Cosmological Solutions of Integrable F(R) Gravity Models with an Additional Scalar Field †
Abstract
:1. Modified Gravity Models and GR Models with Scalar Fields
2. Equations and Solutions in the Bianchi I and FLRW Metrics
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Starobinskii, A.A. Can the Effective Gravitational Constant Become Negative. Sov. Astron. Lett. 1981, 7, 36–38. [Google Scholar]
- Figueiro, M.F.; Saa, A. Anisotropic singularities in modified gravity models. Phys. Rev. D 2009, 80, 063504. [Google Scholar] [CrossRef] [Green Version]
- Starobinsky, A.A. A new type of isotropic cosmological models without singularity. Phys. Lett. B 1980, 91, 99–102. [Google Scholar] [CrossRef]
- Bezrukov, F.L.; Shaposhnikov, M. The Standard Model Higgs boson as the inflaton. Phys. Lett. B 2008, 659, 703–706. [Google Scholar] [CrossRef] [Green Version]
- Akrami, Y.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. X. Constraints on inflation. Astron. Astrophys. 2020, 641, A10. [Google Scholar] [CrossRef] [Green Version]
- Cheong, D.Y.; Lee, S.M.; Park, S.C. Primordial black holes in Higgs-R2 inflation as the whole of dark matter. JCAP 2021, 01, 032. [Google Scholar] [CrossRef]
- Gundhi, A.; Ketov, S.V.; Steinwachs, C.F. Primordial black hole dark matter in dilaton-extended two-field Starobinsky inflation. Phys. Rev. D 2021, 103, 083518. [Google Scholar] [CrossRef]
- Gundhi, A.; Steinwachs, C.F. Scalaron–Higgs inflation reloaded: Higgs-dependent scalaron mass and primordial black hole dark matter. Eur. Phys. J. C 2021, 81, 460. [Google Scholar] [CrossRef]
- Steinwachs, C.F.; Kamenshchik, A.Y. One-loop divergences for gravity non-minimally coupled to a multiplet of scalar fields: Calculation in the Jordan frame. I. The main results. Phys. Rev. D 2011, 84, 024026. [Google Scholar] [CrossRef] [Green Version]
- Salvio, A.; Mazumdar, A. Classical and Quantum Initial Conditions for Higgs Inflation. Phys. Lett. B 2015, 750, 194–200. [Google Scholar] [CrossRef] [Green Version]
- Elizalde, E.; Odintsov, S.D.; Pozdeeva, E.O.; Vernov, S.Y. Cosmological attractor inflation from the RG-improved Higgs sector of finite gauge theory. JCAP 2016, 02, 025. [Google Scholar] [CrossRef] [Green Version]
- Salvio, A. Natural-scalaron inflation. JCAP 2021, 10, 011. [Google Scholar] [CrossRef]
- Starobinskii, A.A. The Perturbation Spectrum Evolving from a Nonsingular Initially De-Sitter Cosmology and the Microwave Background Anisotropy. Sov. Astron. Lett. 1983, 9, 302–304. [Google Scholar]
- Vernov, S.Y.; Ivanov, V.R.; Pozdeeva, E.O. Superpotential Method for F(R) Cosmological Models. Phys. Part. Nucl. 2020, 51, 744–749. [Google Scholar] [CrossRef]
- Paliathanasis, A.; Leach, P.G.L. Analytical solutions in R+qRn cosmology from singularity analysis. Phys. Lett. A 2016, 380, 2815–2818. [Google Scholar] [CrossRef] [Green Version]
- Paliathanasis, A. Analytic Solution of the Starobinsky Model for Inflation. Eur. Phys. J. C 2017, 77, 438. [Google Scholar] [CrossRef] [Green Version]
- Miritzis, J.; Leach, P.; Cotsakis, S. Symmetry, singularities and integrability in complex dynamics. 4. Painleve integrability of isotropic cosmologies. Grav. Cosmol. 2000, 6, 282–290. [Google Scholar]
- Fré, P.; Sagnotti, A.; Sorin, A.S. Integrable Scalar Cosmologies I. Foundations and links with String Theory. Nucl. Phys. B 2013, 877, 1028–1106. [Google Scholar] [CrossRef] [Green Version]
- Maciejewski, A.J.; Przybylska, M.; Stachowiak, T.; Szydlowski, M. Global integrability of cosmological scalar fields. J. Phys. A 2008, 41, 465101. [Google Scholar] [CrossRef]
- Kamenshchik, A.Y.; Pozdeeva, E.O.; Tronconi, A.; Venturi, G.; Vernov, S.Y. Integrable cosmological models with non-minimally coupled scalar fields. Class. Quant. Grav. 2014, 31, 105003. [Google Scholar] [CrossRef] [Green Version]
- Boisseau, B.; Giacomini, H.; Polarski, D.; Starobinsky, A.A. Bouncing Universes in Scalar-Tensor Gravity Models admitting Negative Potentials. JCAP 2015, 07, 002. [Google Scholar] [CrossRef]
- Kamenshchik, A.Y.; Pozdeeva, E.O.; Tronconi, A.; Venturi, G.; Vernov, S.Y. Interdependence between integrable cosmological models with minimal and non-minimal coupling. Class. Quant. Grav. 2016, 33, 015004. [Google Scholar] [CrossRef] [Green Version]
- Gurovich, V.T.; Starobinsky, A.A. Quantum effects and regular cosmological models. Zh. Eksp. Teor. Fiz 1979, 77, 1683–1700. [Google Scholar]
- Leon, G.; Saridakis, E.N. Dynamics of the anisotropic Kantowsky-Sachs geometries in Rn gravity. Class. Quant. Grav. 2011, 28, 065008. [Google Scholar] [CrossRef] [Green Version]
- Müller, D.; Ricciardone, A.; Starobinsky, A.A.; Toporensky, A. Anisotropic cosmological solutions in R+R2 gravity. Eur. Phys. J. C 2018, 78, 311. [Google Scholar] [CrossRef] [Green Version]
- Arora, S.; Mandal, S.; Chakraborty, S.; Leon, G.; Sahoo, P.K. Can f(R) gravity isotropise a pre-bounce contracting universe? JCAP 2022, 09, 042. [Google Scholar] [CrossRef]
- Ivanov, V.R.; Vernov, S.Y. Integrable cosmological models with an additional scalar field. Eur. Phys. J. C 2021, 81, 985. [Google Scholar] [CrossRef]
- Ivanov, V.R.; Vernov, S.Y. Anisotropic solutions for R2 gravity model with a scalar field. arXiv 2023, arXiv:2301.06836. [Google Scholar]
- Kaiser, D.I. Conformal Transformations with Multiple Scalar Fields. Phys. Rev. D 2010, 81, 084044. [Google Scholar] [CrossRef] [Green Version]
- Chervon, S.V. On the chiral model of cosmological inflation. Russ. Phys. J. 1995, 38, 539–543. [Google Scholar] [CrossRef]
- Paliathanasis, A.; Leon, G.; Pan, S. Exact Solutions in Chiral Cosmology. Gen. Rel. Grav. 2019, 51, 106. [Google Scholar] [CrossRef] [Green Version]
- Chervon, S.V.; Fomin, I.V.; Pozdeeva, E.O.; Sami, M.; Vernov, S.Y. Superpotential method for chiral cosmological models connected with modified gravity. Phys. Rev. D 2019, 100, 063522. [Google Scholar] [CrossRef] [Green Version]
- Anguelova, L. On Primordial Black Holes from Rapid Turns in Two-field Models. JCAP 2021, 06, 004. [Google Scholar] [CrossRef]
- Zhuravlev, V.; Chervon, S. Qualitative Analysis of the Dynamics of a Two-Component Chiral Cosmological Model. Universe 2020, 6, 195. [Google Scholar] [CrossRef]
- Paliathanasis, A.; Leon, G. Dynamics of a two scalar field cosmological model with phantom terms. Class. Quant. Grav. 2021, 38, 075013. [Google Scholar] [CrossRef]
- Tot, J.; Yildirim, B.; Coley, A.; Leon, G. The dynamics of scalar-field Quintom cosmological models. Phys. Dark Univ. 2023, 39, 101155. [Google Scholar] [CrossRef]
- Pereira, T.S.; Pitrou, C.; Uzan, J.P. Theory of cosmological perturbations in an anisotropic universe. JCAP 2007, 09, 006. [Google Scholar] [CrossRef] [Green Version]
- Aref’eva, I.Y.; Bulatov, N.V.; Vernov, S.Y. Stable Exact Solutions in Cosmological Models with Two Scalar Fields. Theor. Math. Phys. 2010, 163, 788–803. [Google Scholar] [CrossRef] [Green Version]
- Koshelev, A.S.; Modesto, L.; Rachwal, L.; Starobinsky, A.A. Occurrence of exact R2 inflation in non-local UV-complete gravity. JHEP 2016, 11, 067. [Google Scholar] [CrossRef] [Green Version]
- Ketov, S.V.; Pozdeeva, E.O.; Vernov, S.Y. On the superstring-inspired quantum correction to the Starobinsky model of inflation. JCAP 2022, 12, 032. [Google Scholar] [CrossRef]
- Kamenshchik, A.Y.; Pozdeeva, E.O.; Tronconi, A.; Venturi, G.; Vernov, S.Y. Integrable cosmological models in the Einstein and in the Jordan frames and Bianchi-I cosmology. Phys. Part. Nucl. 2018, 49, 1–4. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vernov, S.; Ivanov, V. Cosmological Solutions of Integrable F(R) Gravity Models with an Additional Scalar Field. Phys. Sci. Forum 2023, 7, 17. https://doi.org/10.3390/ECU2023-14039
Vernov S, Ivanov V. Cosmological Solutions of Integrable F(R) Gravity Models with an Additional Scalar Field. Physical Sciences Forum. 2023; 7(1):17. https://doi.org/10.3390/ECU2023-14039
Chicago/Turabian StyleVernov, Sergey, and Vsevolod Ivanov. 2023. "Cosmological Solutions of Integrable F(R) Gravity Models with an Additional Scalar Field" Physical Sciences Forum 7, no. 1: 17. https://doi.org/10.3390/ECU2023-14039
APA StyleVernov, S., & Ivanov, V. (2023). Cosmological Solutions of Integrable F(R) Gravity Models with an Additional Scalar Field. Physical Sciences Forum, 7(1), 17. https://doi.org/10.3390/ECU2023-14039