Association between Air Pollutants and Cancer Incidence Rates in Japan: An Ecological Study †
Abstract
:1. Introduction
2. Methods
2.1. Study Period and Area
2.2. Cancer Incidence Rates
2.3. Concentrations of Air Pollutants
2.4. Statical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Lond. Engl. 2018, 392, 1923–1994. [Google Scholar] [CrossRef] [Green Version]
- Turner, M.C.; Andersen, Z.J.; Baccarelli, A.; Diver, W.R.; Gapstur, S.M.; Pope, C.A.; Prada, D.; Samet, J.; Thurston, G.; Cohen, A. Outdoor air pollution and cancer: An overview of the current evidence and public health recommendations. CA. Cancer J. Clin. 2020, 70, 460–479. [Google Scholar] [CrossRef]
- Loomis, D.; Grosse, Y.; Lauby-Secretan, B.; Ghissassi, F.E.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Baan, R.; Mattock, H.; Straif, K. The carcinogenicity of outdoor air pollution. Lancet Oncol. 2013, 14, 1262–1263. [Google Scholar] [CrossRef]
- Turner, M.C.; Krewski, D.; Diver, W.R.; Pope, C.A.; Burnett, R.T.; Jerrett, M.; Marshall, J.D.; Gapstur, S.M. Ambient Air Pollution and Cancer Mortality in the Cancer Prevention Study II. Environ. Health Perspect. 2017, 125, 087013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, C.M.; Tsang, H.; Lai, H.K.; Thomas, G.N.; Lam, K.B.; Chan, K.P.; Zheng, Q.; Ayres, J.G.; Lee, S.Y.; Lam, T.H.; et al. Cancer Mortality Risks from Long-term Exposure to Ambient Fine Particle. Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 2016, 25, 839–845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ancona, C.; Badaloni, C.; Mataloni, F.; Bolignano, A.; Bucci, S.; Cesaroni, G.; Sozzi, R.; Davoli, M.; Forastiere, F. Mortality and morbidity in a population exposed to multiple sources of air pollution: A retrospective cohort study using air dispersion models. Environ. Res. 2015, 137, 467–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.W.; Park, S.; Lim, C.W.; Lee, K.; Kim, B. The Role of Air Pollutants in Initiating Liver Disease. Toxicol. Res. 2014, 30, 65–70. [Google Scholar] [CrossRef]
- Pan, W.-C.; Wu, C.-D.; Chen, M.-J.; Huang, Y.-T.; Chen, C.-J.; Su, H.-J.; Yang, H.-I. Fine Particle Pollution, Alanine Transaminase, and Liver Cancer: A Taiwanese Prospective Cohort Study (REVEAL-HBV). JNCI J. Natl. Cancer Inst. 2016, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedersen, M.; Andersen, Z.J.; Stafoggia, M.; Weinmayr, G.; Galassi, C.; Sørensen, M.; Eriksen, K.T.; Tjønneland, A.; Loft, S.; Jaensch, A.; et al. Ambient air pollution and primary liver cancer incidence in four European cohorts within the ESCAPE project. Environ. Res. 2017, 154, 226–233. [Google Scholar] [CrossRef] [PubMed]
- VoPham, T.; Bertrand, K.A.; Tamimi, R.M.; Laden, F.; Hart, J.E. Ambient PM2.5 air pollution exposure and hepatocellular carcinoma incidence in the United States. Cancer Causes Control 2018, 29, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Liaw, Y.-P.; Ting, T.-F.; Ho, C.-C.; Chiou, Z.-Y. Cell type specificity of lung cancer associated with nitric oxide. Sci. Total Environ. 2010, 408, 4931–4934. [Google Scholar] [CrossRef]
- Lala, P.K.; Chakraborty, C. Role of nitric oxide in carcinogenesis and tumour progression. Lancet Oncol. 2001, 2, 149–156. [Google Scholar] [CrossRef]
- Sanuphan, A.; Chunhacha, P.; Pongrakhananon, V.; Chanvorachote, P. Long-term nitric oxide exposure enhances lung cancer cell migration. BioMed Res. Int. 2013, 2013, 186972. [Google Scholar] [CrossRef] [Green Version]
- Cancer Statistics in Japan ’17. Available online: https://ganjoho.jp/en/professional/statistics/brochure/2017_en.html (accessed on 1 December 2020).
- Transition of Evacuation Designated Zones. Available online: https://www.pref.fukushima.lg.jp/site/portal-english/en03-08.html (accessed on 1 December 2020).
- Cancer Incidence of Japan 2017. Available online: https://www.mhlw.go.jp/content/10900000/000624853.pdf (accessed on 1 December 2020).
- Ahmad, O.B.; Boschi-Pinto, C.; Lopez, A.D.; Murray, C.J.L.; Lozano, R.; Inoue, M. Age Standardization of Rates: A New Who Standard; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Huang, H.-H.; Huang, J.-Y.; Lung, C.-C.; Wu, C.-L.; Ho, C.-C.; Sun, Y.-H.; Ko, P.-C.; Su, S.-Y.; Chen, S.-C.; Liaw, Y.-P. Cell-type specificity of lung cancer associated with low-dose soil heavy metal contamination in Taiwan: An ecological study. BMC Public Health 2013, 13, 330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Outdoor Air Pollution; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (Ed.) IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer, World Health Organization: Lyon, France, 2016; ISBN 978-92-832-0147-2. [Google Scholar]
- Guo, C.; Chan, T.-C.; Teng, Y.-C.; Lin, C.; Bo, Y.; Chang, L.; Lau, A.K.H.; Tam, T.; Wong, M.C.S.; Qian Lao, X. Long-term exposure to ambient fine particles and gastrointestinal cancer mortality in Taiwan: A cohort study. Environ. Int. 2020, 138, 105640. [Google Scholar] [CrossRef] [PubMed]
- Iwai, K.; Mizuno, S.; Miyasaka, Y.; Mori, T. Correlation between suspended particles in the environmental air and causes of disease among inhabitants: Cross-sectional studies using the vital statistics and air pollution data in Japan. Environ. Res. 2005, 99, 106–117. [Google Scholar] [CrossRef] [PubMed]
- White, A.J.; Bradshaw, P.T.; Hamra, G.B. Air Pollution and Breast Cancer: A Review. Curr. Epidemiol. Rep. 2018, 5, 92–100. [Google Scholar] [CrossRef] [PubMed]
Male | Female | ||||
---|---|---|---|---|---|
Cancer Type | No. of Cases | Age-Adjusted Incidence Rate 1 | Cancer Type | No. of Cases | Age-Adjusted Incidence Rate 1 |
Prostate | 35,247 | 55.71 | Breast | 42,823 | 99.32 |
Stomach | 33,733 | 55.88 | Colorectal | 31,996 | 48.41 |
Colorectal | 45,832 | 84.80 | Lung | 16,276 | 22.52 |
Lung | 32,129 | 52.60 | Stomach | 15,250 | 20.40 |
Liver | 14,614 | 24.04 | Uterine | 20,505 | 67.36 |
Quartile | Spearman’s Correlation Coefficient | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Air Pollutant, Unit | Mean (SD) | Q1 | Q2 | Q3 | SO2 | NO | NO2 | Ox | PM2.5 | |
SO2, ppb | 1.52 (1.03) | 0.92 | 1.25 | 2.00 | SO2 | - | 0.26 * | 0.32 * | −0.11 * | 0.25 * |
NO, ppb | 2.31 (1.59) | 1.08 | 2.00 | 3.17 | NO | - | 0.82 * | −0.61 * | 0.22 * | |
NO2, ppb | 9.34 (4.30) | 5.96 | 8.67 | 12.50 | NO2 | - | −0.57 * | 0.22 * | ||
Ox, ppb | 35.16 (3.20) | 33.21 | 34.92 | 36.92 | Ox | - | −0.01 | |||
PM2.5, μg/m3 | 11.56 (2.29) | 10.11 | 11.62 | 13.06 | PM2.5 | - |
Male | Female | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cancer Type | SO2 | NO | NO2 | Ox | PM2.5 | Cancer Type | SO2 | NO | NO2 | Ox | PM2.5 |
Prostate | 0.01 | 0.09 | 0.15 a | −0.08 | −0.14 a | Breast | 0.19 b | 0.34 b | 0.39 b | −0.24 b | 0.08 |
Stomach | −0.03 | −0.12 a | −0.07 | 0.10 | −0.04 | Colorectal | 0.05 | 0.25 b | 0.30 b | −0.23 b | −0.03 |
Colorectal | 0.02 | 0.14 a | 0.19 b | −0.17 a | −0.03 | Lung | 0.11 a | 0.20 b | 0.18 a | −0.07 | 0.21 b |
Lung | 0.05 | 0.09 | 0.08 | −0.03 | 0.26 b | Stomach | 0.01 | −0.06 | −0.04 | 0.09 | −0.12 a |
Liver | 0.20 b | −0.03 | −0.11 | 0.12 a | 0.42 b | Uterine | 0.12 a | −0.12 a | −0.15 a | 0.09 | 0.17 a |
Cancer Type (Sex) | Liver (Male) | Breast (Female) | ||||
---|---|---|---|---|---|---|
RR a (95% CI) | p | RR a (95% CI) | p | |||
SO2 conc., ppb | ||||||
≤0.92 | 1.00 | 1.00 | ||||
0.92–1.25 | 0.99 (0.92–1.05) | 0.71 | 1.05 (1.01–1.08) | <0.01 | ||
1.25–2.00 | 1.07 (1.00–1.14) | 0.04 | 1.03 (1.00–1.07) | 0.06 | ||
>2.00 | 1.08 (1.01–1.15) | 0.03 | 1.02 (0.99–1.06) | 0.17 | ||
p for trend | <0.01 | 0.25 | ||||
Cancer type (sex) | Breast (female) | Colorectal (female) | Lung (female) | |||
RR a (95% CI) | p | RR a (95% CI) | p | RR a (95% CI) | p | |
NO conc., ppb | ||||||
≤1.08 | 1.00 | 1.00 | 1.00 | |||
1.08–2.00 | 1.05 (1.01–1.08) | <0.01 | 0.97 (0.92–1.02) | 0.19 | 1.02 (0.95–1.10) | 0.56 |
2.00–3.17 | 1.03 (1.00–1.07) | 0.06 | 1.01 (0.95–1.08) | 0.67 | 1.08 (0.99–1.18) | 0.09 |
>3.17 | 1.02 (0.99–1.06) | 0.17 | 1.00 (0.92–1.08) | 0.93 | 1.13 (1.01–1.26) | 0.04 |
p for trend | 0.25 | 0.76 | 0.03 | |||
Cancer type (sex) | Colorectal (male) | Breast (female) | Colorectal (female) | |||
RR a (95% CI) | p | RR a (95% CI) | p | RR a (95% CI) | p | |
NO2 conc., ppb | ||||||
≤5.96 | 1.00 | 1.00 | 1.00 | |||
5.96–8.67 | 0.98 (0.94–1.02) | 0.25 | 1.01 (0.97–1.04) | 0.76 | 1.13 (1.08–1.19) | <0.01 |
8.67–12.50 | 1.01 (0.97–1.05) | 0.59 | 1.09 (1.05–1.14) | <0.01 | 1.12 (1.06–1.18) | <0.01 |
>12.50 | 1.11 (1.05–1.17) | <0.01 | 1.20 (1.14–1.26) | <0.01 | 1.24 (1.15–1.33) | <0.01 |
p for trend | <0.01 | <0.01 | <0.01 | |||
Cancer type (sex) | Lung (male) | Liver (male) | Lung (female) | |||
RR a (95% CI) | p | RR a (95% CI) | p | RR a (95% CI) | p | |
PM2.5 conc., μg/m3 | ||||||
≤10.11 | 1.00 | 1.00 | 1.00 | |||
10.11–11.62 | 1.01 (0.97–1.06) | 0.63 | 1.05 (0.98–1.13) | 0.13 | 0.97 (0.90–1.04) | 0.37 |
11.62–13.06 | 1.05 (1.00–1.10) | 0.05 | 1.17 (1.09–1.25) | <0.01 | 1.07 (1.00–1.15) | 0.06 |
>13.06 | 1.12 (1.07–1.17) | <0.01 | 1.38 (1.29–1.48) | <0.01 | 1.10 (1.03–1.18) | <0.01 |
p for trend | <0.01 | <0.01 | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasegawa, K.; Tsukahara, T.; Nomiyama, T. Association between Air Pollutants and Cancer Incidence Rates in Japan: An Ecological Study. Med. Sci. Forum 2021, 4, 15. https://doi.org/10.3390/ECERPH-3-09054
Hasegawa K, Tsukahara T, Nomiyama T. Association between Air Pollutants and Cancer Incidence Rates in Japan: An Ecological Study. Medical Sciences Forum. 2021; 4(1):15. https://doi.org/10.3390/ECERPH-3-09054
Chicago/Turabian StyleHasegawa, Kohei, Teruomi Tsukahara, and Tetsuo Nomiyama. 2021. "Association between Air Pollutants and Cancer Incidence Rates in Japan: An Ecological Study" Medical Sciences Forum 4, no. 1: 15. https://doi.org/10.3390/ECERPH-3-09054
APA StyleHasegawa, K., Tsukahara, T., & Nomiyama, T. (2021). Association between Air Pollutants and Cancer Incidence Rates in Japan: An Ecological Study. Medical Sciences Forum, 4(1), 15. https://doi.org/10.3390/ECERPH-3-09054