Combination of Milimeter Wave Spectroscopy, Ultrasonic Testing Techniques to Monitor Curing Evolution of TRC Plates †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Specimen Preparation
2.2. MMW Spectroscopy
2.3. UPV
3. Results and Discussion
3.1. Curing Monitoring by MMW Spectroscopy
3.2. UPV
4. Conclusions
- MMW shows high sensitivity to the chemical reactions of mortar in transmission and in reflection. It is clear that the EM response in the millimeter wavelengths of TRC and mortar during the first 24 h of hydration and curing are time- and frequency-dependent.
- Ultrasound pulse velocity shows a good sensitivity to the hydration of the cementitious matrix of TRC, being the main contributor to the change in velocity and development of Young’s modulus on fresh state.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Colombo, I.G.; Magri, A.; Zani, G.; Colombo, M.; di Prisco, M. Textile Reinforced Concrete: Experimental investigation on design parameters. Mater. Struct. Constr. 2013, 46, 1933–1951. [Google Scholar] [CrossRef]
- Alrshoudi, F.A.S. Textile Reinforced Concrete: Design Methodology and Novel Reinforcement. Ph.D. Thesis, University of Leeds, Leeds, UK, 2015. [Google Scholar]
- Mehta, K. Reducing the Environmental Impact of Concrete. Concr. Int. 2001, 23, 61–66. [Google Scholar]
- Williams, N.; Lundgren, K.; Wallbaum, H.; Malaga, K. Sustainable potential of textile-reinforced concrete. J. Mater. Civ. Eng. 2015, 27, 04014207. [Google Scholar] [CrossRef]
- Wolfgang Brameshuber. Textile Reinforced Concrete—Report 36—RILEM; RILEM Publications S.A.R.L.: Paris, France, 2006. [Google Scholar]
- Hegger, J.; Will, N.; Bruckermann, O.; Voss, S. Load-bearing behaviour and simulation of textile reinforced concrete. Mater. Struct. Constr. 2006, 39, 765–776. [Google Scholar] [CrossRef]
- Blom, J.; el Kadi, M.; Wastiels, J.; Aggelis, D.G. Bending fracture of textile reinforced cement laminates monitored by acoustic emission: Influence of aspect ratio. Constr. Build. Mater. 2014, 70, 370–378. [Google Scholar] [CrossRef]
- Butler, M.; Mechtcherine, V.; Hempel, S. Durability of textile reinforced concrete made with AR glass fibre: Effect of the matrix composition. Mater. Struct. Constr. 2010, 43, 1351–1368. [Google Scholar] [CrossRef]
- Malik, W.U.; Gupta, D.R.; Gupta, H.O.; Gupta, R.S.; Masood, I. Changes in Electrical Properties during Hydration and Setting of Cements. Trans. Indian Ceram. Soc. 1984, 43, 130–144. [Google Scholar] [CrossRef]
- Papanicolaou, C.G. Applications of Textile-Reinforced Concrete in the Precast Industry; WoodHead Publishing, Elsevier Ltd.: Sawston, UK, 2016. [Google Scholar]
- Zhang, J.; Qin, L.; Li, Z. Hydration monitoring of cement-based materials with resistivity and ultrasonic methods. Mater. Struct. Constr. 2009, 42, 15–24. [Google Scholar] [CrossRef]
- Maruyama, I.; Igarashi, G. Cement reaction and resultant physical properties of cement paste. J. Adv. Concr. Technol. 2014, 12, 200–213. [Google Scholar] [CrossRef] [Green Version]
- Beaudoin, J.; Odler, I. Hydration, Setting and Hardening of Portland Cement, 5th ed.; Elsevier Ltd.: Oxford, UK, 2019. [Google Scholar]
- Hu, J.; Ge, Z.; Wang, K. Influence of cement fineness and water-to-cement ratio on mortar early-age heat of hydration and set times. Constr. Build. Mater. 2014, 50, 657–663. [Google Scholar] [CrossRef]
- Pourkazemi, A.; Pandey, G.; Assaf, J.; Bismpas, P.; Tsangouri, E.; Stiens, J.; Angelis, D. Combination of Acoustic Emission and Millimeter Wave Spectroscopy techniques to investigate damage on cementitious materials. In Proceedings of the 2nd International RILEM/COST Conference on Early Age Cracking and Serviceability in Cement-Based Materials and Structures-EAC2, Brussels, Belgium, 12–14 September 2017; Volume 1, pp. 155–160. [Google Scholar]
- Committee, R.T. Non-Destructive Assessment of Concrete Structures: Reliability and Limits of Single and Combined Techniques; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
Material | Ratio (by Weight) |
---|---|
CEM 52.5 N | 1 |
Riversand | 2 |
Water | 0.45 |
Superplasticizer | 0.5% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ospitia, N.; Pourkazemi, A.; Tsangouri, E.; Azzam, H.; Stiens, J.H.; Aggelis, D.G. Combination of Milimeter Wave Spectroscopy, Ultrasonic Testing Techniques to Monitor Curing Evolution of TRC Plates. Phys. Sci. Forum 2022, 4, 17. https://doi.org/10.3390/psf2022004017
Ospitia N, Pourkazemi A, Tsangouri E, Azzam H, Stiens JH, Aggelis DG. Combination of Milimeter Wave Spectroscopy, Ultrasonic Testing Techniques to Monitor Curing Evolution of TRC Plates. Physical Sciences Forum. 2022; 4(1):17. https://doi.org/10.3390/psf2022004017
Chicago/Turabian StyleOspitia, Nicolas, Ali Pourkazemi, Eleni Tsangouri, Houmam Azzam, Johan H. Stiens, and Dimitrios G. Aggelis. 2022. "Combination of Milimeter Wave Spectroscopy, Ultrasonic Testing Techniques to Monitor Curing Evolution of TRC Plates" Physical Sciences Forum 4, no. 1: 17. https://doi.org/10.3390/psf2022004017
APA StyleOspitia, N., Pourkazemi, A., Tsangouri, E., Azzam, H., Stiens, J. H., & Aggelis, D. G. (2022). Combination of Milimeter Wave Spectroscopy, Ultrasonic Testing Techniques to Monitor Curing Evolution of TRC Plates. Physical Sciences Forum, 4(1), 17. https://doi.org/10.3390/psf2022004017