Antimicrobial Activity Screening of Camellia japonica Flowers (var. Conde de la Torre) †
Abstract
:1. Introduction
2. Material and Methods
2.1. Chemicals and Reagents
2.2. Sampling and Extraction Procedure
2.3. Antibacterial Test
3. Results and Conclusions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- León-Buitimea, A.; Garza-Cárdenas, C.R.; Garza-Cervantes, J.A.; Lerma-Escalera, J.A.; Morones-Ramírez, J.R. The Demand for New Antibiotics: Antimicrobial Peptides, Nanoparticles, and Combinatorial Therapies as Future Strategies in Antibacterial Agent Design. Front. Microbiol. 2020, 11, 1669. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Antibiotic Resistance [Internet]. Antibiotic Resistance. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance (accessed on 27 April 2022).
- Ratia, C.; Soengas, R.G.; Soto, S.M. Gold-Derived Molecules as New Antimicrobial Agents. Front. Microbiol. 2022, 13, 772. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 2022, 399, 629–655. Available online: http://www.thelancet.com/article/S0140673621027240/fulltext (accessed on 27 April 2022). [CrossRef]
- Mulani, M.S.; Kamble, E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Front. Microbiol. 2019, 10, 539. [Google Scholar] [CrossRef] [PubMed]
- Chassagne, F.; Samarakoon, T.; Porras, G.; Lyles, J.T.; Dettweiler, M.; Marquez, L.; Salam, A.M.; Shabih, S.; Farrokhi, D.R.; Quave, C.L. A Systematic Review of Plants With Antibacterial Activities: A Taxonomic and Phylogenetic Perspective. Front. Pharmacol. 2021, 11, 586548. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, A.M.; Sousa, C. A review on the biological activity of camellia species. Molecules 2021, 26, 2178. Available online: https://www.mdpi.com/1420-3049/26/8/2178 (accessed on 10 March 2022). [CrossRef] [PubMed]
- Pereira, A.G.; Garcia-Perez, P.; Cassani, L.; Chamorro, F.; Cao, H.; Barba, F.J.; Simal-Gandara, J.; Prieto, M.A. Camellia japonica: A phytochemical perspective and current applications facing its industrial exploitation. Food Chem. X 2022, 13, 100258. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.; Rodrigues, C.; Garcia-Oliveira, P.; Lourenço-Lopes, C.; Silva, S.A.; Garcia-Perez, P.; Carvalho, A.P.; Domingues, V.F.; Barroso, M.F.; Delerue-Matos, C.; et al. Screening of Bioactive Properties in Brown Algae from the Northwest Iberian Peninsula. Foods 2021, 10, 1915. [Google Scholar] [CrossRef] [PubMed]
- Paz, M.; Gúllon, P.; Barroso, M.F.; Carvalho, A.P.; Domingues, V.; Gomes, A.M.; Becker, H.; Longhinotti, E.; Delerue-Matos, C. Brazilian fruit pulps as functional foods and additives: Evaluation of bioactive compounds. Food Chem. 2015, 172, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.Y.; Davidson, P.M.; Chung, H.J. Antibacterial Activity in Extracts of Camellia japonica L. Petals and Its Application to a Model Food System. J. Food Prot. 2001, 64, 1255–1260. Available online: https://pubmed.ncbi.nlm.nih.gov/11510672/ (accessed on 9 November 2020). [CrossRef] [PubMed]
- Kharchenko, I.; Tkachenko, H.; Buyun, L.; Kurhaluk, N.; Góralczyk, A.; Maryniuk, M.; Tomin, W.; Osadowski, Z. Evaluation of the In Vitro Antimicrobial Activity of Ethanolic Extracts Derived from Leaves of Camellia Japonica Cultivars (Theaceae) Against Enterobacter Cloacae Strain. Agrobiodiversity Improv. Nutr. Health Life Qual. 2019, 3, 333–347. [Google Scholar] [CrossRef]
Gram | Microorganism | Inhibition Zone |
---|---|---|
Positive | S. aureus | 10.84 ± 1.39 |
S. epidermidis | 14.02 ± 1.37 | |
B. cereus | 5.04 ± 0.76 | |
Negative | P. aeruginosa | 10.36 ± 0.70 |
S. enteritidis | 7.98 ± 2.04 | |
E. coli | NI |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, A.G.; Silva, A.; Barral-Martinez, M.; Echave, J.; Chamorro, F.; Mansour, S.S.; Cassani, L.; Otero, P.; Xiao, J.; Barroso, F.; et al. Antimicrobial Activity Screening of Camellia japonica Flowers (var. Conde de la Torre). Med. Sci. Forum 2022, 12, 15. https://doi.org/10.3390/eca2022-12725
Pereira AG, Silva A, Barral-Martinez M, Echave J, Chamorro F, Mansour SS, Cassani L, Otero P, Xiao J, Barroso F, et al. Antimicrobial Activity Screening of Camellia japonica Flowers (var. Conde de la Torre). Medical Sciences Forum. 2022; 12(1):15. https://doi.org/10.3390/eca2022-12725
Chicago/Turabian StylePereira, Antia G., Aurora Silva, Marta Barral-Martinez, Javier Echave, Franklin Chamorro, Sepidar Seyyedi Mansour, Lucia Cassani, Paz Otero, Jianbo Xiao, Fatima Barroso, and et al. 2022. "Antimicrobial Activity Screening of Camellia japonica Flowers (var. Conde de la Torre)" Medical Sciences Forum 12, no. 1: 15. https://doi.org/10.3390/eca2022-12725
APA StylePereira, A. G., Silva, A., Barral-Martinez, M., Echave, J., Chamorro, F., Mansour, S. S., Cassani, L., Otero, P., Xiao, J., Barroso, F., Simal-Gandara, J., & Prieto, M. A. (2022). Antimicrobial Activity Screening of Camellia japonica Flowers (var. Conde de la Torre). Medical Sciences Forum, 12(1), 15. https://doi.org/10.3390/eca2022-12725