On Extensions of the Starobinsky Model of Inflation †
Abstract
:1. Introduction
2. Models and the Corresponding Scalar Potentials
3. One-Parametric Generalizations of and the Corresponding Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Starobinsky, A.A. A new type of isotropic cosmological models without singularity. Phys. Lett. B 1980, 91, 99–102. [Google Scholar] [CrossRef]
- Barrow, J.D.; Cotsakis, S. Inflation and the Conformal Structure of Higher Order Gravity Theories. Phys. Lett. B 1988, 214, 515–518. [Google Scholar] [CrossRef]
- Berkin, A.L.; Maeda, K.I. Effects of R**3 and R box R terms on R**2 inflation. Phys. Lett. B 1990, 245, 348–354. [Google Scholar] [CrossRef]
- Saidov, T.; Zhuk, A. Bouncing inflation in nonlinear R2 + R4 gravitational model. Phys. Rev. D 2010, 81, 124002. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.G. A polynomial f(R) inflation model. J. Cosmol. Astropart. Phys. 2014, 2, 035. [Google Scholar] [CrossRef] [Green Version]
- Sebastiani, L.; Cognola, G.; Myrzakulov, R.; Odintsov, S.D.; Zerbini, S. Nearly Starobinsky inflation from modified gravity. Phys. Rev. D 2014, 89, 023518. [Google Scholar] [CrossRef] [Green Version]
- Motohashi, H. Consistency relation for Rp inflation. Phys. Rev. D 2015, 91, 064016. [Google Scholar] [CrossRef] [Green Version]
- Broy, B.J.; Pedro, F.G.; Westphal, A. Disentangling the f(R)—Duality. J. Cosmol. Astropart. Phys. 2015, 3, 029. [Google Scholar] [CrossRef] [Green Version]
- Bamba, K.; Odintsov, S.D. Inflationary cosmology in modified gravity theories. Symmetry 2015, 7, 220–240. [Google Scholar] [CrossRef] [Green Version]
- Odintsov, S.D.; Oikonomou, V.K. Unimodular Mimetic F(R) Inflation. Astrophys. Space Sci. 2016, 361, 236. [Google Scholar] [CrossRef] [Green Version]
- Miranda, T.; Fabris, J.C.; Piattella, O.F. Reconstructing a f(R) theory from the α-Attractors. J. Cosmol. Astropart. Phys. 2017, 9, 041. [Google Scholar] [CrossRef] [Green Version]
- Motohashi, H.; Starobinsky, A.A. f(R) constant-roll inflation. Eur. Phys. J. C 2017, 77, 538. [Google Scholar] [CrossRef] [Green Version]
- Cheong, D.Y.; Lee, H.M.; Park, S.C. Beyond the Starobinsky model for inflation. Phys. Lett. B 2020, 805, 135453. [Google Scholar] [CrossRef]
- Rodrigues-da Silva, G.; Bezerra-Sobrinho, J.; Medeiros, L.G. Higher-order extension of Starobinsky inflation: Initial conditions, slow-roll regime, and reheating phase. Phys. Rev. D 2022, 105, 063504. [Google Scholar] [CrossRef]
- Ivanov, V.R.; Ketov, S.V.; Pozdeeva, E.O.; Vernov, S.Y. Analytic extensions of Starobinsky model of inflation. J. Cosmol. Astropart. Phys. 2022, 3, 058. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Oikonomou, V.K. Running of the spectral index and inflationary dynamics of F(R) gravity. Phys. Lett. B 2022, 833, 137353. [Google Scholar] [CrossRef]
- Modak, T.; Röver, L.; Schäfer, B.M.; Schosser, B.; Plehn, T. Cornering Extended Starobinsky Inflation with CMB and SKA. arXiv 2022, arXiv:2210.05698. [Google Scholar]
- Pozdeeva, E.O.; Vernov, S.Y. F(R) gravity inflationary model with (R + R0)3/2 term. arXiv 2022, arXiv:2211.10988. [Google Scholar]
- Akrami, Y.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.; Barreiro, R.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. X. Constraints on inflation. Astron. Astrophys. 2020, 641, A10. [Google Scholar] [CrossRef] [Green Version]
- Ade, P.A.R.; Ahmed, Z.; Amiri, M.; Barkats, D.; Thakur, R.; Bischoff, C.A.; Beck, D.; Bock, J.J.; Boenish, H.; Bullock, E.; et al. Improved Constraints on Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018 Observing Season. Phys. Rev. Lett. 2021, 127, 151301. [Google Scholar] [CrossRef]
- Ketov, S.V. Chaotic inflation in F(R) supergravity. Phys. Lett. B 2010, 692, 272–276. [Google Scholar] [CrossRef] [Green Version]
- Ketov, S.V.; Starobinsky, A.A. Embedding (R + R2)-Inflation into Supergravity. Phys. Rev. D 2011, 83, 063512. [Google Scholar] [CrossRef] [Green Version]
- Ketov, S.V.; Tsujikawa, S. Consistency of inflation and preheating in F(R) supergravity. Phys. Rev. D 2012, 86, 023529. [Google Scholar] [CrossRef] [Green Version]
- Farakos, F.; Kehagias, A.; Riotto, A. On the Starobinsky Model of Inflation from Supergravity. Nucl. Phys. B 2013, 876, 187–200. [Google Scholar] [CrossRef] [Green Version]
- Koshelev, A.S.; Modesto, L.; Rachwal, L.; Starobinsky, A.A. Occurrence of exact R2 inflation in non-local UV-complete gravity. J. High Energy Phys. 2016, 11, 067. [Google Scholar] [CrossRef] [Green Version]
- Koshelev, A.S.; Sravan Kumar, K.; Mazumdar, A.; Starobinsky, A.A. Non–Gaussianities and tensor-to-scalar ratio in non-local R2-like inflation. J. High Energy Phys. 2020, 6, 152. [Google Scholar] [CrossRef]
- Ketov, S.V. Starobinsky–Bel–Robinson Gravity. Universe 2022, 8, 351. [Google Scholar] [CrossRef]
- Koshelev, A.S.; Kumar, K.S.; Starobinsky, A.A. Generalized non-local R2-like inflation. arXiv 2022, arXiv:2209.02515. [Google Scholar]
- Rodrigues-da Silva, G.; Medeiros, L.G. Second-order corrections to Starobinsky inflation. arXiv 2022, arXiv:2207.02103. [Google Scholar]
- Ketov, S.V.; Pozdeeva, E.O.; Vernov, S.Y. On the superstring-inspired quantum correction to the Starobinsky model of inflation. J. Cosmol. Astropart. Phys. 2022, 12, 032. [Google Scholar] [CrossRef]
- Starobinsky, A.A. Disappearing cosmological constant in f(R) gravity. JETP Lett. 2007, 86, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Appleby, S.A.; Battye, R.A.; Starobinsky, A.A. Curing singularities in cosmological evolution of F(R) gravity. J. Cosmol. Astropart. Phys. 2010, 6, 005. [Google Scholar] [CrossRef] [Green Version]
- Maeda, K.I. Towards the Einstein–Hilbert Action via Conformal Transformation. Phys. Rev. D 1989, 39, 3159. [Google Scholar] [CrossRef] [PubMed]
- Ketov, S.V. On the equivalence of Starobinsky and Higgs inflationary models in gravity and supergravity. J. Phys. A 2020, 53, 084001. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, S.; Kallosh, R.; Linde, A.; Porrati, M. Minimal Supergravity Models of Inflation. Phys. Rev. D 2013, 88, 085038. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanov, V.; Ketov, S.; Pozdeeva, E.; Vernov, S. On Extensions of the Starobinsky Model of Inflation. Phys. Sci. Forum 2023, 7, 6. https://doi.org/10.3390/ECU2023-14044
Ivanov V, Ketov S, Pozdeeva E, Vernov S. On Extensions of the Starobinsky Model of Inflation. Physical Sciences Forum. 2023; 7(1):6. https://doi.org/10.3390/ECU2023-14044
Chicago/Turabian StyleIvanov, Vsevolod, Sergei Ketov, Ekaterina Pozdeeva, and Sergey Vernov. 2023. "On Extensions of the Starobinsky Model of Inflation" Physical Sciences Forum 7, no. 1: 6. https://doi.org/10.3390/ECU2023-14044
APA StyleIvanov, V., Ketov, S., Pozdeeva, E., & Vernov, S. (2023). On Extensions of the Starobinsky Model of Inflation. Physical Sciences Forum, 7(1), 6. https://doi.org/10.3390/ECU2023-14044