Isospin Symmetry Breaking in Non-Perturbative QCD †
Abstract
:1. Introduction
2. Formalism
2.1. PLSM at Finite Chemical Potential
2.2. Isospin Asymmetry and Meson Potential
3. Results and Discussion
- Both u- and d-quark chiral condensates become distinguishable. As the temperature approaches a critical value, the normalized nonstrange condensates are split into two different curves. At this point, the critical chiral temperatures, , can be at least qualitatively estimated. We notice that the value of the resulting decreases with increasing .
- Both Ployakov-loop variables and also become distinguishable. Increasing decreases but increases . Moreover, both and become more distinguishable with a further increase in .
- Both nonstrange quark susceptibilities become distinguishable as well. The critical chiral temperature is positioned in the middle of the deconfinement phase transition. The resulting decreases with the increase in .
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Son, D.T.; Stephanov, M.A. QCD at finite isospin density. Phys. Rev. Lett. 2001, 86, 592. [Google Scholar] [CrossRef]
- Philipsen, O. Lattice QCD at finite temperature and density. Eur. Phys. J. Spec. Top. 2007, 152, 29. [Google Scholar] [CrossRef]
- Brandt, B.B.; Endrodi, G.; Schmalzbauer, S. QCD phase diagram for nonzero isospin-asymmetry. EPJ Web Conf. 2018, 175, 07020. [Google Scholar] [CrossRef]
- Detmold, W.; Orginos, K.; Shi, Z. Lattice QCD at non-zero isospin chemical potential. Phys. Rev. 2012, D86, 054507. [Google Scholar]
- Tawfik, A. QCD phase diagram: A Comparison of lattice and hadron resonance gas model calculations. Phys. Rev. D 2005, 71, 054502. [Google Scholar] [CrossRef]
- Li, B.-A.; Ko, C.M.; Bauer, W. Isospin physics in heavy ion collisions at intermediate-energies. Int. J. Mod. Phys. 1998, E7, 147. [Google Scholar] [CrossRef]
- Migdal, A.B.; Saperstein, E.E.; Troitsky, M.A.; Voskresensky, D.N. Pion degrees of freedom in nuclear matter. Phys. Rep. 1990, 192, 179. [Google Scholar] [CrossRef]
- Steiner, A.W.; Prakash, M.; Lattimer, J.M.; Ellis, P.J. Isospin asymmetry in nuclei and neutron stars. Phys. Rep. 2005, 411, 325. [Google Scholar] [CrossRef]
- Abdel Aal Diab, A.M.; Tawfik, A.N. Quark-hadron phase structure of QCD matter from SU(4) Polyakov linear sigma model. EPJ Web Conf. 2018, 177, 09005. [Google Scholar] [CrossRef]
- Tawfik, A.N.; Diab, A.M.; Hussein, M.T. Quark-hadron phase structure, thermodynamics, and magnetization of QCD matter. J. Phys. 2018, G45, 055008. [Google Scholar] [CrossRef]
- Tawfik, A.N.; Magdy, N. SU(3) Polyakov linear-σ model in magnetic fields: Thermodynamics, higher-order moments, chiral phase structure, and meson masses. Phys. Rev. 2015, C91, 015206. [Google Scholar]
- Tawfik, A.N.; Diab, A.M. Polyakov SU(3) extended linear-σ model: Sixteen mesonic states in chiral phase structure. Phys. Rev. 2015, C91, 015204. [Google Scholar]
- Gasiorowicz, S.; Geffen, D.A. Effective Lagrangians and field algebras with chiral symmetry. Rev. Mod. Phys. 1969, 41, 531. [Google Scholar] [CrossRef]
- Lenaghan, J.T.; Rischke, D.H.; Schaffner-Bielich, J. Chiral symmetry restoration at nonzero temperature in the SU(3)(r) x SU(3)(l) linear sigma model. Phys. Rev. 2000, D62, 085008. [Google Scholar]
- Rischke, D.H. The Quark gluon plasma in equilibrium. Prog. Part. Nucl. Phys. 2004, 52, 197. [Google Scholar] [CrossRef]
- Schaefer, B.-J.; Wagner, M. The Three-flavor chiral phase structure in hot and dense QCD matter. Phys. Rev. 2009, D79, 014018. [Google Scholar] [CrossRef]
- Asakawa, M.; Yazaki, K. Chiral Restoration at Finite Density and Temperature. Nucl. Phys. 1989, A504, 668. [Google Scholar]
- Fukushima, K. Phase diagrams in the three-flavor Nambu–Jona–Lasinio model with the Polyakov loop. Phys. Rev. 2008, D77, 114028. [Google Scholar] [CrossRef]
- Ratti, C.; Thaler, M.A.; Weise, W. Phases of QCD: Lattice thermodynamics and a field theoretical model. Phys. Rev. 2006, D73, 014019. [Google Scholar] [CrossRef]
- Carignano, S.; Nickel, D.; Buballa, M. Influence of vector interaction and Polyakov loop dynamics on inhomogeneous chiral symmetry breaking phases. Phys. Rev. 2010, D82, 054009. [Google Scholar] [CrossRef]
- Bratovic, N.M.; Hatsuda, T.; Weise, W. Role of Vector Interaction and Axial Anomaly in the PNJL Modeling of the QCD Phase Diagram. Phys. Lett. 2013, B719, 131. [Google Scholar] [CrossRef]
- Schaefer, B.-J.; Wambach, J. Susceptibilities near the QCD (tri)critical point. Phys. Rev. 2007, D75, 085015. [Google Scholar] [CrossRef]
- Schaefer, B.-J.; Pawlowski, J.M.; Wambach, J. The Phase Structure of the Polyakov-Quark-Meson Model. Phys. Rev. 2007, D76, 074023. [Google Scholar] [CrossRef]
- Schaefer, B.-J.; Wagner, M. On the QCD phase structure from effective models. Prog. Part. Nucl. Phys. 2009, 62, 381. [Google Scholar] [CrossRef]
- Schaefer, B.-J.; Wagner, M.; Wambach, J. QCD thermodynamics with effective models. PoS 2009, 71, 017. [Google Scholar]
- Weinberg, S. Gravitation and Cosmology; John Wiley and Sons: New York, NY, USA, 1972. [Google Scholar]
- Parganlija, D.; Kovacs, P.; Wolf, G.; Giacosa, F.; Rischke, D.H. Meson vacuum phenomenology in a three-flavor linear sigma model with (axial-)vector mesons. Phys. Rev. 2013, D87, 014011. [Google Scholar] [CrossRef]
- Kovacs, P.; Wolf, G.; Giacosa, F.; Parganlija, D. Meson vacuum phenomenology in a three-flavor linear sigma model with (axial-)vector mesons. EPJ Web Conf. 2011, 13, 02006. [Google Scholar]
- Roessner, S.; Ratti, C.; Weise, W. Polyakov loop, diquarks and the two-flavour phase diagram. Phys. Rev. 2007, D75, 034007. [Google Scholar]
- Lo, P.M.; Friman, B.; Kaczmarek, O.; Redlich, K.; Sasaki, C. Polyakov loop fluctuations in SU(3) lattice gauge theory and an effective gluon potential. Phys. Rev. 2013, D88, 074502. [Google Scholar] [CrossRef]
- Kapusta, J.I.; Gale, C. Finite-Temperature Field Theory: Principles and Applications; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Mao, H.; Jin, J.; Huang, M. Phase diagram and thermodynamics of the Polyakov linear sigma model with three quark flavors. J. Phys. 2010, G37, 035001. [Google Scholar] [CrossRef]
- Schaefer, B.-J.; Wagner, M.; Wambach, J. Thermodynamics of (2+1)-flavor QCD: Confronting Models with Lattice Studies. Phys. Rev. 2010, D81, 074013. [Google Scholar] [CrossRef]
- Barnett, R.M.; Carone, C.D.; Groom, D.E.; Trippe, T.G.; Wohl, C.G.; Armstrong, B.; Gee, P.S.; Wagman, G.S.; James, F.; Mangano, M.; et al. Review of Particle Physics. Phys. Rev. D 1996, 54, 1. [Google Scholar] [CrossRef]
- Tanabashi, M.; Hagiwara, K.; Hikasa, K.; Nakamura, K.; Sumino, Y.; Takahashi, F.; Tanaka, J.; Agashe, K.; Aielli, G.; Amsler, C.; et al. Review of Particle Physics. Phys. Rev. D 2018, 98, 030001. [Google Scholar] [CrossRef]
- Aoki, S.; Aoki, Y.; Bečirević, D.; Bernard, C.; Blum, T.; Colangelo, G.; Della Morte, M.; Dimopoulos, P.; Dürr, S.; Fukaya, H.; et al. Review of lattice results concerning low-energy particle physics. Eur. Phys. J. C 2017, 77, 112. [Google Scholar] [CrossRef]
- Tawfik, A.N.; Diab, A.M.; Ghoneim, M.T.; Anwer, H. SU(3) Polyakov Linear-Sigma Model With Finite Isospin Asymmetry: QCD Phase Diagram. Int. J. Mod. Phys. A 2019, 34, 1950199. [Google Scholar] [CrossRef]
- Brandt, B.B.; Endrodi, G.; Schmalzbauer, S. QCD phase diagram for nonzero isospin-asymmetry. Phys. Rev. 2018, D97, 054514. [Google Scholar] [CrossRef]
- Cea, P.; Cosmai, L.; D’Elia, M.; Papa, A.; Sanfilippo, F. The critical line of two-flavor QCD at finite isospin or baryon densities from imaginary chemical potentials. Phys. Rev. 2012, D85, 094512. [Google Scholar] [CrossRef]
- Tawfik, A.N.; Diab, A.M.; Hussein, T.M. Chiral phase structure of the sixteen meson states in the SU(3) Polyakov linear-sigma model for finite temperature and chemical potential in a strong magnetic field. Chin.Phys.C 2019, 43, 034103. [Google Scholar] [CrossRef]
- Tawfik, A.N.; Diab, A.M.; Hussein, M.T. SU(3) Polyakov linear-sigma model: Magnetic properties of QCD matter in thermal and dense medium. J. Exp. Theor. Phys. 2018, 126, 620. [Google Scholar] [CrossRef]
- Tawfik, A.; Magdy, N.; Diab, A. Polyakov linear SU(3) σ model: Features of higher-order moments in a dense and thermal hadronic medium. Phys. Rev. 2014, C89, 055210. [Google Scholar]
- Schaffner-Bielich, J.; Stiele, R. The QCD Phase Transition at finite Isospin. In Proceedings of the 10th Conference on Quark Confinement and the Hadron Spectrum (Confinement X), Munich, Germany, 8–12 October 2012. [Google Scholar]
- Beisitzer, T.; Stiele, R.; Schaffner-Bielich, J. Supernova Equation of State with an extended SU(3) Quark-Meson Model. Phys. Rev. 2014, D90, 085001. [Google Scholar]
[MeV] | c [MeV] | [MeV] | [MeV] | [MeV] | [MeV] | ||
---|---|---|---|---|---|---|---|
800 | 0 |
[MeV] | c [MeV] | [MeV] | [MeV] | [MeV] | [MeV] | ||
---|---|---|---|---|---|---|---|
800 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tawfik, A.N. Isospin Symmetry Breaking in Non-Perturbative QCD. Phys. Sci. Forum 2023, 7, 22. https://doi.org/10.3390/ECU2023-14047
Tawfik AN. Isospin Symmetry Breaking in Non-Perturbative QCD. Physical Sciences Forum. 2023; 7(1):22. https://doi.org/10.3390/ECU2023-14047
Chicago/Turabian StyleTawfik, Abdel Nasser. 2023. "Isospin Symmetry Breaking in Non-Perturbative QCD" Physical Sciences Forum 7, no. 1: 22. https://doi.org/10.3390/ECU2023-14047
APA StyleTawfik, A. N. (2023). Isospin Symmetry Breaking in Non-Perturbative QCD. Physical Sciences Forum, 7(1), 22. https://doi.org/10.3390/ECU2023-14047