Testing Quantum Effects of Gravity and Dark Energy at Laboratory Scales †
Abstract
:1. Introduction
2. Quantum Effects and Modification of Newtonian Gravity
3. Dark Energy can Limit the Size and Energies of Rydberg Atoms
4. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schulz, B. Review on the quantization of gravity. arXiv 2014, arXiv:1409.7977v1. [Google Scholar]
- Penrose, R. On Gravity’s role in Quantum State Reduction. Gen. Rel. Grav. 1996, 28, 581. [Google Scholar] [CrossRef] [Green Version]
- Kiefer, C. Quantum Gravity: General Introduction and Recent Developments. Ann. Phys. 2005, 15, 129. [Google Scholar] [CrossRef]
- Hossenfelder, S. Experimental Search for Quantum Gravity. arXiv 2010, arXiv:1010.3420v1. [Google Scholar]
- Ashoorioon, A.; Dev, P.S.B.; Mazumdar, A. Implications of purely classical gravity for inflationary tensor modes. Mod. Phys. Lett. A 2014, 29, 1450163. [Google Scholar] [CrossRef]
- Pikovski, I.; Vanner, M.R.; Aspelmeyer, M.; Kim, M.; Brukner, C. Probing Planck-scale physics with quantum optics. Nature Phys. 2012, 8, 393. [Google Scholar] [CrossRef]
- Albrecht, A.; Retzker, A.; Plenio, M.B. Testing quantum gravity by nanodiamond interferometry with nitrogen-vacancy centers. Phys. Rev. A 2014, 90, 033834. [Google Scholar] [CrossRef] [Green Version]
- Linsley, J. Evidence for a Primary Cosmic-Ray Particle with Energy 1020 eV. Phys. Rev. Lett. 1963, 10, 146. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Adhikari, R.X.; Ananyeva, A.; Anderson, S.B.; Appert, S.; Arai, K.; Araya, M.C.; Barayoga, J.C.; Barish, B.C.; et al. Multi-messenger Observations of a Binary Neutron Star Merger. Astrophys. J. 2017, 848, L12. [Google Scholar]
- Westphal, T.; Hepach, H.; Pfaff, J.; Aspelmeyer, M. Measurement of gravitational coupling between millimetre-sized masses. Nature 2021, 591, 225. [Google Scholar] [CrossRef] [PubMed]
- de Sabbata, V.; Kenath, A.; Prasad, A. Testing Quantum Effects of Gravity and Dark Energy at Laboratory Scales. Ann. Phys. 1991, 503, 497. [Google Scholar] [CrossRef]
- Biercuk, M.J. Ultrasensitive force and displacement detection using trapped ions. Nat. Nanotechnol. 2010, 5, 646. [Google Scholar] [CrossRef] [Green Version]
- de Sabbata, V.; Sivaram, C. On limiting field strengths in gravitation. Found. Phys. Lett. 1993, 6, 561. [Google Scholar] [CrossRef]
- Sivaram, C.; Arun, K. Enigmatic aspects of entropy inside the black hole: What do falling comoving observers see? Astrophys. Space Sci. 2012, 337, 169. [Google Scholar] [CrossRef]
- Sivaram, C. String tension and fundamental constants in the early Universe. Astrophys. Space Sci. 1990, 167, 335. [Google Scholar] [CrossRef]
- Sivaram, C. Classical space-time as Rydberg states of underlying quantum geometries. arXiv 2016, arXiv:1607.08114v1. [Google Scholar]
- Dunning, F.B.; Mestayer, J.J.; Reinhold, C.O.; Yoshida, S.; Burgdörfer, J. Engineering atomic Rydberg states with pulsed electric fields. J. Phys. B At. Mol. Opt. Phys. 2009, 42, 022001. [Google Scholar] [CrossRef]
- Stepkin, S.V.; Konovalenko, A.A.; Kantharia, N.G.; Shankar, N.U. Radio recombination lines from the largest bound atoms in space. Mon. Not. R. Astron. Soc. 2007, 374, 852. [Google Scholar] [CrossRef]
- Lin, H.-Y.; Deng, X.-M. Bound Orbits and Epicyclic Motions around Renormalization Group Improved Schwarzschild Black Holes. Universe 2022, 8, 278. [Google Scholar] [CrossRef]
- Lin, H.-Y.; Deng, X.-M. Rational orbits around 4 Einstein–Lovelock black holes. Phys. Dark Univ. 2021, 31, 100745. [Google Scholar] [CrossRef]
- Deng, X.-M. Geodesics and periodic orbits around quantum-corrected black holes. Phys. Dark Univ. 2020, 30, 100629. [Google Scholar] [CrossRef]
- Gao, B.; Deng, X.-M. Dynamics of charged test particles around quantum-corrected Schwarzschild black holes. Eur. Phys. J. C 2021, 81, 983. [Google Scholar] [CrossRef]
- Sivaram, C.; Arun, K.; Rebecca, L. Planckian pre big bang phase of the Universe. Astrophys. Space Sci. 2020, 365, 17. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arun, K.; Sivaram, C.; Prasad, A. Testing Quantum Effects of Gravity and Dark Energy at Laboratory Scales. Phys. Sci. Forum 2023, 7, 5. https://doi.org/10.3390/ECU2023-14018
Arun K, Sivaram C, Prasad A. Testing Quantum Effects of Gravity and Dark Energy at Laboratory Scales. Physical Sciences Forum. 2023; 7(1):5. https://doi.org/10.3390/ECU2023-14018
Chicago/Turabian StyleArun, Kenath, Chandra Sivaram, and Avijeet Prasad. 2023. "Testing Quantum Effects of Gravity and Dark Energy at Laboratory Scales" Physical Sciences Forum 7, no. 1: 5. https://doi.org/10.3390/ECU2023-14018
APA StyleArun, K., Sivaram, C., & Prasad, A. (2023). Testing Quantum Effects of Gravity and Dark Energy at Laboratory Scales. Physical Sciences Forum, 7(1), 5. https://doi.org/10.3390/ECU2023-14018