Antibiotic Use, Incidence and Risk Factors for Orthopedic Surgical Site Infections in a Teaching Hospital in Madhya Pradesh, India †
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, G.Q.; Guo, F.F.; Ou, Y.; Dong, G.W.; Zhou, W. Epidemiology and outcomes of surgical site infections following orthopedic surgery. Am. J. Infect. Control 2013, 41, 1268–1271. [Google Scholar] [CrossRef] [PubMed]
- Al-Mulhim, F.A.; Baragbah, M.A.; Sadat-Ali, M.; Alomran, A.S.; Azam, M.Q. Prevalence of Surgical Site Infection in Orthopedic Surgery: A 5-year Analysis. Int. Surg. 2014, 99, 264–268. [Google Scholar] [CrossRef] [PubMed]
- ECDC; Public Health England; Institut de Veillle Sanitaire. Systematic Review and Evidence-Based Guidance on Perioperative Antibiotic Prophylaxis. [Internet]. LU: Publications Office. 2013. Available online: https://data.europa.eu/doi/10.2900/85936 (accessed on 15 January 2022).
- Li, B.; Webster, T.J. Bacteria Antibiotic Resistance: New Challenges and Opportunities for Implant-Associated Orthopedic Infections: BACTERIA ANTIBIOTIC RESISTANCE. J Orthop Res [Internet]. 11 August 2017. Available online: https://onlinelibrary.wiley.com/doi/10.1002/jor.23656 (accessed on 2 May 2022).
- Tucci, G.; Romanini, E.; Zanoli, G.; Pavan, L.; Fantoni, M.; Venditti, M. Prevention of surgical site infections in orthopaedic surgery: A synthesis of current recommendations. Eur. Rev. Med. Pharmacol. Sci. 2019, 23 (Suppl. 2), 224–239. [Google Scholar] [PubMed]
- Lindsjö, C.; Sharma, M.; Mahadik, V.K.; Sharma, S.; Stålsby Lundborg, C.; Pathak, A. Surgical site infections, occurrence, and risk factors, before and after an alcohol-based handrub intervention in a general surgical department in a rural hospital in Ujjain, India. Am. J. Infect. Control 2015, 43, 1184–1189. [Google Scholar] [CrossRef]
- Kamat, U.; Ferreira, A.; Savio, R.; Motghare, D. Antimicrobial resistance among nosocomial isolates in a teaching hospital in Goa. Indian J. Community Med. 2008, 33, 89. [Google Scholar] [CrossRef]
- Mekhla Borle, F. Determinants of superficial surgical site infections in abdominal surgeries at a Rural Teaching Hospital in Central India: A prospective study. J. Fam. Med. Prim. Care 2019, 8, 2258. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Outpatient Procedure Component Surgical Site Infection (OPC-SSI) Surveillance [Internet]. Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/nhsn/pdfs/opc/opc-ssi-protocol-current-508.pdf (accessed on 14 April 2021).
- World Health Organization. Protocol for Surgical Site Infection Surveillance with a Focus on Settings with Limited Resources [Internet]. 2018. Available online: https://www.who.int/infection-prevention/tools/surgical/SSI-surveillance-protocol.pdf (accessed on 15 September 2021).
- Collee, J.G. Mackie & McCartney Practical Medical Microbiology; Churchill Livingstone: New York, NY, USA, 1996. [Google Scholar]
- Petti, C.A.; Clinical and Laboratory Standards Institute (Eds.) Interpretive Criteria for Identification of Bacteria and Fungi by DNA Target Sequencing: Approved Guideline; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008; 73p. [Google Scholar]
- World Health Organization, Collaborating Centre for Drug Statistics Methodology. ATC Classification Index with DDDs [Internet]. WHO Collaborating Centre for Drug Statistics Methodology. Available online: https://www.whocc.no/use_of_atc_ddd/ (accessed on 15 April 2022).
- European Centre for Disease Prevention and Control. Healthcare-Associated Infections: Surgical Site Infections. Annual Epidemiological Report for 2017; [Internet]; ECDC: Stockholm, Sweden, 2019; Available online: https://www.ecdc.europa.eu/sites/default/files/documents/AER_for_2017-SSI.pdf (accessed on 21 May 2021).
- Jain, R.K.; Shukla, R.; Singh, P.; Kumar, R. Epidemiology and risk factors for surgical site infections in patients requiring orthopedic surgery. Eur. J. Orthop. Surg. Traumatol. 2015, 25, 251–254. [Google Scholar] [CrossRef] [PubMed]
- Morris, A.J.; Jackways, T.M.; Morgan, A.; Robertson, R.; McIntyre, M. Reduction in surgical site infections in the Southern Cross Hospitals network, 2004–2015: Successful outcome of a long-term surveillance and quality improvement project. N. Z. Med. J. 2018, 131, 27–39. [Google Scholar]
- Najjar, Y.W.; Al-Wahsh, Z.M.; Hamdan, M.; Saleh, M.Y. Risk factors of orthopedic surgical site infection in Jordan: A prospective cohort study. Int. J. Surg. Open 2018, 15, 1–6. [Google Scholar] [CrossRef]
- Korol, E.; Johnston, K.; Waser, N.; Sifakis, F.; Jafri, H.S.; Lo, M.; Kyaw, M.H. A Systematic Review of Risk Factors Associated with Surgical Site Infections among Surgical Patients. PLoS ONE 2013, 8, e83743. [Google Scholar] [CrossRef]
- Dhammi, I.; Kumar, S.; Haq, R.U. Prophylactic antibiotics in orthopedic surgery. Indian J. Orthop. 2015, 49, 373. [Google Scholar] [CrossRef] [PubMed]
- Bratzler, D.W.; Dellinger, E.P.; Olsen, K.M.; Perl, T.M.; Auwaerter, P.G.; Bolon, M.K.; Fish, D.N.; Napolitano, L.M.; Sawyer, R.G.; Slain, D.; et al. Clinical Practice Guidelines for Antimicrobial Prophylaxis in Surgery. Surg Infect. 2013, 14, 73–156. [Google Scholar] [CrossRef]
- Schimmel, J.J.P.; Horsting, P.P.; de Kleuver, M.; Wonders, G.; van Limbeek, J. Risk factors for deep surgical site infections after spinal fusion. Eur. Spine J. 2010, 19, 1711–1719. [Google Scholar] [CrossRef]
- Weigelt, J.A.; Lipsky, B.A.; Tabak, Y.P.; Derby, K.G.; Kim, M.; Gupta, V. Surgical site infections: Causative pathogens and associated outcomes. Am. J. Infect Control 2010, 38, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Rutberg, H.; Borgstedt-Risberg, M.; Gustafson, P.; Unbeck, M. Adverse events in orthopedic care identified via the Global Trigger Tool in Sweden-implications on preventable prolonged hospitalizations. Patient Saf. Surg. 2016, 10, 23. [Google Scholar] [CrossRef] [PubMed]
- Akshaya, D.; Sarala, K.S.; Sharmila, R. A Study of Select Determinants for Hospital Stay among Surgical Patients in a Tertiary Care Hospital. Int. J. Manag. Appl. Sci. 2016, 2, 37–43. [Google Scholar]
- Ribeiro, M.; Monteiro, F.J.; Ferraz, M.P. Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter 2012, 2, 176–194. [Google Scholar] [CrossRef]
- Machowska, A.; Sparrentoft, J.; Dhakaita, S.K.; StålsbyLundborg, C.; Sharma, M. Perioperative antibiotic prescribing in surgery departments of two private sector hospitals in Madhya Pradesh, India. Perioper Med. 2019, 8, 10. [Google Scholar] [CrossRef]
- Menz, B.D.; Charani, E.; Gordon, D.L.; Leather, A.J.; Moonesinghe, S.R.; Phillips, C.J. Surgical Antibiotic Prophylaxis in an Era of Antibiotic Resistance: Common Resistant Bacteria and Wider Considerations for Practice. Infect Drug Resist. 2021, 14, 5235–5252. [Google Scholar] [CrossRef]
- Forget, V.; Fauconnier, J.; Boisset, S.; Pavese, P.; Vermorel, C.; Bosson, J.L.; Saragaglia, D.; Tonetti, J.; Mallaret, M.-R.; Landelle, C. Risk factors for Staphylococcus aureus surgical site infections after orthopaedic and trauma surgery in a French university hospital. Int. J. Hyg. Environ. Health 2020, 229, 113585. [Google Scholar] [CrossRef]
- Chlebicki, M.P.; Safdar, N.; O’Horo, J.C.; Maki, D.G. Preoperative chlorhexidine shower or bath for prevention of surgical site infection: A meta-analysis. Am. J. Infect. Control 2013, 41, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Webster, J.; Osborne, S. Preoperative bathing or showering with skin antiseptics to prevent surgical site infection. In Cochrane Database of Systematic Reviews [Internet]; The Cochrane Collaboration, Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2012; p. CD004985.pub4. Available online: https://doi.wiley.com/10.1002/14651858.CD004985.pub4 (accessed on 23 February 2022).
- Diwan, V.; Hanna, N.; Purohit, M.; Chandran, S.; Riggi, E.; Parashar, V.; Tamhankar, A.J.; Stålsby Lundborg, C. Seasonal Variations in Water-Quality, Antibiotic Residues, Resistant Bacteria and Antibiotic Resistance Genes of Escherichia coli Isolates from Water and Sediments of the Kshipra River in Central India. Int. J. Environ. Res. Public Health 2018, 15, 1281. [Google Scholar] [CrossRef] [PubMed]
Antibiotics Tested | Gram-Positive Organisms | Gram-Negative Organisms | |||
---|---|---|---|---|---|
S. aureus (N = 5) | Pseudomonas (N = 4) | Klebsiella (N = 4) | E. coli (N = 2) | Total | |
Penicillin | 5 | - | - | - | - |
Erythromycin | 4 | - | - | - | - |
Ciprofloxacin | 3 | 3 | 1 | 1 | 5/10 |
Cefoxitin | 3 | - | 1 | 1 | 2/6 |
Tetracycline | 2 | - | 3 | 1 | 4/6 |
Cotrimoxazole | 4 | - | 2 | 2 | 4/6 |
Vancomycin | - | - | - | - | - |
Linezolid | - | - | - | - | - |
Clindamycin | - | - | - | - | - |
Amikacin | 3 | 3 | 1 | 0 | 4/10 |
Gentamycin | 3 | 3 | 1 | 1 | 5/10 |
Ampicillin | - | - | 3 | 1 | 4/6 |
Amoxiclav | - | - | 2 | 1 | 3/6 |
Piperacillin Tazobactam | - | 3 | 1 | 0 | 4/10 |
Cefuroxime | - | - | 2 | 1 | 4/6 |
Cefepime | - | 3 | 2 | 1 | 6/10 |
Cefotaxime | - | - | 2 | 1 | 3/6 |
Ceftriaxone | - | - | 2 | 1 | 3/6 |
Ceftazidime | - | 3 | 2 | 1 | 6/10 |
Meropenem | - | 1 | 0 | 0 | 1/10 |
Aztreonam | - | 3 | 0 | 1 | 4/10 |
Univariable Analysis | Multivariable Analysis | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Risk Factor | Model 1 | Model 2 | Model 3 | ||||||||||
AIC = 454, BIC = 523 | AIC = 482, BIC = 512 | AIC = 447, BIC = 487 | |||||||||||
OR | 95% CI | p–Value | OR | 95% CI | p–Value | OR | 95% CI | p–Value | OR | 95% CI | p–Value | ||
Sex | Female | 1 | |||||||||||
Male | 3.42 | 1.79–6.49 | 0.000 | 2.57 | 1.25–5.29 | 0.010 | 2.93 | 1.48–5.77 | 0.002 | 2.64 | 1.32–5.30 | 0.006 | |
Age, years | ≤18 | 1.00 | |||||||||||
19–60 | 1.45 | 0.84–2.48 | 0.182 | ||||||||||
>60 | 1.05 | 0.46–2.39 | 0.911 | ||||||||||
ASA score | ASA I | 1 | |||||||||||
ASA II | 2.63 | 1.57–4.43 | 0.000 | 1.30 | 0.67–2.49 | 0.437 | |||||||
ASA III | 2.45 | 0.99–6.01 | 0.051 | 2.08 | 0.76–5.72 | 0.156 | |||||||
Previous hospitalization | 4.14 | 2.57–6.66 | 0.000 | 1.65 | 0.85–3.19 | 0.139 | 2.15 | 1.25–3.69 | 0.006 | ||||
Antibiotic prescribed 14 days before hospital admission | 4.71 | 2.59–8.58 | 0.000 | 1.45 | 0.61–3.42 | 0.400 | |||||||
PAP | 0.34 | 0.21–0.53 | 0.000 | 1.11 | 0.52–2.34 | 0.789 | |||||||
Antibiotic treatment during hospital stay before PAP | 3.75 | 2.42–5.80 | 0.000 | 3.93 | 2.33–6.63 | 0.000 | 3.92 | 2.40–6.43 | 0.000 | 4.19 | 2.51–7.00 | 0.000 | |
Duration of preoperative antibiotic, days | 1–7 | 1 | |||||||||||
8–14 | 1.2 | 0.51–2.85 | 0.674 | ||||||||||
>14 | 1.48 | 0.55–3.96 | 0.438 | ||||||||||
Postoperative antibiotic | 0.75 | 0.42–1.31 | 0.311 | ||||||||||
Duration of postoperative antibiotic, days | 1–7 | 1 | |||||||||||
8–14 | 1.71 | 0.90–3.23 | 0.100 | ||||||||||
>14 | 4.23 | 2.32–7.69 | 0.000 | 1.05 | 1.00–1.09 | 0.043 | 1.05 | 1.01–1.09 | 0.028 | 1.04 | 1.00–1.09 | 0.051 | |
Preoperative LOS, days | 1–3 | 1 | |||||||||||
4–7 | 1.00 | 0.57–1.76 | 0.999 | ||||||||||
8–15 | 0.68 | 0.35–1.30 | 0.243 | ||||||||||
>15 | 1.39 | 0.62–3.12 | 0.419 | ||||||||||
Postoperative LOS, days | 1–3 | 1 | |||||||||||
4–7 | 1.07 | 0.38–2.99 | 0.900 | ||||||||||
8–15 | 2.10 | 0.90–4.88 | 0.086 | ||||||||||
>15 | 5.99 | 2.59–13.87 | 0.000 | 3.03 | 1.65–5.58 | 0.000 | 2.95 | 1.67–5.20 | 0.000 | 3.30 | 1.83–5.95 | 0.000 | |
Preoperative shower | 3.94 | 2.49–6.24 | 0.000 | 4.14 | 1.99–8.56 | 0.000 | 5.49 | 3.29–9.16 | 0.000 | 4.73 | 2.72–8.22 | 0.000 | |
Hair removal | Not done | 1.00 | |||||||||||
Previous night | 0.65 | 0.36–1.19 | 0.161 | ||||||||||
Same day | 0.56 | 0.15–2.03 | 0.375 | ||||||||||
Shaving | 0.59 | 0.33–1.08 | 0.087 | ||||||||||
Type of fracture | Closed | 1 | |||||||||||
Compound | 4.87 | 2.21–10.76 | 0.000 | 1.97 | 0.73–5.35 | 0.182 | |||||||
Nature of surgery | Elective | 1 | |||||||||||
Emergency | 1.72 | 0.39–7.66 | 0.476 | ||||||||||
Duration of surgery, min | ≤60 | 1.00 | |||||||||||
61–120 | 0.60 | 0.35–1.03 | 0.064 | ||||||||||
>120 | 0.64 | 0.34–1.23 | 0.180 | ||||||||||
Blood transfusion | 0.88 | 0.54–1.43 | 0.601 | ||||||||||
Oxygen support | 0.75 | 0.29–1.93 | 0.547 | ||||||||||
Drain | 3.21 | 1.43–7.20 | 0.005 | 1.83 | 0.74–4.50 | 0.189 | 1.73 | 0.71–4.22 | 0.231 | ||||
Implants | 4.07 | 2.64–6.29 | 0.000 | 1.34 | 0.71–2.50 | 0.366 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skender, K.; Machowska, A.; Singh, V.; Goel, V.; Marothi, Y.; Lundborg, C.S.; Sharma, M. Antibiotic Use, Incidence and Risk Factors for Orthopedic Surgical Site Infections in a Teaching Hospital in Madhya Pradesh, India. Med. Sci. Forum 2022, 12, 2. https://doi.org/10.3390/eca2022-12706
Skender K, Machowska A, Singh V, Goel V, Marothi Y, Lundborg CS, Sharma M. Antibiotic Use, Incidence and Risk Factors for Orthopedic Surgical Site Infections in a Teaching Hospital in Madhya Pradesh, India. Medical Sciences Forum. 2022; 12(1):2. https://doi.org/10.3390/eca2022-12706
Chicago/Turabian StyleSkender, Kristina, Anna Machowska, Vivek Singh, Varun Goel, Yogyata Marothi, Cecilia Stålsby Lundborg, and Megha Sharma. 2022. "Antibiotic Use, Incidence and Risk Factors for Orthopedic Surgical Site Infections in a Teaching Hospital in Madhya Pradesh, India" Medical Sciences Forum 12, no. 1: 2. https://doi.org/10.3390/eca2022-12706
APA StyleSkender, K., Machowska, A., Singh, V., Goel, V., Marothi, Y., Lundborg, C. S., & Sharma, M. (2022). Antibiotic Use, Incidence and Risk Factors for Orthopedic Surgical Site Infections in a Teaching Hospital in Madhya Pradesh, India. Medical Sciences Forum, 12(1), 2. https://doi.org/10.3390/eca2022-12706