu. Rev. Nutr. 2016, 36, 211–239. [Google Scholar] [CrossRef] [PubMed]
- Cholerton, B.; Baker, L.D.; Craft, S. Insulin resistance and pathological brain ageing. Diabet. Med. 2011, 28, 1463–1475. [Google Scholar] [CrossRef]
- Soni, M.; Kos, K.; Lang, I.A.; Jones, K.; Melzer, D.; Llewellyn, D.J. Vitamin D and cognitive function. Scand. J. Clin. Lab. Investig. 2012, 72, 79–82. [Google Scholar]
- Skoczek-Rubińska, A.; Muzsik-Kazimierska, A.; Chmurzynska, A.; Jamka, M.; Walkowiak, J.; Bajerska, J. Inflammatory potential of diet is associated with biomarkers levels of inflammation and cognitive function among postmenopausal women. Nutrients 2021, 13, 2323. [Google Scholar] [CrossRef]
- Kuban, K.C.; Joseph, R.M.; O’Shea, T.M.; Heeren, T.; Fichorova, R.N.; Douglass, L.; Jara, H.; Frazier, J.A.; Hirtz, D.; Rollins, J.V. Circulating inflammatory-associated proteins in the first month of life and cognitive impairment at age 10 years in children born extremely preterm. J. Pediatr. 2017, 180, 116–123.e111. [Google Scholar] [CrossRef] [PubMed]
- Rose, J.; Vassar, R.; Cahill-Rowley, K.; Hintz, S.R.; Stevenson, D.K. Neonatal biomarkers of inflammation: Correlates of early neurodevelopment and gait in very-low-birth-weight preterm children. Am. J. Perinatol. 2016, 2, 71–78. [Google Scholar]
- O’Shea, T.M.; Shah, B.; Allred, E.N.; Fichorova, R.N.; Kuban, K.C.; Dammann, O.; Leviton, A.; Investigators, E.S. Inflammation-initiating illnesses, inflammation-related proteins, and cognitive impairment in extremely preterm infants. Brain Behav. Immun. 2013, 29, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Voltas, N.; Arija, V.; Hernández-Martínez, C.; Jiménez-Feijoo, R.; Ferré, N.; Canals, J. Are there early inflammatory biomarkers that affect neurodevelopment in infancy? J. Neuroimmunol. 2017, 305, 42–50. [Google Scholar] [CrossRef]
- Danese, A.; Moffitt, T.E.; Harrington, H.; Milne, B.J.; Polanczyk, G.; Pariante, C.M.; Poulton, R.; Caspi, A. Adverse childhood experiences and adult risk factors for age-related disease: Depression, inflammation, and clustering of metabolic risk markers. Arch. Pediatr. Adolesc. Med. 2009, 163, 1135–1143. [Google Scholar] [CrossRef] [PubMed]
- Slaney, C.; Sallis, H.M.; Jones, H.J.; Dardani, C.; Tilling, K.; Munafò, M.R.; Smith, G.D.; Mahedy, L.; Khandaker, G.M.; Group, C.I.W. Association between inflammation and cognition: Triangulation of evidence using a population-based cohort and Mendelian randomization analyses. Brain Behav. Immun. 2023, 110, 30–42. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 2010, 8, 336–341. [Google Scholar] [CrossRef]
- Bach, A.M.; Xie, W.; Piazzoli, L.; Jensen, S.K.G.; Afreen, S.; Haque, R.; Petri, W.A.; Nelson, C.A. Systemic inflammation during the first year of life is associated with brain functional connectivity and future cognitive outcomes. Dev. Cogn. Neurosci. 2022, 53, 101041. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Adelantado-Renau, M.; Esteban-Cornejo, I.; Rodriguez-Ayllon, M.; Cadenas-Sanchez, C.; Gil-Cosano, J.J.; Mora-Gonzalez, J.; Solis-Urra, P.; Verdejo-Román, J.; Aguilera, C.M.; Escolano-Margarit, M.V.; et al. Inflammatory biomarkers and brain health indicators in children with overweight and obesity: The ActiveBrains project. Brain Behav. Immun. 2019, 81, 588–597. [Google Scholar] [CrossRef] [PubMed]
- Arija, V.; Esparó, G.; Fernández-Ballart, J.; Murphy, M.M.; Biarnés, E.; Canals, J. Nutritional status and performance in test of verbal and non-verbal intelligence in 6 year old children. Intelligence 2006, 34, 141–149. [Google Scholar] [CrossRef]
- Caldú, X.; Prats-Soteras, X.; García-García, I.; Prunell-Castañé, A.; Sánchez-Garre, C.; Cano, N.; Tor, E.; Sender-Palacios, M.J.; Ottino-González, J.; Garolera, M.; et al. Body mass index, systemic inflammation and cognitive performance in adolescents: A cross-sectional study. Psychoneuroendocrinology 2023, 156, 106298. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Kumar, S.; Kakon, S.H.; Haque, R.; Petri, W.A.; Nelson, C.A. Chronic inflammation is associated with neural responses to faces in bangladeshi children. Neuroimage 2019, 202, 116110. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Beers, S.R.; Berger, R.P.; Adelson, P.D. Neurocognitive outcome and serum biomarkers in inflicted versus non-inflicted traumatic brain injury in young children. J. Neurotrauma 2007, 24, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Yeom, C.W.; Park, Y.J.; Choi, S.W.; Bhang, S.Y. Association of peripheral BDNF level with cognition, attention and behavior in preschool children. Child. Adolesc. Psychiatry Ment. Health 2016, 10, 10. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Camargos, A.C.; Mendonça, V.A.; Oliveira, K.S.; de Andrade, C.A.; Leite, H.R.; da Fonseca, S.F.; Vieira, E.L.; Teixeira Júnior, A.L.; Lacerda, A.C. Association between obesity-related biomarkers and cognitive and motor development in infants. Behav. Brain Res. 2017, 325, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Ji, X.; Cui, N.; Cao, S.; Liu, C.; Liu, J. Association between Serum Copper Status and Working Memory in Schoolchildren. Nutrients 2015, 7, 7185–7196. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Diamond, A. Normal development of prefrontal cortex from birth to young adulthood: Cognitive functions, anatomy, and biochemistry. Princ. Front. Lobe Funct. 2002, 466, 503. [Google Scholar]
- Johnston, M.V. Clinical disorders of brain plasticity. Brain Dev. 2004, 26, 73–80. [Google Scholar] [CrossRef]
- Lansford, J.E.; Dodge, K.A.; Pettit, G.S.; Bates, J.E.; Crozier, J.; Kaplow, J. A 12-year prospective study of the long-term effects of early child physical maltreatment on psychological, behavioral, and academic problems in adolescence. Arch. Pediatr. Adolesc. Med. 2002, 156, 824–830. [Google Scholar] [CrossRef]
- Colmar, S.; Maxwell, A.; Miller, L. Assessing Intellectual Disability in Children: Are IQ Measures Sufficient, or Even Necessary? Aust. J. Guid. Couns. 2006, 16, 177–188. [Google Scholar] [CrossRef]
- Borsini, A.; Zunszain, P.A.; Thuret, S.; Pariante, C.M. The role of inflammatory cytokines as key modulators of neurogenesis. Trends Neurosci. 2015, 38, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Terrado, J.; Monnier, D.; Perrelet, D.; Vesin, D.; Jemelin, S.; Buurman, W.A.; Mattenberger, L.; King, B.; Kato, A.C.; Garcia, I. Soluble TNF receptors partially protect injured motoneurons in the postnatal CNS. Eur. J. Neurosci. 2000, 12, 3443–3447. [Google Scholar] [CrossRef] [PubMed]
- Farr, S.A.; Banks, W.A.; Morley, J.E. Effects of leptin on memory processing. Peptides 2006, 27, 1420–1425. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.D.; Frost, R.; Olive, J. Relation of plasma leptin concentrations to sex, body fat, dietary intake, and peak oxygen uptake in young adult women and men. Nutrition 2001, 17, 105–111. [Google Scholar] [CrossRef] [PubMed]
- John, C.; Black, M.; Nelson III, C. Neurodevelopment: The impact of nutrition and inflammation during early to middle childhood in low-resource settings. Pediatrics 2017, 139 (Suppl. S1), S59–S71. [Google Scholar] [CrossRef] [PubMed]
- Beyene, S.D. The impact of food insecurity on health outcomes: Empirical evidence from sub-Saharan African countries. BMC Public. Health 2023, 23, 338. [Google Scholar] [CrossRef] [PubMed]
- Rytter, M.J.H.; Kolte, L.; Briend, A.; Friis, H.; Christensen, V.B. The immune system in children with malnutrition—A systematic review. PLoS ONE 2014, 9, e105017. [Google Scholar] [CrossRef] [PubMed]
- Merrill, R.D.; Burke, R.M.; Northrop-Clewes, C.A.; Rayco-Solon, P.; Flores-Ayala, R.; Namaste, S.M.; Serdula, M.K.; Suchdev, P.S. Factors associated with inflammation in preschool children and women of reproductive age: Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project. Am. J. Clin. Nutr. 2017, 106, 348S–358S. [Google Scholar] [CrossRef] [PubMed]
- Camargos, A.C.; Mendonça, V.A.; Andrade, C.A.; Oliveira, K.S.; Tossige-Gomes, R.; Rocha-Vieira, E.; Neves, C.D.; Vieira, É.L.; Leite, H.R.; Oliveira, M.X.; et al. Neuroendocrine Inflammatory Responses in Overweight/Obese Infants. PLoS ONE 2016, 11, e0167593. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jörns-Presentati, A.; Napp, A.-K.; Dessauvagie, A.S.; Stein, D.J.; Jonker, D.; Breet, E.; Charles, W.; Swart, R.L.; Lahti, M.; Suliman, S.; et al. The prevalence of mental health problems in sub-Saharan adolescents: A systematic review. PLoS ONE 2021, 16, e0251689. [Google Scholar] [CrossRef]
- Erskine, H.; Baxter, A.; Patton, G.; Moffitt, T.; Patel, V.; Whiteford, H.; Scott, J. The global coverage of prevalence data for mental disorders in children and adolescents. Epidemiol. Psychiatr. Sci. 2017, 26, 395–402. [Google Scholar] [CrossRef]
- Adjepong, M.; Yakah, W.; Harris, W.S.; Annan, R.A.; Pontifex, M.B.; Fenton, J.I. Whole blood n-3 fatty acids are associated with executive function in 2-6-year old Northern Ghanaian children. J. Nutr. Biochem. 2018, 57, 287–293. [Google Scholar] [CrossRef]
- Annan, R.A.; Apprey, C.; Odeafo, A.-B.; Benedicta, T.-D.; Sakurai, T.; Okonogi, S. Nutrient intakes and cognitive competence in the context of abstract reasoning of school-age children in the Tamale Metropolis of Ghana. Nutr. Food Sci. 2023, 53, 124–137. [Google Scholar] [CrossRef]
Author, Year | Country | Study Design | Sample Size | n(M), n(F) | Age | Biomarker(s) | Cognitive Parameter(s) | Outcome(s) |
---|---|---|---|---|---|---|---|---|
Adelantado-Renau et al., 2019 [31] | Spain | Cross-sectional | 107 | 44, 63 | 10.0 ± 1.1 years | WBC, IL-6,IL-1β, TNF-α, and CRP | Academic performance, executive function, cognitive inhibition, and working memory | CRP was associated with behavioral and emotional functioning; TNF-α was associated with mathematics scores |
Arija et al., 2006 [32] | Spain | Cross-sectional | 83 | 43, 40 | 6.0 ± 0.0 years | Complete hematological profile and tHcy | Intelligence quotient (IQ) | No biochemical parameter was a significant predictor of IQ |
Bach et al., 2022 [30] | Bangladesh | Longitudinal | 122 | 66, 56 | 6 to 53 weeks | CRP | Intelligence quotient (IQ) | CRP was associated with IQ |
Beers et al., 2007 [35] | USA | Cross-sectional | 30 | 13, 17 | 3 months to 12 years | NSE, CBP, and MBP | Intelligence quotient (IQ) | NSE and MBP were associated with IQ |
Caldu et al., 2023 [33] | Spain | Cross-sectional | 105 | 49, 56 | 12 to 21 years | IL-6, TNF-α, CRP, and fibrinogen | Working memory (WM), cognitive flexibility (CF), inhibitory control (IC), decision making (DM), verbal memory (VM), and fine motor speed (FMS) | CRP was associated with DM and VM, TNF-α was associated with IC, and fibrinogen was associated with VM |
Camargos et al., 2017 [37] | Brazil | Cross-sectional | 50 | 6–24 months | Leptin, Adiponectin, Resistin, sTNFR1 sTNFR2, chemokines, BDNF, serum cortisol, and redox status | Cognitive development | Plasma leptin and sTNFR1 were associated with cognitive development | |
Xie et al., 2019 [34] | Bangladesh | Cross-sectional | 130 | 56, 74 | 6 to 104 weeks | CRP | Intelligence quotient (IQ) | No significant association between CRP and IQ |
Yeom et al., 2016 [36] | Korea | Cross-sectional | 28 | 13, 15 | 5–7 years | BDNF | Intelligence quotient (IQ) | BDNF showed a significant correlation with IQ |
Zhou et al., 2015 [38] | China | Cross-sectional | 826 | 439, 387 | 10–14 years | Copper | Working memory | Significant association between high copper levels and poor working memory |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Essiam, F.A.A.P.; Amoako, M.; Khanna, R. Biomarkers for Assessing Diet-Related Neurocognitive Deficits in Children—A Systematic Review. Dietetics 2024, 3, 261-270. https://doi.org/10.3390/dietetics3030021
Essiam FAAP, Amoako M, Khanna R. Biomarkers for Assessing Diet-Related Neurocognitive Deficits in Children—A Systematic Review. Dietetics. 2024; 3(3):261-270. https://doi.org/10.3390/dietetics3030021
Chicago/Turabian StyleEssiam, Fiifi Amoako Atta Panyin, Mary Amoako, and Rajesh Khanna. 2024. "Biomarkers for Assessing Diet-Related Neurocognitive Deficits in Children—A Systematic Review" Dietetics 3, no. 3: 261-270. https://doi.org/10.3390/dietetics3030021
APA StyleEssiam, F. A. A. P., Amoako, M., & Khanna, R. (2024). Biomarkers for Assessing Diet-Related Neurocognitive Deficits in Children—A Systematic Review. Dietetics, 3(3), 261-270. https://doi.org/10.3390/dietetics3030021