Correlation of Inflammation, Lipidogram, and Hematological Readings in Chronic Heart Failure Patients †
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Redfield, M. Heart Failure with Preserved Ejection Fraction. N. Engl. J. Med. 2016, 375, 1868–1877. [Google Scholar] [CrossRef] [Green Version]
- Vedin, O.; Lam, C.S.; Koh, A.S.; Benson, L.; Teng, T.H.K.; Tay, W.T.; Braun, O.; Savarese, G.; Dahlström, U.; Lund, L.H. Significance of Ischemic Heart Disease in Patients With Heart Failure and Preserved, Midrange, and Reduced Ejection Fraction. Circ. Hear. Fail. 2017, 10, e003875. [Google Scholar] [CrossRef]
- Michels da Silva, D.; Langer, H.; Graf, T. Inflammatory and Molecular Pathways in Heart Failure—Ischemia, HFpEF and Transthyretin Cardiac Amyloidosis. Int. J. Mol. Sci. 2019, 20, 2322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Palo, K.E.; Barone, N.J. Hypertension and Heart Failure. Heart Fail. Clin. 2020, 16, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Pagel, P.S.; Tawil, J.N.; Boettcher, B.T.; Izquierdo, D.A.; Lazicki, T.J.; Crystal, G.J.; Freed, J.K. Heart Failure With Preserved Ejection Fraction: A Comprehensive Review and Update of Diagnosis, Pathophysiology, Treatment, and Perioperative Implications. J. Cardiothorac. Vasc. Anesthesia 2021, 35, 1839–1859. [Google Scholar] [CrossRef]
- Sorrentino, M.J. The Evolution from Hypertension to Heart Failure. Heart Fail. Clin. 2019, 15, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Slivnick, J.; Lampert, B.C. Hypertension and Heart Failure. Heart Fail. Clin. 2019, 15, 531–541. [Google Scholar] [CrossRef]
- Triposkiadis, F.; Xanthopoulos, A.; Butler, J. Cardiovascular Aging and Heart Failure. J. Am. Coll. Cardiol. 2019, 74, 804–813. [Google Scholar] [CrossRef]
- Simmonds, S.J.; Cuijpers, I.; Heymans, S. Cellular and Molecular Differences between HFpEF and HFrEF: A Step Ahead in an Improved. Cells 2020, 9, 242. [Google Scholar] [CrossRef] [Green Version]
- Van Linthout, S.; Tschöpe, C. Inflammation–Cause or Consequence of Heart Failure or Both? Curr. Heart Fail. Rep. 2017, 14, 251–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellicori, P.; Zhang, J.; Cuthbert, J.; Urbinati, A.; Shah, P.; Kazmi, S.; Clark, A.L.; Cleland, J.G.F. High-sensitivity C-reactive protein in chronic heart failure: Patient characteristics, phenotypes, and mode of death. Cardiovasc. Res. 2019, 116, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Paulus, W.J.; Tschöpe, C. A Novel Paradigm for Heart Failure With Preserved Ejection Fraction: Comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am. Coll. Cardiol. 2013, 62, 263–271. [Google Scholar] [CrossRef] [Green Version]
- Primessnig, U.; Schönleitner, P.; Höll, A.; Pfeiffer, S.; Bracic, T.; Rau, T.; Kapl, M.; Stojakovic, T.; Glasnov, T.; Leineweber, K.; et al. Novel pathomechanisms of cardiomyocyte dysfunction in a model of heart failure with preserved ejection fraction. Eur. J. Heart Fail. 2016, 18, 987–997. [Google Scholar] [CrossRef] [Green Version]
- Nordfonn, O.K.; Morken, I.M.; Bru, L.E.; Larsen, A.I.; Husebø, A.M.L. Burden of treatment in patients with chronic heart failure–A cross-sectional study. Heart Lung 2021, 50, 369–374. [Google Scholar] [CrossRef]
- Schiattarella, G.G.; Rodolico, D.; A Hill, J. Metabolic inflammation in heart failure with preserved ejection fraction. Cardiovasc. Res. 2020, 117, 423–434. [Google Scholar] [CrossRef] [PubMed]
- Silvestre-Roig, C.; Braster, Q.; Ortega-Gomez, A.; Soehnlein, O. Neutrophils as regulators of cardiovascular inflammation. Nat. Rev. Cardiol. 2020, 17, 327–340. [Google Scholar] [CrossRef] [PubMed]
- Mongirdienė, A.; Laukaitienė, J.; Skipskis, V.; Kuršvietienė, L.; Liobikas, J. Platelet Activity and Its Correlation with Inflammation and Cell Count Readings in Chronic Heart Failure Patients with Reduced Ejection Fraction. Medicina 2021, 57, 176. [Google Scholar] [CrossRef]
- Peet, C.; Ivetic, A.; Bromage, D.I.; Shah, A.M. Cardiac monocytes and macrophages after myocardial infarction. Cardiovasc. Res. 2020, 116, 1101–1112. [Google Scholar] [CrossRef] [Green Version]
- Smukowska-Gorynia, A.; Tomaszewska, I.; Malaczynska-Rajpold, K.; Marcinkowska, J.; Komosa, A.; Janus, M.; Olasinska-Wisniewska, A.; Slawek, S.; Araszkiewicz, A.; Jankiewicz, S.; et al. Red Blood Cells Distribution Width as a Potential Prognostic Biomarker in Patients With Pulmonary Arterial Hypertension and Chronic Thromboembolic Pulmonary Hypertension. Heart Lung Circ. 2018, 27, 842–848. [Google Scholar] [CrossRef]
- Lippi, G.; Turcato, G.; Cervellin, G.; Sanchis-Gomar, F. Red blood cell distribution width in heart failure: A narrative review. World J. Cardiol. 2018, 10, 6–14. [Google Scholar] [CrossRef]
- Hammadah, M.; Brennan, M.-L.; Wu, Y.; Hazen, S.L.; Tang, W.W. Usefulness of Relative Hypochromia in Risk Stratification for Nonanemic Patients With Chronic Heart Failure. Am. J. Cardiol. 2016, 117, 1299–1304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seropian, I.M.; Romeo, F.J.; Pizarro, R.; Vulcano, N.O.; Posatini, R.A.; Marenchino, R.G.; Berrocal, D.H.; Belziti, C.A. Neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio as predictors of survival after heart transplantation. ESC Heart Fail. 2017, 5, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Zapata, V.A.B.; Hernandez, A.V.; Nagarajan, V.; Cauthen, C.A.; Starling, R.C.; Tang, W.W. Usefulness of Neutrophil-to-Lymphocyte Ratio in Risk Stratification of Patients With Advanced Heart Failure. Am. J. Cardiol. 2014, 115, 57–61. [Google Scholar] [CrossRef]
- Torre-Amione, G.; Kapadia, S.; Benedict, C.; Oral, H.; Young, J.B.; Mann, D. Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: A report from the studies of left ventricular dysfunction (SOLVD). J. Am. Coll. Cardiol. 1996, 27, 1201–1206. [Google Scholar] [CrossRef] [Green Version]
- Mongirdienė, A.; Laukaitienė, J.; Skipskis, V.; Kuršvietienė, L.; Liobikas, J. The Difference of Cholesterol, Platelet and Cortisol Levels in Patients Diagnosed with Chronic Heart Failure with Reduced Ejection Fraction Groups According to Neutrophil Count. Medicina 2021, 57, 557. [Google Scholar] [CrossRef]
- Scheller, J.; Chalaris, A.; Schmidt-Arras, D.; Rose-John, S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim. Biophys. Acta-Mol. Cell Res. 2011, 1813, 878–888. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Su, S.; Wang, X.; Barnes, V.; De Miguel, C.; Ownby, D.; Pollock, J.; Snieder, H.; Chen, W. Obesity is associated with more activated neutrophils in African American male youth. Int. J. Obes. 2014, 39, 26–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedrich, K.; Sommer, M.; Strobel, S.; Thrum, S.; Blüher, M.; Wagner, U.; Rossol, M. Perturbation of the Monocyte Compartment in Human Obesity. Front. Immunol. 2019, 10, 1874. [Google Scholar] [CrossRef] [Green Version]
- McNelis, J.C.; Olefsky, J.M. Macrophages, Immunity, and Metabolic Disease. Immunity 2014, 41, 36–48. [Google Scholar] [CrossRef] [Green Version]
- Saltiel, A.R.; Olefsky, J.M. Inflammatory mechanisms linking obesity and metabolic disease. J. Clin. Investig. 2017, 127, 1–4. [Google Scholar] [CrossRef]
- Kose, N.; Akin, F.; Yildirim, T.; Ergun, G.; Altun, I. The association between the lymphocyte-to-monocyte ratio and coronary artery disease severity in patients with stable coronary artery disease. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 2570–2575. [Google Scholar] [CrossRef] [PubMed]
- Delcea, C.; Buzea, A.; Dima, A.; Tocitu, A.; Andrus, A.; Breha, A.; Dobranici, M.; Popescu, R.; Ciuculete, D.; Dan, G. The Lymphocyte-to-Monocyte Ratio–A Novel Independent Predictor of All-Cause Mortality in Patients with Heart Failure. J. Hypertens. 2018, 36, e255. [Google Scholar] [CrossRef]
- Salvagno, G.L.; Sanchis-Gomar, F.; Picanza, A.; Lippi, G. Red blood cell distribution width: A simple parameter with multiple clinical applications. Crit. Rev. Clin. Lab. Sci. 2014, 52, 86–105. [Google Scholar] [CrossRef]
- Patel, K.V.; Semba, R.D.; Ferrucci, L.; Newman, A.B.; Fried, L.P.; Wallace, R.B.; Bandinelli, S.; Phillips, C.S.; Yu, B.; Connelly, S.; et al. Red Cell Distribution Width and Mortality in Older Adults: A Meta-analysis. J. Gerontol. Ser. A 2009, 65, 258–265. [Google Scholar] [CrossRef]
- Lippi, G.; Cervellin, G. Risk assessment of post-infarction heart failure. Systematic review on the role of emerging biomarkers. Crit. Rev. Clin. Lab. Sci. 2013, 51, 13–29. [Google Scholar] [CrossRef]
- Lippi, G.; Cervellin, G.; Sanchis-Gomar, F. Red blood cell distribution width and cardiovascular disorders. Does it really matter which comes first, the chicken or the egg? Int. J. Cardiol. 2016, 206, 129–130. [Google Scholar] [CrossRef]
- You, J.; Zhu, G.-Q.; Xie, L.; Liu, W.-Y.; Shi, L.; Wang, O.-C.; Huang, Z.-H.; Braddock, M.; Guo, G.-L.; Zheng, M.-H. Preoperative platelet to lymphocyte ratio is a valuable prognostic biomarker in patients with colorectal cancer. Oncotarget 2016, 7, 25516–25527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, Q.; Li, L.; Li, G.; Liu, T. Prognostic value of red blood cell distribution width in heart failure patients: A meta-analysis. Int. J. Cardiol. 2015, 179, 495–499. [Google Scholar] [CrossRef]
- Hou, H.; Sun, T.; Li, C.; Li, Y.; Guo, Z.; Wang, W.; Li, D. An overall and dose-response meta-analysis of red blood cell distribution width and CVD outcomes. Sci. Rep. 2017, 7, 43420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simbaqueba, C.; Shrestha, K.; Patarroyo, M.; Troughton, R.W.; Borowski, A.G.; Klein, A.L.; Tang, W.H.W. Prognostic implications of relative hypochromia in ambulatory patients with chronic systolic heart failure. Congest. Heart Fail. 2013, 19, 180–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koller, L.; Kleber, M.; Goliasch, G.; Sulzgruber, P.; Scharnagl, H.; Silbernagel, G.; Grammer, T.; Delgado, G.; Tomaschitz, A.; Pilz, S.; et al. C-reactive protein predicts mortality in patients referred for coronary angiography and symptoms of heart failure with preserved ejection fraction. Eur. J. Heart Fail. 2014, 16, 758–766. [Google Scholar] [CrossRef] [PubMed]
- Araújo, J.P.; Lourenço, P.; Azevedo, A.; Friões, F.; Rocha-Gonçalves, F.; Ferreira, A.; Bettencourt, P. Prognostic Value of High-Sensitivity C-Reactive Protein in Heart Failure: A Systematic Review. J. Card. Fail. 2009, 15, 256–266. [Google Scholar] [CrossRef]
- Hansson, G.K. Inflammation, Atherosclerosis, and Coronary Artery Disease. N. Engl. J. Med. 2005, 352, 1685–1695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwong, J.C.; Schwartz, K.L.; Campitelli, M.A.; Chung, H.; Crowcroft, N.S.; Karnauchow, T.; Katz, K.; Ko, D.; McGeer, A.J.; McNally, D.; et al. Acute Myocardial Infarction after Laboratory-Confirmed Influenza Infection. N. Engl. J. Med. 2018, 378, 345–353. [Google Scholar] [CrossRef]
- Umansky, S.R.; Cuenco, G.M.; Khutzian, S.S.; Barr, P.J.; Tomei, L.D. Post-ischemic apoptotic death of rat neonatal cardiomyocytes. Cell Death Differ. 1995, 2, 235–421. [Google Scholar]
- Sandek, A.; Swidsinski, A.; Schroedl, W.; Watson, A.; Valentova, M.; Herrmann, R.; Scherbakov, N.; Cramer, L.; Rauchhaus, M.; Grosse-Herrenthey, A.; et al. Intestinal Blood Flow in Patients With Chronic Heart Failure: A link with bacterial growth, gastrointestinal symptoms, and cachexia. J. Am. Coll. Cardiol. 2014, 64, 1092–1102. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, E.; Sugiyama, S.; Hirata, Y.; Tokitsu, T.; Tabata, N.; Fujisue, K.; Sugamura, K.; Sakamoto, K.; Tsujita, K.; Matsumura, T.; et al. Prognostic significance of circulating leukocyte subtype counts in patients with coronary artery disease. Atherosclerosis 2016, 255, 210–216. [Google Scholar] [CrossRef]
- Bowe, B.; Xie, Y.; Xian, H.; Li, T.; Al-Aly, Z. Association between Monocyte Count and Risk of Incident CKD and Progression to ESRD. Clin. J. Am. Soc. Nephrol. 2017, 12, 603–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naicker, S.D.; Cormican, S.; Griffin, T.P.; Maretto, S.; Martin, W.P.; Ferguson, J.P.; Cotter, D.; Connaughton, E.P.; Dennedy, M.C.; Griffin, M.D. Chronic Kidney Disease Severity Is Associated with Selective Expansion of a Distinctive Intermediate Monocyte Subpopulation. Front. Immunol. 2018, 9, 2845. [Google Scholar] [CrossRef] [Green Version]
- Stevens, L.A.; Coresh, J.; Greene, T.; Levey, A.S. Assessing Kidney Function—Measured and Estimated Glomerular Filtration Rate. N. Engl. J. Med. 2006, 354, 2473–2483. [Google Scholar] [CrossRef] [Green Version]
- Ter Maaten, J.M.; Maggioni, A.P.; Latini, R.; Masson, S.; Tognoni, G.; Tavazzi, L.; Signorini, S.; Voors, A.A.; Damman, K. Clinical and prognostic value of spot urinary creatinine in chronic heart failure—An analysis from GISSI-HF. Am. Heart J. 2017, 188, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Mehra, M.R.; Uber, P.A.; Lavie, C.J.; Milani, R.V.; Park, M.H.; Ventura, H.O. High-density Lipoprotein Cholesterol Levels and Prognosis in Advanced Heart Failure. J. Heart Lung Transplant. 2009, 28, 876–880. [Google Scholar] [CrossRef] [PubMed]
- Mishra, M.; Muthuramu, I.; De Geest, B. HDL dysfunction, function, and heart failure. Aging 2019, 11, 293–294. [Google Scholar] [CrossRef] [PubMed]
Laboratory Findings | LVEF ≥ 50%, n = 117 | LVEF < 50%, n = 91 | p-Value |
---|---|---|---|
RBC, 1012/L | 4.59 (0.57) | 4.61 (0.65) | 0.791 |
HGB, g/L | 137 (87–165) | 136 (77–183) | 0.477 |
MCHC, g/L | 337.32 (10.60) | 331.46 (13.13) | 0.004 * |
PLT, 109/L | 202 (73–326) | 204.5 (113–1097) | 0.053 |
RDW-CV, % | 13.6 (11.5–16.9) | 14.7 (12.6–19.1) | 0.001 * |
Laboratory Findings | LVEF ≥ 50%, n = 117 | LVEF < 50%, n = 91 | p-Value |
---|---|---|---|
NEU, % | 58.20 (12.40) | 61.12 (10.40) | 0.137 |
NEU, 109/L | 4.00 (1.42–15.53) | 4.05 (1.47–9.61) | 0.434 |
LYM, % | 30.48 (10.87) | 26.98 (9.08) | 0.045 * |
LYM, 109/L | 1.98 (0.72) | 1.78 (0.59) | 0.071 |
MON, % | 9.1 (4.7–13.7) | 9.4 (3.2–15.9) | 0.101 |
MON, 109/L | 8.78 (2.69) | 9.52 (2.81) | 0.121 |
LYM/MON | 3.33 (1.22–9.33) | 3 (0.44–6.5) | 0.011 * |
CRP, mg/L | 4.92 (6.21) | 7.51 (12.29) | 0.099 |
Laboratory Findings | LVEF < 50% without MI, n = 91 | LVEF < 50% with MI, n = 58 | p-Value |
---|---|---|---|
Total cholesterol, g/L | 4.35 (2.46–7.10) | 3.9 (2.72–6.71) | 0.016 * |
LDL, g/L | 2.97 (1.53–5.5) | 2.52 (1.36–4.42) | 0.101 |
HDL, g/L | 0.96 (0.44–2.2) | 0.92 (0.56–1.97) | 0.010 * |
TG, g/L | 1.25 (0.39–3.28) | 1.24 (0.51–6.78) | 0.672 |
AC | 3.55 (1.23–6.06) | 3.25 (1.21–6.39) | 0.591 |
CRP, mg/L | 6.9 (1.46–62.97) | 7 (1–33.99) | 0.012 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gujytė, G.; Mongirdienė, A.; Laukaitienė, J. Correlation of Inflammation, Lipidogram, and Hematological Readings in Chronic Heart Failure Patients. Med. Sci. Forum 2021, 6, 7. https://doi.org/10.3390/IECMD2021-10316
Gujytė G, Mongirdienė A, Laukaitienė J. Correlation of Inflammation, Lipidogram, and Hematological Readings in Chronic Heart Failure Patients. Medical Sciences Forum. 2021; 6(1):7. https://doi.org/10.3390/IECMD2021-10316
Chicago/Turabian StyleGujytė, Greta, Aušra Mongirdienė, and Jolanta Laukaitienė. 2021. "Correlation of Inflammation, Lipidogram, and Hematological Readings in Chronic Heart Failure Patients" Medical Sciences Forum 6, no. 1: 7. https://doi.org/10.3390/IECMD2021-10316
APA StyleGujytė, G., Mongirdienė, A., & Laukaitienė, J. (2021). Correlation of Inflammation, Lipidogram, and Hematological Readings in Chronic Heart Failure Patients. Medical Sciences Forum, 6(1), 7. https://doi.org/10.3390/IECMD2021-10316