Bespoke Biomarker Combinations for Cancer Survival Prognosis Using Artificial Intelligence on Tumour Transcriptomics †
7th CiiEM International Congress 2025—Empowering One Health to Reduce Social Vulnerabilities
)
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kourou, K.; Exarchos, K.P.; Papaloukas, C.; Sakaloglou, P.; Exarchos, T.; Fotiadis, D.I. Applied Machine Learning in Cancer Research: A Systematic Review for Patient Diagnosis, Classification and Prognosis. Comput. Struct. Biotechnol. J. 2021, 19, 5546–5555. [Google Scholar] [CrossRef]
- Boeri, C.; Chiappa, C.; Galli, F.; De Berardinis, V.; Bardelli, L.; Carcano, G.; Rovera, F. Machine Learning Techniques in Breast Cancer Prognosis Prediction: A Primary Evaluation. Cancer Med. 2020, 9, 3234–3243. [Google Scholar] [CrossRef]
- Šutić, M.; Vukić, A.; Baranašić, J.; Försti, A.; Džubur, F.; Samaržija, M.; Jakopović, M.; Brčić, L.; Knežević, J. Diagnostic, Predictive, and Prognostic Biomarkers in Non-Small Cell Lung Cancer (NSCLC) Management. J. Pers. Med. 2021, 11, 1102. [Google Scholar] [CrossRef] [PubMed]
- Pontén, F.; Jirström, K.; Uhlen, M. The Human Protein Atlas—A Tool for Pathology. J. Pathol. 2008, 216, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Pais, R.J.; Lopes, F.; Parreira, I.; Silva, M.; Silva, M.; Moutinho, M.G. Predicting Cancer Prognostics from Tumour Transcriptomics Using an Auto Machine Learning Approach. Med. Sci. Forum 2023, 22, 6. [Google Scholar]
- Yang, D.; Ma, X.; Song, P. A Prognostic Model of Non Small Cell Lung Cancer Based on TCGA and ImmPort Databases. Sci. Rep. 2022, 12, 437. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Xu, Y.; Han, C.; Wang, Z.; Li, J.; Wang, Q.; Che, X. Identification of a Prognostic Risk Signature of Kidney Renal Clear Cell Carcinoma Based on Regulating the Immune Response Pathway Exploration. J. Oncol. 2020, 2020, 6657013. [Google Scholar] [CrossRef] [PubMed]
- Le, T.T.; Fu, W.; Moore, J.H. Scaling Tree-Based Automated Machine Learning to Biomedical Big Data with a Feature Set Selector. Bioinformatics 2020, 36, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Telikani, A.; Gandomi, A.H.; Tahmassebi, A.; Banzhaf, W. Evolutionary Machine Learning: A Survey. ACM Comput. Surv. 2021, 54, 161. [Google Scholar] [CrossRef]
- Roman-Naranjo, P.; Parra-Perez, A.M.; Lopez-Escamez, J.A. A Systematic Review on Machine Learning Approaches in the Diagnosis and Prognosis of Rare Genetic Diseases. J. Biomed. Inform. 2023, 143, 104429. [Google Scholar] [CrossRef] [PubMed]
- Liao, T.-T.; Yang, M.-H. Hybrid Epithelial/Mesenchymal State in Cancer Metastasis: Clinical Significance and Regulatory Mechanisms. Cells 2020, 9, 623. [Google Scholar] [CrossRef] [PubMed]
- Garg, M. Epithelial, Mesenchymal and Hybrid Epithelial/Mesenchymal Phenotypes and Their Clinical Relevance in Cancer Metastasis. Expert Rev. Mol. Med. 2017, 19, e3. [Google Scholar] [CrossRef]
- Uhlen, M.; Zhang, C.; Lee, S.; Sjöstedt, E.; Fagerberg, L.; Bidkhori, G.; Benfeitas, R.; Arif, M.; Liu, Z.; Edfors, F.; et al. A Pathology Atlas of the Human Cancer Transcriptome. Science 2017, 357. [Google Scholar] [CrossRef] [PubMed]
- Filho, U.L.; Pais, T.A.; Pais, R.J. Facilitating “Omics” for Phenotype Classification Using a User-Friendly AI-Driven Platform: Application in Cancer Prognostics. BioMedInformatics 2023, 3, 1071–1082. [Google Scholar] [CrossRef]
- Pais, R.J. Simulation of Multiple Microenvironments Shows a Pivot Role of RPTPs on the Control of Epithelial-to-Mesenchymal Transition. Biosystems 2020, 198, 104268. [Google Scholar] [CrossRef] [PubMed]
Cancer Type | Model | Software tool | AUC | Sensitivity | Specificity |
---|---|---|---|---|---|
Breast | BCM1 | O2Pmgen v1.1 | 83% | 95% | 63% |
BCM2 | BMfinder v1.0 | 62% | 84% | 42% | |
BCM3 | TPOT v0.12.0 | 65% | 95% | 40% | |
Lung | LCM1 | O2Pmgen v1.1 | 75% | 81% | 61% |
LCM2 | BMfinder v1.0 | 60% | 71% | 40% | |
LCM3 | TPOT v0.12.0 | 63% | 79% | 50% | |
Renal | RCM1 | O2Pmgen v1.1 | 71% | 81% | 60% |
RCM2 | BMfinder v1.0 | 62% | 73% | 41% | |
RCM3 | TPOT v0.12.0 | 68% | 82% | 63% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pais, R.J.; Pais, T.A.; Filho, U.L. Bespoke Biomarker Combinations for Cancer Survival Prognosis Using Artificial Intelligence on Tumour Transcriptomics. Med. Sci. Forum 2025, 37, 18. https://doi.org/10.3390/msf2025037018
Pais RJ, Pais TA, Filho UL. Bespoke Biomarker Combinations for Cancer Survival Prognosis Using Artificial Intelligence on Tumour Transcriptomics. Medical Sciences Forum. 2025; 37(1):18. https://doi.org/10.3390/msf2025037018
Chicago/Turabian StylePais, Ricardo Jorge, Tiago Alexandre Pais, and Uraquitan Lima Filho. 2025. "Bespoke Biomarker Combinations for Cancer Survival Prognosis Using Artificial Intelligence on Tumour Transcriptomics" Medical Sciences Forum 37, no. 1: 18. https://doi.org/10.3390/msf2025037018
APA StylePais, R. J., Pais, T. A., & Filho, U. L. (2025). Bespoke Biomarker Combinations for Cancer Survival Prognosis Using Artificial Intelligence on Tumour Transcriptomics. Medical Sciences Forum, 37(1), 18. https://doi.org/10.3390/msf2025037018