Public Health Implications of Antimicrobial Resistance in Wildlife at the One Health Interface †
Abstract
:1. Introduction
2. Rising Reports of AMR in Wildlife
3. Are Wild Species Really a ‘Reservoir’ of AMR and/or ‘Sentinels’ of Environmental Pollution?
4. Surveillance of Wildlife in National Action Plans (NAPs) of AMR
5. Conclusions and Recommendations: Should We Survey and Prevent/Control AMR in Wildlife?
- (a)
- Identify and prioritize bacterial pathogens, animal groups, and scenarios of wildlife–human–domestic animal interactions where the circulation of AMR in wildlife could have significant public health and economic implications.
- (b)
- Categorize wild species according to their degree of spatial dispersion (e.g., migratory vs. resident species) and contact intensity with other species (e.g., frequent vs. infrequent habitat sharing with humans) to predict their potential to spread AMR.
- (c)
- Evaluate the cost-effectiveness of AMR surveillance of wildlife compared to the absence of surveillance, evaluating different methods such as targeted surveillance in specific animal groups or reinforcing surveillance if AMR reaches a given prevalence in wildlife.
- (d)
- Fund and design studies aiming to understand the level of potential treatment failures associated with AMR circulation in wildlife rehabilitation/rescue centers, as well as the actual health consequences of AMR for wild animals (e.g., changes in microbiota).
- (e)
- Pilot wildlife AMR surveillance with a One Health approach in a well-known system with available data on humans and domestic animals.
- (f)
- Specify terminology and avoid the unnecessary use of the term ‘reservoir’, which could have negative implications for wildlife (e.g., negative actions from local stakeholders related to fear of disease).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dikoumba, A.-C.; Onanga, R.; Mangouka, L.G.; Boundenga, L.; Ngoungou, E.-B.; Godreuil, S. Molecular Epidemiology of Antimicrobial Resistance in Central Africa: A Systematic Review. Access Microbiol. 2023, 5, acmi000556.v5. [Google Scholar] [CrossRef]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Torres, R.T.; Carvalho, J.; Cunha, M.V.; Serrano, E.; Palmeira, J.D.; Fonseca, C. Temporal and Geographical Research Trends of Antimicrobial Resistance in Wildlife—A Bibliometric Analysis. One Health 2020, 11, 100198. [Google Scholar] [CrossRef]
- Alcalá, L.; Alonso, C.A.; Simón, C.; González-Esteban, C.; Orós, J.; Rezusta, A.; Ortega, C.; Torres, C. Wild Birds, Frequent Carriers of Extended-Spectrum β-Lactamase (ESBL) Producing Escherichia coli of CTX-M and SHV-12 Types. Microb. Ecol. 2016, 72, 861–869. [Google Scholar] [CrossRef]
- Benavides, J.A.; Salgado-Caxito, M.; Opazo-Capurro, A.; González Muñoz, P.; Piñeiro, A.; Otto Medina, M.; Rivas, L.; Munita, J.; Millán, J. ESBL-Producing Escherichia coli Carrying CTX-M Genes Circulating among Livestock, Dogs, and Wild Mammals in Small-Scale Farms of Central Chile. Antibiotics 2021, 10, 510. [Google Scholar] [CrossRef]
- McDougall, F.K.; Boardman, W.S.J.; Power, M.L. Characterization of Beta-Lactam-Resistant Escherichia coli from Australian Fruit Bats Indicates Anthropogenic Origins. Microb. Genom. 2021, 7, 000571. [Google Scholar] [CrossRef]
- Vittecoq, M.; Laurens, C.; Brazier, L.; Durand, P.; Elguero, E.; Arnal, A.; Thomas, F.; Aberkane, S.; Renaud, N.; Prugnolle, F.; et al. VIM-1 Carbapenemase-Producing Escherichia coli in Gulls from Southern France. Ecol. Evol. 2017, 7, 1224–1232. [Google Scholar] [CrossRef]
- Martínez-Álvarez, S.; Châtre, P.; Cardona-Cabrera, T.; François, P.; Sánchez-Cano, A.; Höfle, U.; Zarazaga, M.; Madec, J.-Y.; Haenni, M.; Torres, C. Detection and Genetic Characterization of blaESBL-Carrying Plasmids of Cloacal Escherichia coli Isolates from White Stork Nestlings (Ciconia ciconia) in Spain. J. Glob. Antimicrob. Resist. 2023, 34, 186–194. [Google Scholar] [CrossRef]
- Radhouani, H.; Silva, N.; Poeta, P.; Torres, C.; Correia, S.; Igrejas, G. Potential Impact of Antimicrobial Resistance in Wildlife, Environment and Human Health. Front. Microbiol. 2014, 5, 23. [Google Scholar] [CrossRef]
- Dolejska, M.; Literak, I. Wildlife Is Overlooked in the Epidemiology of Medically Important Antibiotic-Resistant Bacteria. Antimicrob. Agents Chemother. 2019, 63, e01167-19. [Google Scholar] [CrossRef]
- Plaza-Rodríguez, C.; Alt, K.; Grobbel, M.; Hammerl, J.A.; Irrgang, A.; Szabo, I.; Stingl, K.; Schuh, E.; Wiehle, L.; Pfefferkorn, B.; et al. Wildlife as Sentinels of Antimicrobial Resistance in Germany? Front. Vet. Sci. 2021, 7, 627821. [Google Scholar] [CrossRef] [PubMed]
- Djordjevic, S.P.; Jarocki, V.M.; Seemann, T.; Cummins, M.L.; Watt, A.E.; Drigo, B.; Wyrsch, E.R.; Reid, C.J.; Donner, E.; Howden, B.P. Genomic Surveillance for Antimicrobial Resistance—A One Health Perspective. Nat. Rev. Genet. 2023, 25, 142–157. [Google Scholar] [CrossRef]
- Zeballos-Gross, D.; Rojas-Sereno, Z.; Salgado-Caxito, M.; Poeta, P.; Torres, C.; Benavides, J.A. The Role of Gulls as Reservoirs of Antibiotic Resistance in Aquatic Environments: A Scoping Review. Front. Microbiol. 2021, 12, 1938. [Google Scholar] [CrossRef]
- Abdullahi, I.N.; Fernández-Fernández, R.; Juárez-Fernández, G.; Martínez-Álvarez, S.; Eguizábal, P.; Zarazaga, M.; Lozano, C.; Torres, C. Wild Animals Are Reservoirs and Sentinels of Staphylococcus aureus and MRSA Clones: A Problem with “One Health” Concern. Antibiotics 2021, 10, 1556. [Google Scholar] [CrossRef]
- Arnold, K.E.; Williams, N.J.; Bennett, M. “Disperse Abroad in the Land”: The Role of Wildlife in the Dissemination of Antimicrobial Resistance. Biol. Lett. 2016, 12, 20160137. [Google Scholar] [CrossRef] [PubMed]
- Vlčková, K.; Gomez, A.; Petrželková, K.J.; Whittier, C.A.; Todd, A.F.; Yeoman, C.J.; Nelson, K.E.; Wilson, B.A.; Stumpf, R.M.; Modrý, D.; et al. Effect of Antibiotic Treatment on the Gastrointestinal Microbiome of Free-Ranging Western Lowland Gorillas (Gorilla g. gorilla). Microb. Ecol. 2016, 72, 943–954. [Google Scholar] [CrossRef] [PubMed]
- Woolhouse, M.; Gaunt, E. Ecological Origins of Novel Human Pathogens. Crit. Rev. Microbiol. 2007, 33, 231–242. [Google Scholar] [CrossRef]
- Haydon, D.T.; Cleaveland, S.; Taylor, L.H.; Laurenson, M.K. Identifying Reservoirs of Infection: A Conceptual and Practical Challenge. Emerg. Infect. Dis. 2002, 8, 1468–1473. [Google Scholar] [CrossRef]
- Manges, A.R.; Johnson, J.R. Reservoirs of Extraintestinal Pathogenic Escherichia coli. Microbiol. Spectr. 2015, 3, 3.5.06. [Google Scholar] [CrossRef]
- Bergeron, C.R.; Prussing, C.; Boerlin, P.; Daignault, D.; Dutil, L.; Reid-Smith, R.J.; Zhanel, G.G.; Manges, A.R. Chicken as Reservoir for Extraintestinal Pathogenic Escherichia coli in Humans, Canada. Emerg. Infect. Dis. 2012, 18, 415–421. [Google Scholar] [CrossRef]
- Letko, M.; Seifert, S.N.; Olival, K.J.; Plowright, R.K.; Munster, V.J. Bat-Borne Virus Diversity, Spillover and Emergence. Nat. Rev. Microbiol. 2020, 18, 461–471. [Google Scholar] [CrossRef] [PubMed]
- Verhagen, J.H.; Fouchier, R.A.M.; Lewis, N. Highly Pathogenic Avian Influenza Viruses at the Wild-Domestic Bird Interface in Europe: Future Directions for Research and Surveillance. Viruses 2021, 13, 212. [Google Scholar] [CrossRef]
- Mather, A.E.; Lawson, B.; de Pinna, E.; Wigley, P.; Parkhill, J.; Thomson, N.R.; Page, A.J.; Holmes, M.A.; Paterson, G.K. Genomic Analysis of Salmonella Enterica Serovar Typhimurium from Wild Passerines in England and Wales. Appl. Environ. Microbiol. 2016, 82, 6728–6735. [Google Scholar] [CrossRef]
- Mather, A.E.; Reid, S.W.J.; Maskell, D.J.; Parkhill, J.; Fookes, M.C.; Harris, S.R.; Brown, D.J.; Coia, J.E.; Mulvey, M.R.; Gilmour, M.W.; et al. Distinguishable Epidemics of Multidrug-Resistant Salmonella Typhimurium DT104 in Different Hosts. Science 2013, 341, 1514–1517. [Google Scholar] [CrossRef]
- Mendelsohn, E.; Ross, N.; Zambrana-Torrelio, C.; Van Boeckel, T.P.; Laxminarayan, R.; Daszak, P. Global Patterns and Correlates in the Emergence of Antimicrobial Resistance in Humans. Proc. Biol. Sci. 2023, 290, 20231085. [Google Scholar] [CrossRef]
- Guenther, S.; Ewers, C.; Wieler, L.H. Extended-Spectrum Beta-Lactamases Producing E. coli in Wildlife, yet Another Form of Environmental Pollution? Front. Microbiol. 2011, 2, 246. [Google Scholar] [CrossRef]
- Atterby, C.; Börjesson, S.; Ny, S.; Järhult, J.D.; Byfors, S.; Bonnedahl, J. ESBL-Producing Escherichia coli in Swedish Gulls—A Case of Environmental Pollution from Humans? PLoS ONE 2017, 12, e0190380. [Google Scholar] [CrossRef]
- FAO; UNEP; WHO; WOAH One Health Joint Plan of Action (2022–2026). Working Together for the Health of Humans, Animals, Plants and the Environment; FAO; UNEP; WHO; World Organisation for Animal Health (WOAH) (Founded as OIE): Rome, Italy, 2022. [Google Scholar]
- FAO; UNEP; WHO; WOAH Global Database for Tracking Antimicrobial Resistance (AMR) Country Self-Assessment Survey (TrACSS). Available online: http://amrcountryprogress.org/ (accessed on 10 October 2023).
- WHO. WHO Library of National Action Plans. Available online: https://www.who.int/teams/surveillance-prevention-control-AMR/national-action-plan-monitoring-evaluation/library-of-national-action-plans (accessed on 10 October 2023).
- European Commission, Directorate-General for Health and Food Safety. Member States’ One Health National Action Plans against Antimicrobial Resistance: Overview Report; Publications Office of the European Union: Luxembourg; 2022. Available online: https://data.europa.eu/doi/10.2875/152822 (accessed on 29 January 2024).
- van Woezik, A.F.G.; Braakman-Jansen, L.M.A.; Kulyk, O.; Siemons, L.; van Gemert-Pijnen, J.E.W.C. Tackling Wicked Problems in Infection Prevention and Control: A Guideline for Co-Creation with Stakeholders. Antimicrob. Resist. Infect. Control 2016, 5, 20. [Google Scholar] [CrossRef]
Region (Number of Countries with a NAP) | Wildlife Mentioned in the NAP | Integrated Surveillance with the Involvement of the Environmental and/or Animal Sectors | Wildlife Surveillance in the NAP (Execution) |
---|---|---|---|
Europe (n = 44) | Austria, Ireland, Italy, Norway, Spain, and Switzerland | Austria, Belgium, Denmark, Finland, France, Germany, Hungary, Ireland, Italy, Kazakhstan, Kyrgyzstan, Luxembourg, Malta, Netherlands, Norway, Portugal, Romania, Russian Federation, Slovakia, Spain, Sweden, Tajikistan, United Kingdom, and Ukraine | Austria (yes, surveillance on hunted animals for human consumption), Ireland (yes, research on AMR in native wildlife), Norway (no), Spain (no). |
Latin America (n = 22) | Costa Rica | Argentina, Chile, Cuba, El Salvador, Jamaica, Mexico, Paraguay, and Peru | None |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benavides, J.A.; Salgado-Caxito, M.; Torres, C.; Godreuil, S. Public Health Implications of Antimicrobial Resistance in Wildlife at the One Health Interface. Med. Sci. Forum 2024, 25, 1. https://doi.org/10.3390/msf2024025001
Benavides JA, Salgado-Caxito M, Torres C, Godreuil S. Public Health Implications of Antimicrobial Resistance in Wildlife at the One Health Interface. Medical Sciences Forum. 2024; 25(1):1. https://doi.org/10.3390/msf2024025001
Chicago/Turabian StyleBenavides, Julio A., Marilia Salgado-Caxito, Carmen Torres, and Sylvain Godreuil. 2024. "Public Health Implications of Antimicrobial Resistance in Wildlife at the One Health Interface" Medical Sciences Forum 25, no. 1: 1. https://doi.org/10.3390/msf2024025001
APA StyleBenavides, J. A., Salgado-Caxito, M., Torres, C., & Godreuil, S. (2024). Public Health Implications of Antimicrobial Resistance in Wildlife at the One Health Interface. Medical Sciences Forum, 25(1), 1. https://doi.org/10.3390/msf2024025001