The Shape of Dark Matter Halos as a Strong Cosmological Probe †
Abstract
:1. Introduction
2. Methods
2.1. Cosmological Models and Dark Matter Halos
2.2. Dark Matter Halos and Their Shape
3. Results and Discussion
3.1. Mass Dependence
- -
- First, the heavier the halo, the greater is the p. Indeed, large mass halos are less virialized and, therefore, less spherical [15].
- -
- Meanwhile, RPCDM halos are about 25% more prolate than LCDM ones. This can be explained by the fact that of RPCDM is much lower than the fiducial one. As a result, the halos of RPCDM formed more recently and are, again, less relaxed and more prolate.
3.2. Towards Universality
3.3. Power Spectrum Reconstruction
- Measure the p(M) curve in our universe.
- Since we know the universal p( relation, one can deduce the function of our Universe.
- The nonlinear power spectrum is finally directly inferred from this .
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Holder, G.; Haiman, Z.; Mohr, J.J. Constraints on Ωm, ΩΛ, and σ8 from Galaxy Cluster Redshift Distributions. Astrophys. J. 2001, 560, L111–L114. [Google Scholar] [CrossRef]
- Allgood, B.; Flores, R.A.; Primack, J.R.; Kravtsov, A.V.; Wechsler, R.H.; Faltenbacher, A.; Bullock, J.S. The Shape of Dark Matter Haloes: Dependence on Mass, Redshift, Radius and Formation. Mon. Not. R. Astron. Soc. 2006, 367, 1781–1796. [Google Scholar] [CrossRef]
- Oguri, M.; Takada, M.; Okabe, N.; Smith, G.P. Direct Measurement of Dark Matter Halo Ellipticity from Two-Dimensional Lensing Shear Maps of 25 Massive Clusters. arXiv 2010. [Google Scholar] [CrossRef]
- Limousin, M.; Morandi, A.; Sereno, M.; Meneghetti, M.; Ettori, S.; Bartelmann, M.; Verdugo, T. The Three-Dimensional Shapes of Galaxy Clusters. Space Sci. Rev. 2013, 177, 155–194. [Google Scholar] [CrossRef]
- Koskas, R.; Alimi, J.M. Classification of Cosmological Models from the Internal Properties of DM Halos by Using Machine Learning. In Proceedings of the SF2A-2021: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics, Online, 7–11 June 2021; Siebert, A., Baillié, K., Lagadec, E., Lagarde, N., Malzac, J., Marquette, J.-B., N’Diaye, M., Richard, J., Venot, O., Eds.; SF2A, December 2021; pp. 248–249. [Google Scholar]
- Koskas, R.; Alimi, J.M. Classification of Cosmological from Mass and Shape Profiles by Using Machine Learning Methods. Mon. Not. R. Astron. Soc. 2023; to be submitted. [Google Scholar]
- Alimi, J.M.; Koskas, R. Universality of the Dark Matter Halos Shape as a Strong Cosmological Probe. Mon. Not. R. Astron. Soc. 2023; to be submitted. [Google Scholar]
- Alimi, J.-M.; Füzfa, A.; Boucher, V.; Rasera, Y.; Courtin, J.; Corasaniti, P.-S. Imprints of Dark Energy on Cosmic Structure Formation—I. Realistic Quintessence Models and the Non-Linear Matter Power Spectrum. Mon. Not. R. Astron. Soc. 2010, 401, 775–790. [Google Scholar] [CrossRef]
- Rasera, Y.; Alimi, J.-M.; Courtin, J.; Roy, F.; Corasaniti, P.-S.; Füzfa, A.; Boucher, V.; Alimi, J.-M.; Fuözfa, A. Introducing the Dark Energy Universe Simulation Series (DEUSS). AIP Conf. Proc. 2010, 1241, 1134–1139. [Google Scholar]
- Alimi, J.-M.; Bouillot, V.; Rasera, Y.; Reverdy, V.; Corasaniti, P.-S.; Balmes, I.; Requena, S.; Delaruelle, X.; Richet, J.-N. DEUS Full Observable ΛCDM Universe Simulation: The numerical challenge, High Performance Computing, Networking, Storage and Analysis (SC). arXiv 2012, arXiv:1206.2838. [Google Scholar]
- Reverdy, V.; Alimi, J.-M.; Bouillot, V.; Rasera, Y.; Reverdy, V.; Corasaniti, P.-S.; Balmes, I.; Requena, S.; Delaruelle, X.; Richet, J.-N. DEUS Full Observable Universe Simulations: Numerical Challenge and Outlooks. Int. J. High Perform. Comput. Appl. 2015, 29, 249–260. [Google Scholar] [CrossRef]
- Teyssier, R. Cosmological Hydrodynamics with Adaptive Mesh Refinement: A New High-Resolution Code Called RAMSES. A&A 2002, 385, 337–364. [Google Scholar] [CrossRef]
- Peebles, P.J.E.; Ratra, B. Cosmology with a Time-Variable Cosmological “Constant”. ApJ 1988, 325, L17. [Google Scholar] [CrossRef]
- Komatsu, E.; Smith, K.M.; Dunkley, J.; Bennett, C.L.; Gold, B.; Hinshaw, G.; Jarosik, N.; Larson, D.; Nolta, M.R.; Page, L.; et al. Seven-year wilkinson microwave anisotropy probe (wmap) observations: Cosmological interpretation. ApJS 2011, 192, 18. [Google Scholar] [CrossRef]
- Lau, E.T.; Hearin, A.P.; Nagai, D.; Cappelluti, N. Correlations between Triaxial Shapes and Formation History of Dark Matter Haloes. Mon. Not. R. Astron. Soc. 2020, 500, 1029–1037. [Google Scholar] [CrossRef]
- Despali, G.; Giocoli, C.; Tormen, G. Some like It Triaxial: The Universality of Dark Matter Halo Shapes and Their Evolution along the Cosmic Time. Mon. Not. R. Astron. Soc. 2014, 443, 3208–3217. [Google Scholar] [CrossRef]
- Bonamigo, M.; Despali, G.; Limousin, M.; Angulo, R.; Giocoli, C.; Soucail, G. Universality of Dark Matter Haloes Shape over Six Decades in Mass: Insights from the Millennium XXL and SBARBINE Simulations. Mon. Not. R. Astron. Soc. 2015, 449, 3171–3182. [Google Scholar] [CrossRef]
Model | |||
---|---|---|---|
0.2573 | 0.23 | 0.275 | |
0.83 | 0.68 | 0.88 | |
−1 | −0.87 | −1.2 | |
0 | 0.08 | 0 | |
FOF halos | 411,909 | 338,883 | 441,683 |
Model | |||
---|---|---|---|
(estimated with shapes) | 0.9 | 0.7 | 1 |
(expected) | 0.9 | 0.8 | 1 |
(estimated with shapes) | 0.8 | 0.6 | 0.9 |
(expected) | 0.8 | 0.7 | 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koskas, R.; Alimi, J.-M. The Shape of Dark Matter Halos as a Strong Cosmological Probe. Phys. Sci. Forum 2023, 7, 25. https://doi.org/10.3390/ECU2023-14033
Koskas R, Alimi J-M. The Shape of Dark Matter Halos as a Strong Cosmological Probe. Physical Sciences Forum. 2023; 7(1):25. https://doi.org/10.3390/ECU2023-14033
Chicago/Turabian StyleKoskas, Rémy, and Jean-Michel Alimi. 2023. "The Shape of Dark Matter Halos as a Strong Cosmological Probe" Physical Sciences Forum 7, no. 1: 25. https://doi.org/10.3390/ECU2023-14033
APA StyleKoskas, R., & Alimi, J. -M. (2023). The Shape of Dark Matter Halos as a Strong Cosmological Probe. Physical Sciences Forum, 7(1), 25. https://doi.org/10.3390/ECU2023-14033