Exploring Winemaking By-Products of Tinto Cão Grapes: Antioxidant and Antimicrobial Activity against Multiresistant Bacteria †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extraction of Phenolic Compounds
2.2. Bacterial Strains, Culture Media, and Growth Conditions
Antibacterial Susceptibility Test
2.3. Determination of Antioxidant Activity
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dadgostar, P. Antimicrobial Resistance: Implications and Costs. Infect. Drug Resist. 2019, 12, 3903–3910. [Google Scholar] [CrossRef] [PubMed]
- Abushaheen, M.A.; Muzaheed; Fatani, A.J.; Alosaimi, M.; Mansy, W.; George, M.; Acharya, S.; Rathod, S.; Divakar, D.D.; Jhugroo, C.; et al. Antimicrobial resistance, mechanisms and its clinical significance. Disease-a-Month 2020, 66, 100971. [Google Scholar] [CrossRef] [PubMed]
- Christaki, E.; Marcou, M.; Tofarides, A. Antimicrobial resistance in bacteria: Mechanisms, evolution, and persistence. J. Mol. Evol. 2020, 88, 26–40. [Google Scholar] [CrossRef]
- Arsene, M.M.J.; Jorelle, A.B.J.; Sarra, S.; Viktorovna, P.I.; Davares, A.K.L.; Ingrid, N.K.C.; Steve, A.A.F.; Andreevna, S.L.; Vyacheslavovna, Y.N.; Carime, B.Z. Short review on the potential alternatives to antibiotics in the era of antibiotic resistance. J. Appl. Pharm. Sci. 2021, 12, 29–40. [Google Scholar]
- de la Rosa, L.A.; Moreno-Escamilla, J.O.; Rodrigo-García, J.; Alvarez-Parrilla, E. Phenolic compounds. In Postharvest Physiology and Biochemistry of Fruits and Vegetables; Elsevier: New York, NY, USA, 2019; pp. 253–271. [Google Scholar]
- Tapia-Quirós, P.; Montenegro-Landívar, M.F.; Reig, M.; Vecino, X.; Alvarino, T.; Cortina, J.L.; Saurina, J.; Granados, M. Olive mill and winery wastes as viable sources of bioactive compounds: A study on polyphenols recovery. Antioxidants 2020, 9, 1074. [Google Scholar] [CrossRef] [PubMed]
- Lima, M.C.; Paiva de Sousa, C.; Fernandez-Prada, C.; Harel, J.; Dubreuil, J.D.; de Souza, E.L. A review of the current evidence of fruit phenolic compounds as potential antimicrobials against pathogenic bacteria. Microb. Pathog. 2019, 130, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.; Igrejas, G.; Falco, V.; Santos, T.P.; Torres, C.; Oliveira, A.M.P.; Pereira, J.E.; Amaral, J.S.; Poeta, P. Chemical composition, antioxidant and antimicrobial activity of phenolic compounds extracted from wine industry by-products. Food Control 2018, 92, 516–522. [Google Scholar] [CrossRef]
- Silva, V.; Singh, R.K.; Gomes, N.; Soares, B.G.; Silva, A.; Falco, V.; Capita, R.; Alonso-Calleja, C.; Pereira, J.E.; Amaral, J.S.; et al. Comparative Insight upon Chitosan Solution and Chitosan Nanoparticles Application on the Phenolic Content, Antioxidant and Antimicrobial Activities of Individual Grape Components of Sousão Variety. Antioxidants 2020, 9, 178. [Google Scholar] [CrossRef]
- Xia, E.-Q.; Deng, G.-F.; Guo, Y.-J.; Li, H.-B. Biological activities of polyphenols from grapes. Int. J. Mol. Sci. 2010, 11, 622–646. [Google Scholar] [CrossRef]
- Fattouch, S.; Caboni, P.; Coroneo, V.; Tuberoso, C.I.G.; Angioni, A.; Dessi, S.; Marzouki, N.; Cabras, P. Antimicrobial Activity of Tunisian Quince (Cydonia oblonga Miller) Pulp and Peel Polyphenolic Extracts. J. Agric. Food Chem. 2007, 55, 963–969. [Google Scholar] [CrossRef]
- Miklasińska-Majdanik, M.; Kępa, M.; Wojtyczka, R.D.; Idzik, D.; Wąsik, T.J. Phenolic compounds diminish antibiotic resistance of Staphylococcus aureus clinical strains. Int. J. Environ. Res. Public Health 2018, 15, 2321. [Google Scholar] [CrossRef] [PubMed]
- Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem. Rev. 2019, 18, 241–272. [Google Scholar] [CrossRef]
- Silva, A.; Silva, V.; Igrejas, G.; Gaivão, I.; Aires, A.; Klibi, N.; Enes Dapkevicius, M.D.; Valentão, P.; Falco, V.; Poeta, P. Valorization of Winemaking By-Products as a Novel Source of Antibacterial Properties: New Strategies to Fight Antibiotic Resistance. Molecules 2021, 26, 2331. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Martínez, F.J.; Barrajón-Catalán, E.; Encinar, J.A.; Rodríguez-Díaz, J.C.; Micol, V. Antimicrobial capacity of plant polyphenols against gram-positive bacteria: A comprehensive review. Curr. Med. Chem. 2020, 27, 2576–2606. [Google Scholar] [CrossRef] [PubMed]
- Cheng, V.J.; Bekhit, A.E.-D.A.; McConnell, M.; Mros, S.; Zhao, J. Effect of extraction solvent, waste fraction and grape variety on the antimicrobial and antioxidant activities of extracts from wine residue from cool climate. Food Chem. 2012, 134, 474–482. [Google Scholar] [CrossRef]
- Oliveira, D.A.; Salvador, A.A.; Smânia, A., Jr.; Smânia, E.F.A.; Maraschin, M.; Ferreira, S.R.S. Antimicrobial activity and composition profile of grape (Vitis vinifera) pomace extracts obtained by supercritical fluids. J. Biotechnol. 2013, 164, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Pintać, D.; Majkić, T.; Torović, L.; Orčić, D.; Beara, I.; Simin, N.; Mimica-Dukić, N.; Lesjak, M. Solvent selection for efficient extraction of bioactive compounds from grape pomace. Ind. Crops Prod. 2018, 111, 379–390. [Google Scholar] [CrossRef]
- Baroi, A.M.; Popitiu, M.; Fierascu, I.; Sărdărescu, I.-D.; Fierascu, R.C. Grapevine Wastes: A Rich Source of Antioxidants and Other Biologically Active Compounds. Antioxidants 2022, 11, 393. [Google Scholar] [CrossRef]
- Quero, J.; Jiménez-Moreno, N.; Esparza, I.; Osada, J.; Cerrada, E.; Ancín-Azpilicueta, C.; Rodríguez-Yoldi, M.J. Grape Stem Extracts with Potential Anticancer and Antioxidant Properties. Antioxidants 2021, 10, 243. [Google Scholar] [CrossRef]
- Guaita, M.; Motta, S.; Messina, S.; Casini, F.; Bosso, A. Polyphenolic Profile and Antioxidant Activity of Green Extracts from Grape Pomace Skins and Seeds of Italian Cultivars. Foods 2023, 12, 3880. [Google Scholar] [CrossRef]
- Ky, I.; Teissedre, P.-L. Characterisation of Mediterranean Grape Pomace Seed and Skin Extracts: Polyphenolic Content and Antioxidant Activity. Molecules 2015, 20, 2190–2207. [Google Scholar] [CrossRef] [PubMed]
- De Sá, M.; Justino, V.; Spranger, M.I.; Zhao, Y.Q.; Han, L.; Sun, B.S. Extraction yields and anti-oxidant activity of proanthocyanidins from different parts of grape pomace: Effect of mechanical treatments. Phytochem. Anal. 2014, 25, 134–140. [Google Scholar] [CrossRef] [PubMed]
Bacterial Strain | MIC (mg/mL) (Inhibition Zone (mm)) | ||||
---|---|---|---|---|---|
Skin | Seed | Stem | Shoot | Leaf | |
L. monocytogenes | - | 50 (10) | 50 (10) | 25 (9) | 100 (10) |
B. cereus | - | - | 25 (9) | 50 (10) | - |
E. faecium | - | - | - | - | - |
E. faecalis | - | - | - | - | - |
S. aureus | - | 75 (10) | 25 (8) | 10 (8) | - |
S. epidermidis | 100 (10) | 75 (9) | 25 (10) | 25 (10) | 50 (10) |
P. aeruginosa | - | - | 50 (9) | 25 (10) | - |
K. pneumoniae | - | 50 (10) | 25 (9) | 25 (9) | 75 (10) |
S. enteritidis | - | - | - | - | - |
E. coli | - | - | - | - | - |
Tinto Cão Components | Methods | ||
---|---|---|---|
DPPH | FRAP | CuPRAC | |
Skin | 1.81 ± 0.09 a | 0.573 ± 0.008 b | 0.541 ± 0.002 a |
Seed | 0.63 ± 0.02 b | 0.573 ± 0.002 a | 0.515 ± 0.002 c |
Stem | 1.33 ± 0.04 c | 0.584 ± 0.007 b | 0.536 ± 0.005 a |
Shoot | 4.16 ± 0.27 d | 0.927 ± 0.003 c | 0.656 ± 0.018 b |
Leaf | 0.97 ± 0.03 b | 0.548 ± 0.001a | 0.541 ± 0.003 ac |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, V.; Ribeiro, J.; Singh, R.K.; Aires, A.; Carvalho, R.; Falco, V.; Pereira, J.E.; Igrejas, G.; Poeta, P. Exploring Winemaking By-Products of Tinto Cão Grapes: Antioxidant and Antimicrobial Activity against Multiresistant Bacteria. Med. Sci. Forum 2024, 24, 7. https://doi.org/10.3390/ECA2023-16399
Silva V, Ribeiro J, Singh RK, Aires A, Carvalho R, Falco V, Pereira JE, Igrejas G, Poeta P. Exploring Winemaking By-Products of Tinto Cão Grapes: Antioxidant and Antimicrobial Activity against Multiresistant Bacteria. Medical Sciences Forum. 2024; 24(1):7. https://doi.org/10.3390/ECA2023-16399
Chicago/Turabian StyleSilva, Vanessa, Jessica Ribeiro, Rupesh Kumar Singh, Alfredo Aires, Rosa Carvalho, Virgílio Falco, José Eduardo Pereira, Gilberto Igrejas, and Patrícia Poeta. 2024. "Exploring Winemaking By-Products of Tinto Cão Grapes: Antioxidant and Antimicrobial Activity against Multiresistant Bacteria" Medical Sciences Forum 24, no. 1: 7. https://doi.org/10.3390/ECA2023-16399
APA StyleSilva, V., Ribeiro, J., Singh, R. K., Aires, A., Carvalho, R., Falco, V., Pereira, J. E., Igrejas, G., & Poeta, P. (2024). Exploring Winemaking By-Products of Tinto Cão Grapes: Antioxidant and Antimicrobial Activity against Multiresistant Bacteria. Medical Sciences Forum, 24(1), 7. https://doi.org/10.3390/ECA2023-16399