Tissue Accumulation and Quantification of Zn in Biofortified Triticum aestivum Grains—Interactions with Mn, Fe, Cu, Ca, K, P and S †
Abstract
:1. Introduction
2. Experiments
2.1. Experimental Field
2.2. Tissue Location and Quantification of Nutrients in Wheat Grain
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
C0 | Control |
C1 | Three foliar sprays of Zn-EDTA with a concentration of 6.3 kg ha−1 |
C2 | Three foliar sprays of Zn-EDTA with a concentration of 12.6 kg ha−1 |
References
- Beaudreault, A.R. Nutrition Policy Primer: The Untapped Path to Global Health, Economic Growth, and Human Security; CSIS: Washington, DC, USA, 2019; pp. 1–20. Available online: https://csis-website-prod.s3.amazonaws.com/s3fs-public/publication/NutritionPrimer_layout_WEB_v5.pdf (accessed on 2 November 2020).
- Cakmak, I.; Marzorati, M.; Van den Abbele, P.; Hora, K.; Holwerda, H.T.; Yazici, M.A.; Savasli, E.; Neri, J.; Laing, G.D. Fate and Bioaccessibility of Iodine in Food Prepared from Agronomically Biofortified Wheat and Rice and Impact of Cofertilization with Zinc and Selenium. J. Agric. Food Chem. 2020, 68, 1525–1535. [Google Scholar] [CrossRef] [PubMed]
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2019: Data Booklet. 2019, pp. 1–28. Available online: https://population.un.org/wpp/Publications/Files/WPP2019_DataBooklet.pdf (accessed on 7 November 2020).
- Ciccolini, V.; Pellegrino, E.; Coccina, A.; Fiaschi, A.I.; Cerretani, D.; Sgherri, C.; Quartacci, M.F.; Ercoli, L. Biofortification with Iron and Zinc Improves Nutritional and Nutraceutical Properties of Common Wheat Flour and Bread. J. Agric. Food Chem. 2017, 65, 5443–5452. [Google Scholar] [CrossRef] [PubMed]
- Bouis, H.E.; Saltzman, A. Improving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2016. Glob. Food Sec. 2017, 12, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Saini, D.K.; Devi, P.; Kaushik, P. Advances in Genomic Interventions for Wheat Biofortification: A Review. Agronomy 2020, 10, 62. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Coronado, F.; Almeida, A.S.; Santamaria, O.; Cakmak, I.; Poblaciones, M.J. Potential of advanced breeding lines of bread-making wheat to accumulate grain minerals (Ca, Fe, Mg and Zn) and low phytates under Mediterranean conditions. J. Agr. Crop Sci. 2019, 205, 341–352. [Google Scholar] [CrossRef]
- Cakmak, I.; Kutman, U.B. Agronomic biofortification of cereals with zinc: A review. Eur. J. Soil Sci. 2018, 69, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Tian, X.; Liu, Q. The Effectiveness of Foliar Applications of Zinc and Biostimulants to Increase Zinc Concentration and Bioavailabiliy of Wheat Grain. Agronomy 2020, 10, 178. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Oliveira, A.L.; Chander, S.; Ortiz, R.; Menkir, A.; Gedil, M. Genetic Basis and Breeding Perspectives of Grain Iron and Zinc Enrichment in Cereals. Front. Plant Sci. 2018, 9, 937. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, P.; Mateus, T.C.; Velu, G.; Singh, R.P.; Santos, J.P.; Carvalho, M.L.; Lourenço, V.M.; Lidon, F.; Reboredo, F.; Guerra, M. Localization and distribution of Zn and Fe in grains of biofortified bread wheat lines through micro- and triaxial-X-ray fluorescence spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2018, 141, 70–79. [Google Scholar] [CrossRef]
- Ramos, I.; Pataco, I.M.; Mourinho, M.P.; Lidon, F.; Reboredo, F.; Pessoa, M.F.; Carvalho, M.L.; Santos, J.P.; Guerra, M. Elemental mapping of biofortified wheat grains using micro X-ray fluorescence. Spectrochim. Acta Part B At. Spectrosc. 2016, 120, 30–36. [Google Scholar] [CrossRef]
- Gomez-Coronado, F.; Poblaciones, M.J.; Almeida, A.S.; Cakmak, I. Zinc (Zn) concentration of bread wheat grown under Mediterranean conditions as affected by genotype and soil/foliar Zn application. Plant Soil. 2016, 401, 331–346. [Google Scholar] [CrossRef]
- Niyigaba, E.; Twizerimana, A.; Mugenzi, I.; Ngnadong, W.A.; Ye, Y.P.; Wu, B.M.; Hai, J.B. Winter Wheat Grain Quality, Zinc and Iron Concentration Affected by a Combined Foliar Spray of Zinc and Iron Fertilizers. Agronomy 2019, 9, 250. [Google Scholar] [CrossRef] [Green Version]
- Zhao, A.; Wang, B.; Tian, X.; Yang, X. Combined soil and foliar ZnSO4 application improves wheat grain Zn concentration and Zn fractions in a calcareous soil. Eur. J. Soil Sci. 2020, 71, 681–694. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements from Soil to Human, 4th ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
Microelements (ppm) | |||||||
---|---|---|---|---|---|---|---|
Fertilizer | Variety | Treatment | Zone | Mn | Fe | Cu | Zn |
Zn-EDTA | Paiva | C0 | Embryo 1 | 437 | 308 | 47.3 | 257 |
Embryo 2 | 210 | 155 | 27.2 | 159 | |||
Endosperm 1 | 23.5 | 25.7 | 5.95 | 21.7 | |||
Endosperm 2 | 29.3 | 29.7 | 14.8 | 20.9 | |||
Vascular bundle 1 | 287 | 44.04 | 25.3 | 109 | |||
Vascular bundle 2 | 604 | 127 | 61.6 | 116 | |||
Whole grain 1 | 114 | 68.6 | 11.8 | 54.3 | |||
Whole grain 2 | 107 | 67.03 | 14.3 | 53.1 | |||
C1 | Embryo 1 | 343 | 241 | 22.2 | 271 | ||
Embryo 2 | 331 | 244 | 31.6 | 235 | |||
Endosperm 1 | 24.3 | 37.3 | 17.97 | 31.99 | |||
Endosperm 2 | 33.3 | 22.4 | 10.5 | 20.3 | |||
Vascular bundle | 432 | 81.8 | 25.8 | 134 | |||
Whole grain 1 | 149 | 81.2 | 12.5 | 76.7 | |||
Whole grain 2 | 124 | 87.8 | 13.8 | 72.4 | |||
C2 | Embryo 1 | 491 | 266 | 36.99 | 375 | ||
Embryo 2 | 289 | 196 | 40.1 | 211 | |||
Endosperm 1 | 26.1 | 19.5 | 12.6 | 34.8 | |||
Endosperm 2 | 14.2 | 28.3 | 11.4 | 21.1 | |||
Vascular bundle | 339 | 106 | 23.1 | 187 | |||
Whole grain 1 | 161 | 98.2 | 14.1 | 117 | |||
Whole grain 2 | 112 | 76.5 | 12.7 | 85.7 | |||
Roxo | C0 | Embryo 1 | 297 | 208 | 40.2 | 190 | |
Embryo 2 | 175 | 146 | 26.4 | 110 | |||
Endosperm 1 | 14.6 | 36.5 | 14.8 | 24.6 | |||
Endosperm 2 | 12.1 | 31.1 | 11.7 | 30.9 | |||
Vascular bundle 1 | 84.7 | 74.7 | 20.5 | 60.7 | |||
Vascular bundle 2 | 184 | 131 | 31.4 | 107 | |||
Whole grain 1 | 86.7 | 78.2 | 14.2 | 52.2 | |||
Whole grain 2 | 72.5 | 65.2 | 10.99 | 44.8 | |||
C1 | Embryo 1 | 552 | 265 | 36.4 | 329 | ||
Embryo 2 | 233 | 162 | 27.9 | 139 | |||
Endosperm 1 | 39.5 | 69.5 | 16.5 | 47.8 | |||
Endosperm 2 | 58.96 | 26.9 | 18.2 | 50.04 | |||
Vascular bundle 1 | 519 | 193 | 39.8 | 193 | |||
Vascular bundle 2 | 296 | 87.7 | 34.7 | 154 | |||
Whole grain 1 | 93.5 | 76.99 | 12.6 | 69.7 | |||
Whole grain 2 | 165 | 97.3 | 14.9 | 99.3 | |||
C2 | Embryo 1 | 337 | 233 | 28.04 | 192 | ||
Embryo 2 | 472 | 249 | 27.9 | 326 | |||
Endosperm 1 | 57.7 | 38.4 | 14.3 | 59.2 | |||
Endosperm 2 | 48.4 | 34.3 | 16.6 | 47.3 | |||
Vascular bundle 1 | 304 | 113 | 28.1 | 171 | |||
Vascular bundle 2 | 273 | 77.4 | 27.3 | 158 | |||
Whole grain 1 | 137 | 71.4 | 12.4 | 87.4 | |||
Whole grain 2 | 147 | 81.95 | 13.6 | 110 |
Macroelements (%) | |||||||
---|---|---|---|---|---|---|---|
Fertilizer | Variety | Treatment | Zone | P | S | K | Ca |
Zn-EDTA | Paiva | C0 | Embryo 1 | 1.97 | 0.405 | 2.79 | 0.301 |
Embryo 2 | 1.37 | 0.295 | 1.33 | 0.14 | |||
Endosperm 1 | 0.158 | 0.2001 | 0.217 | 0.0235 | |||
Endosperm 2 | 0.183 | 0.24 | 0.209 | 0.0314 | |||
Vascular bundle 1 | 0.196 | 0.205 | 1.08 | 0.162 | |||
Vascular bundle 2 | 0.854 | 0.317 | 1.88 | 0.435 | |||
Whole grain 1 | 0.454 | 0.21 | 1.17 | 0.1403 | |||
Whole grain 2 | 0.449 | 0.193 | 1.53 | 0.1605 | |||
C1 | Embryo 1 | 1.92 | 0.444 | 2.56 | 0.185 | ||
Embryo 2 | 2.17 | 0.446 | 2.7 | 0.359 | |||
Endosperm 1 | 0.164 | 0.211 | 0.313 | 0.052 | |||
Endosperm 2 | 0.165 | 0.213 | 0.349 | 0.058 | |||
Vascular bundle | 0.607 | 0.323 | 2.47 | 0.387 | |||
Whole grain 1 | 0.673 | 0.214 | 2.02 | 0.206 | |||
Whole grain 2 | 0.785 | 0.223 | 2.51 | 0.238 | |||
C2 | Embryo 1 | 2.13 | 0.489 | 2.72 | 0.193 | ||
Embryo 2 | 2.22 | 0.44 | 1.84 | 0.148 | |||
Endosperm 1 | 0.161 | 0.173 | 0.144 | 0.0186 | |||
Endosperm 2 | 0.121 | 0.137 | 0.0962 | 0.0127 | |||
Vascular bundle | 0.333 | 0.248 | 1.35 | 0.122 | |||
Whole grain 1 | 0.569 | 0.229 | 1.66 | 0.102 | |||
Whole grain 2 | 0.952 | 0.241 | 1.83 | 0.104 | |||
Roxo | C0 | Embryo 1 | 1.92 | 0.532 | 2.84 | 0.192 | |
Embryo 2 | 1.81 | 0.417 | 1.88 | 0.191 | |||
Endosperm 1 | 0.0978 | 0.184 | 0.137 | 0.0278 | |||
Endosperm 2 | 0.141 | 0.203 | 0.121 | 0.0286 | |||
Vascular bundle 1 | 0.529 | 0.261 | 0.872 | 0.0753 | |||
Vascular bundle 2 | 0.436 | 0.22 | 1.2 | 0.121 | |||
Whole grain 1 | 0.63 | 0.198 | 1.87 | 0.112 | |||
Whole grain 2 | 0.966 | 0.226 | 1.98 | 0.131 | |||
C1 | Embryo 1 | 3.07 | 0.519 | 2.64 | 0.269 | ||
Embryo 2 | 1.47 | 0.457 | 1.36 | 0.179 | |||
Endosperm 1 | 0.185 | 0.317 | 0.156 | 0.0382 | |||
Endosperm 2 | 0.157 | 0.27 | 0.0895 | 0.0291 | |||
Vascular bundle 1 | 0.435 | 0.451 | 1.48 | 0.2199 | |||
Vascular bundle 2 | 0.294 | 0.333 | 1.14 | 0.188 | |||
Whole grain 1 | 0.532 | 0.253 | 1.4 | 0.114 | |||
Whole grain 2 | 0.592 | 0.251 | 1.83 | 0.138 | |||
C2 | Embryo 1 | 1.95 | 0.582 | 2.27 | 0.35 | ||
Embryo 2 | 3.14 | 0.675 | 2.46 | 0.255 | |||
Endosperm 1 | 0.12 | 0.284 | 0.344 | 0.0517 | |||
Endosperm 2 | 0.181 | 0.42 | 0.185 | 0.0444 | |||
Vascular bundle 1 | 0.374 | 0.313 | 1.12 | 0.133 | |||
Vascular bundle 2 | 0.227 | 0.266 | 2.04 | 0.397 | |||
Whole grain 1 | 0.552 | 0.284 | 1.43 | 0.151 | |||
Whole grain 2 | 0.886 | 0.317 | 1.87 | 0.174 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luís, I.C.; Pessoa, C.C.; Marques, A.C.; Daccak, D.; Coelho, A.R.F.; Lidon, F.C.; Patanita, M.; Silva, M.M.; Almeida, A.S.; Ramalho, J.C.; et al. Tissue Accumulation and Quantification of Zn in Biofortified Triticum aestivum Grains—Interactions with Mn, Fe, Cu, Ca, K, P and S. Biol. Life Sci. Forum 2021, 4, 83. https://doi.org/10.3390/IECPS2020-08711
Luís IC, Pessoa CC, Marques AC, Daccak D, Coelho ARF, Lidon FC, Patanita M, Silva MM, Almeida AS, Ramalho JC, et al. Tissue Accumulation and Quantification of Zn in Biofortified Triticum aestivum Grains—Interactions with Mn, Fe, Cu, Ca, K, P and S. Biology and Life Sciences Forum. 2021; 4(1):83. https://doi.org/10.3390/IECPS2020-08711
Chicago/Turabian StyleLuís, Inês Carmo, Cláudia Campos Pessoa, Ana Coelho Marques, Diana Daccak, Ana Rita F. Coelho, Fernando C. Lidon, Manuel Patanita, Maria Manuela Silva, Ana Sofia Almeida, José C. Ramalho, and et al. 2021. "Tissue Accumulation and Quantification of Zn in Biofortified Triticum aestivum Grains—Interactions with Mn, Fe, Cu, Ca, K, P and S" Biology and Life Sciences Forum 4, no. 1: 83. https://doi.org/10.3390/IECPS2020-08711
APA StyleLuís, I. C., Pessoa, C. C., Marques, A. C., Daccak, D., Coelho, A. R. F., Lidon, F. C., Patanita, M., Silva, M. M., Almeida, A. S., Ramalho, J. C., Pessoa, M. F., Simões, M., Reboredo, F. H., Legoinha, P., Campos, P. S., Pais, I. P., Guerra, M., Leitão, R. G., & Dôres, J. (2021). Tissue Accumulation and Quantification of Zn in Biofortified Triticum aestivum Grains—Interactions with Mn, Fe, Cu, Ca, K, P and S. Biology and Life Sciences Forum, 4(1), 83. https://doi.org/10.3390/IECPS2020-08711