Artificial Intelligence as an Emerging Tool for Cardiologists †
Abstract
:1. Introduction
2. What Is AI?
3. Natural Language Processing
4. AI Applications in Cardiology
4.1. Supervised Learning
4.2. Unsupervised Learning
4.3. Reinforcement Learning
4.4. Natural Language Processing
4.5. Explainable AI
5. Legal, Ethical, and Methodological Issues
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reinsel, D.; Gantz, J.; Rydning, J. The Digitization of the World from Edge to Core; International Data Corporation: Framingham, MA, USA, 2018. [Google Scholar]
- Stanford Medicine 2017 Health Trends Report Harnessing the Power of Data in Health; Stanford University School of Medicine: Stanford, CA, USA, 2017.
- Badura, A.; Krysiński, J.; Nowaczyk, A.; Buciński, A. Application of artificial neural networks to prediction of new substances with antimicrobial activity against Escherichia coli. J. Appl. Microbiol. 2020, 130, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Brajer, N.; Cozzi, B.; Gao, M.; Nichols, M.; Revoir, M.; Balu, S.; Futoma, J.; Bae, J.; Setji, N.; Hernandez, A.; et al. Prospective and External Evaluation of a Machine Learning Model to Predict In-Hospital Mortality of Adults at Time of Admission. JAMA Netw. Open 2020, 3, e1920733. [Google Scholar] [CrossRef] [PubMed]
- Pieszko, K.; Hiczkiewicz, J.; Budzianowski, P.; Budzianowski, J.; Rzeźniczak, J.; Pieszko, K.; Burchardt, P. Predicting Long-Term Mortality after Acute Coronary Syndrome Using Machine Learning Techniques and Hematological Markers. Dis. Markers 2019, 2019, 9056402. [Google Scholar] [CrossRef] [PubMed]
- Pieszko, K.; Hiczkiewicz, J.; Budzianowski, J.; Musielak, B.; Hiczkiewicz, D.; Faron, W.; Rzeźniczak, J.; Burchardt, P. Clinical applications of artificial intelligence in cardiology on the verge of the decade. Cardiol. J. 2021, 28, 460–472. [Google Scholar] [CrossRef]
- D’Ascenzo, F.; De Filippo, O.; Gallone, G.; Mittone, G.; Deriu, M.A.; Iannaccone, M.; Ariza-Solé, A.; Liebetrau, C.; Manzano-Fernández, S.; Quadri, G.; et al. Machine learning-based prediction of adverse events following an acute coronary syndrome (PRAISE): A modelling study of pooled datasets. Lancet 2021, 397, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Alaa, A.M.; Bolton, T.; Di Angelantonio, E.; Rudd, J.H.F.; van der Schaar, M. Cardiovascular disease risk prediction using automated machine learning: A prospective study of 423,604 UK Biobank participants. PLoS ONE 2019, 14, e0213653. [Google Scholar] [CrossRef] [PubMed]
- De Bacquer, D.; Ueda, P.; Reiner, Ž.; De Sutter, J.; De Smedt, D.; Lovic, D.; Gotcheva, N.; Fras, Z.; Pogosova, N.; Mirrakhimov, E.; et al. Prediction of recurrent event in patients with coronary heart disease: The EUROASPIRE Risk Model—Results from a Prospective Study in 27 Countries in the WHO European Region—The EURObservational Research Programme (EORP) of the European Society of Cardiology (ESC). Eur. J. Prev. Cardiol. 2020, 29, 328–339. [Google Scholar] [CrossRef]
- What Is Overfitting? IBM. Available online: https://www.ibm.com/cloud/learn/ (accessed on 10 October 2022).
- Laranjo, L.; Dunn, A.; Tong, H.L.; Kocaballi, A.B.; Chen, J.; Bashir, R.; Surian, D.; Gallego, B.; Magrabi, F.; Lau, A.Y.; et al. Conversational agents in healthcare: A systematic review. J. Am. Med. Inform. Assoc. 2018, 25, 1248–1258. [Google Scholar] [CrossRef]
- Johnson, K.W.; Soto, J.T.; Glicksberg, B.S.; Shameer, K.; Miotto, R.; Ali, M.; Ashley, E.; Dudley, J.T. Artificial Intelligence in Cardiology. J. Am. Coll. Cardiol. 2018, 71, 2668–2679. [Google Scholar] [CrossRef]
- Itchhaporia, D. Artificial intelligence in cardiology. Trends Cardiovasc. Med. 2020, 32, 34–41. [Google Scholar] [CrossRef]
- Feeny, A.K.; Chung, M.K.; Madabhushi, A.; Attia, Z.I.; Cikes, M.; Firouznia, M.; Friedman, P.A.; Kalscheur, M.M.; Kapa, S.; Narayan, S.M.; et al. Artificial Intelligence and Machine Learning in Arrhythmias and Cardiac Electrophysiology. Circ. Arrhythmia Electrophysiol. 2020, 13, e007952. [Google Scholar] [CrossRef] [PubMed]
- Attia, Z.I.; Kapa, S.; Lopez-Jimenez, F.; McKie, P.M.; Ladewig, D.J.; Satam, G.; Pellikka, P.A.; Enriquez-Sarano, M.; Noseworthy, P.A.; Munger, T.M.; et al. Screening for cardiac contractile dysfunction using an artificial intelligence–enabled electrocardiogram. Nat. Med. 2019, 25, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Kusunose, K.; Abe, T.; Haga, A.; Fukuda, D.; Yamada, H.; Harada, M.; Sata, M. A Deep Learning Approach for Assessment of Regional Wall Motion Abnormality From Echocardiographic Images. JACC Cardiovasc. Imaging 2019, 13, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Luongo, G.; Azzolin, L.; Schuler, S.; Rivolta, M.W.; Almeida, T.P.; Martínez, J.P.; Soriano, D.C.; Luik, A.; Müller-Edenborn, B.; Jadidi, A.; et al. Machine learning enables noninvasive prediction of atrial fibrillation driver location and acute pulmonary vein ablation success using the 12-lead ECG. Cardiovasc. Digit. Health J. 2021, 2, 126–136. [Google Scholar] [CrossRef]
- Moghaddasi, H.; Nourian, S. Automatic assessment of mitral regurgitation severity based on extensive textural features on 2D echocardiography videos. Comput. Biol. Med. 2016, 73, 47–55. [Google Scholar] [CrossRef]
- Berikol, G.B.; Yildiz, O.; Özcan, I.T. Diagnosis of Acute Coronary Syndrome with a Support Vector Machine. J. Med. Syst. 2016, 40, 84. [Google Scholar] [CrossRef]
- Motwani, M.; Dey, D.; Berman, D.S.; Germano, G.; Achenbach, S.; Al-Mallah, M.H.; Andreini, D.; Budoff, M.J.; Cademartiri, F.; Callister, T.Q.; et al. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: A 5-year multicentre prospective registry analysis. Eur. Heart J. 2016, 38, 500–507. [Google Scholar] [CrossRef]
- Kakadiaris, I.A.; Vrigkas, M.; Yen, A.A.; Kuznetsova, T.; Budoff, M.; Naghavi, M. Machine Learning Outperforms ACC/AHA CVD Risk Calculator in MESA. J. Am. Heart Assoc. 2018, 7, e009476. [Google Scholar] [CrossRef]
- Kanwar, M.K.; Gomberg-Maitland, M.; Hoeper, M.; Pausch, C.; Pittrow, D.; Strange, G.; Anderson, J.J.; Zhao, C.; Scott, J.V.; Druzdzel, M.J.; et al. Risk stratification in pulmonary arterial hypertension using Bayesian analysis. Eur. Respir. J. 2020, 56, 2000008. [Google Scholar] [CrossRef]
- Zhu, F.; Xu, D.; Liu, Y.; Lou, K.; He, Z.; Zhang, H.; Sheng, Y.; Yang, R.; Li, X.; Kong, X.; et al. Machine learning for the diagnosis of pulmonary hypertension. Kardiologiia 2020, 60, 96–101. [Google Scholar] [CrossRef]
- Kwon, J.-M.; Kim, K.-H.; Medina-Inojosa, J.; Jeon, K.-H.; Park, J.; Oh, B.-H. Artificial intelligence for early prediction of pulmonary hypertension using electrocardiography. J. Heart Lung Transplant. 2020, 39, 805–814. [Google Scholar] [CrossRef] [PubMed]
- Karwath, A.; Bunting, K.V.; Gill, S.K.; Tica, O.; Pendleton, S.; Aziz, F.; Barsky, A.D.; Chernbumroong, S.; Duan, J.; Mobley, A.R.; et al. Redefining β-blocker response in heart failure patients with sinus rhythm and atrial fibrillation: A machine learning cluster analysis. Lancet 2021, 398, 1427–1435. [Google Scholar] [CrossRef] [PubMed]
- Cikes, M.; Sanchez-Martinez, S.; Claggett, B.; Duchateau, N.; Piella, G.; Butakoff, C.; Pouleur, A.C.; Knappe, D.; Biering-Sørensen, T.; Kutyifa, V.; et al. Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy. Eur. J. Heart Fail. 2018, 21, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Shomorony, I.; Cirulli, E.T.; Huang, L.; Napier, L.A.; Heister, R.R.; Hicks, M.; Cohen, I.; Yu, H.-C.; Swisher, C.L.; Schenker-Ahmed, N.M.; et al. An unsupervised learning approach to identify novel signatures of health and disease from multimodal data. Genome Med. 2020, 12, 7. [Google Scholar] [CrossRef]
- Levy, A.E.; Biswas, M.; Weber, R.; Tarakji, K.; Chung, M.; Noseworthy, P.A.; Newton-Cheh, C.; Rosenberg, M.A. Applications of machine learning in decision analysis for dose management for dofetilide. PLoS ONE 2019, 14, e0227324. [Google Scholar] [CrossRef]
- Ghesu, F.-C.; Georgescu, B.; Zheng, Y.; Grbic, S.; Maier, A.; Hornegger, J.; Comaniciu, D. Multi-Scale Deep Reinforcement Learning for Real-Time 3D-Landmark Detection in CT Scans. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 41, 176–189. [Google Scholar] [CrossRef]
- Afzal, N.; Sohn, S.; Abram, S.; Scott, C.G.; Chaudhry, R.; Liu, H.; Kullo, I.J.; Arruda-Olson, A.M. Mining peripheral arterial disease cases from narrative clinical notes using natural language processing. J. Vasc. Surg. 2017, 65, 1753–1761. [Google Scholar] [CrossRef]
- Ashburner, J.M.; Chang, Y.; Wang, X.; Khurshid, S.; Anderson, C.D.; Dahal, K.; Weisenfeld, D.; Cai, T.; Liao, K.P.; Wagholikar, K.B.; et al. Natural Language Processing to Improve Prediction of Incident Atrial Fibrillation Using Electronic Health Records. J. Am. Heart Assoc. 2022, 11, e026014. [Google Scholar] [CrossRef]
- Ross, C.; Swetlitz, I.; Hogan, A. IBM’s Watson Supercomputer Recommended “Unsafe and Incorrect” Cancer Treatments, Internal Documents Show. 2018. Available online: https://www.statnews.com/2018/07/25/ibm-watson-recommended-unsafe-incorrect-treatments/ (accessed on 12 December 2022).
- Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef]
- Amann, J.; Blasimme, A.; Vayena, E.; Frey, D.; Madai, V.I. Explainability for artificial intelligence in healthcare: A multidisciplinary perspective. BMC Med. Inform. Decis. Mak. 2020, 20, 310. [Google Scholar] [CrossRef]
- Wang, K.; Tian, J.; Zheng, C.; Yang, H.; Ren, J.; Liu, Y.; Han, Q.; Zhang, Y. Interpretable prediction of 3-year all-cause mortality in patients with heart failure caused by coronary heart disease based on machine learning and SHAP. Comput. Biol. Med. 2021, 137, 104813. [Google Scholar] [CrossRef] [PubMed]
- Knapič, S.; Malhi, A.; Saluja, R.; Främling, K. Explainable Artificial Intelligence for Human Decision Support System in the Medical Domain. Mach. Learn. Knowl. Extr. 2021, 3, 740–770. [Google Scholar] [CrossRef]
- Neves, I.; Folgado, D.; Santos, S.; Barandas, M.; Campagner, A.; Ronzio, L.; Cabitza, F.; Gamboa, H. Interpretable heartbeat classification using local model-agnostic explanations on ECGs. Comput. Biol. Med. 2021, 133, 104393. [Google Scholar] [CrossRef] [PubMed]
- Kogan, E.; Didden, E.-M.; Lee, E.; Nnewihe, A.; Stamatiadis, D.; Mataraso, S.; Quinn, D.; Rosenberg, D.; Chehoud, C.; Bridges, C. A machine learning approach to identifying patients with pulmonary hypertension using real-world electronic health records. Int. J. Cardiol. 2022, 374, 95–99. [Google Scholar] [CrossRef]
- World Health Organization. Ethics and Governance of Artificial Intelligence for Health; WHO: Geneva, Switzerland, 2021; ISBN 9789240029200. [Google Scholar]
- Morley, J.; Taddeo, M.; Floridi, L. Google Health and the NHS: Overcoming the trust deficit. Lancet Digit. Health 2019, 1, e389. [Google Scholar] [CrossRef] [PubMed]
- GDPR General Data Protection Regulation, Complete Guide to GDPR Compliance. Available online: https://gdpr.eu/ (accessed on 12 December 2022).
- FDA. FDA Warns Patients and Health Care Providers about Potential Cybersecurity Concerns with Certain Medtronic Insulin Pumps. Available online: https://www.fda.gov/news-events/press-announcements/fda-warns-patients-and-health-care-providers-about-potential-cybersecurity-concerns-certain (accessed on 15 October 2022).
- Tabasum, A.; Safi, Z.; AlKhater, W.; Shikfa, A. Cybersecurity Issues in Implanted Medical Devices. In Proceedings of the 2018 International Conference on Computer and Applications (ICCA), Beirut, Lebanon, 25–26 August 2018; pp. 1–9. [Google Scholar] [CrossRef]
- Finlayson, S.G.; Chung, H.W.; Kohane, I.S.; Beam, A.L. Adversarial Attacks Against Medical Deep Learning Systems. arXiv 2018, arXiv:1804.05296. [Google Scholar]
- Scott, I.; Carter, S.; Coiera, E. Clinician checklist for assessing suitability of machine learning applications in healthcare. BMJ Health Care Inform. 2021, 28, e100251. [Google Scholar] [CrossRef]
Performance Metrics | Description |
---|---|
Classification | |
Precision (PPV) | The fraction of objects correctly classified as positive among all positive classifications |
Sensitivity (TPR)/Recall | The fraction of objects correctly classified as positive that are actually positive |
Accuracy | The fraction of objects correctly classified as positive and the fraction of objects correctly classified as negative |
F1 score | The harmonic mean of precision and recall |
Specificity (TNR) | The fraction of objects correctly classified as negative that are actually negative |
Receiver operating characteristic (ROC) curve | The curve between recall (Y-axis) and specificity (X-axis), with the false positive rate = 1 |
Area under the curve | The AUC evaluates the overall quality of the model |
Regression | |
Mean absolute error (MAE) | The mean of the absolute difference between the actual and predicted values in a dataset |
Mean squared error (MSE) | The mean squared error between the predicted and actual values in a dataset |
Root mean squared error (RMSE) | Square root of MSE |
Coefficient of determination (R2) | The proportion of variance explained by the model |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ledziński, Ł.; Grześk, G. Artificial Intelligence as an Emerging Tool for Cardiologists. Med. Sci. Forum 2023, 21, 15. https://doi.org/10.3390/ECB2023-14339
Ledziński Ł, Grześk G. Artificial Intelligence as an Emerging Tool for Cardiologists. Medical Sciences Forum. 2023; 21(1):15. https://doi.org/10.3390/ECB2023-14339
Chicago/Turabian StyleLedziński, Łukasz, and Grzegorz Grześk. 2023. "Artificial Intelligence as an Emerging Tool for Cardiologists" Medical Sciences Forum 21, no. 1: 15. https://doi.org/10.3390/ECB2023-14339
APA StyleLedziński, Ł., & Grześk, G. (2023). Artificial Intelligence as an Emerging Tool for Cardiologists. Medical Sciences Forum, 21(1), 15. https://doi.org/10.3390/ECB2023-14339