Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (301)

Search Parameters:
Keywords = minerals quantification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4535 KB  
Article
Petrophysical Characterisation and Suitability of Serpentinites from the Monteferrato Area (Tuscany, Italy) for Architectural Restoration
by Alba P. Santo, Carlo Alberto Garzonio, Elena Pecchioni and Teresa Salvatici
Minerals 2025, 15(11), 1105; https://doi.org/10.3390/min15111105 - 23 Oct 2025
Viewed by 190
Abstract
This study investigates the mineralogical and physical properties of serpentinite from the Monteferrato area (Tuscany, Italy) to evaluate its potential use in Tuscany architectural restoration. The research addresses the need to identify replacement materials compatible with historic stones while preserving their original features. [...] Read more.
This study investigates the mineralogical and physical properties of serpentinite from the Monteferrato area (Tuscany, Italy) to evaluate its potential use in Tuscany architectural restoration. The research addresses the need to identify replacement materials compatible with historic stones while preserving their original features. Representative specimens from the Bagnolo quarry were analysed through physical testing and a wide range of mineralogical and geochemical techniques, including polarised light microscopy, X-ray diffraction, electron probe micro-analysis, whole-rock chemistry, and fibre quantification. The results show a mineralogical composition dominated by serpentine-group minerals and magnetite, with physical properties generally consistent across samples. Measured capillary water absorption ranges from 3.27 to 5.27 g/m2·s0.5, open porosity from 5.25% to 8.93%, apparent densities range from 2.49 to 2.56 g/cm3, and imbibition coefficient from 2.16% to 3.71%. Comparative analysis with serpentinite from historic sources (Figline di Prato quarry, Tuscany) and from monuments (Baptistery of San Giovanni, Florence) demonstrates close compositional and textural affinities, supporting the suitability of the rock from the studied quarry for restoration purposes in Tuscany monuments. However, chrysotile concentrations up to 14,153 mg/kg, exceeding Italian regulatory thresholds, represent a critical limitation. This not only requires the implementation of strict safety measures but also raises serious concerns regarding the practical feasibility of using this stone in conservation projects. More broadly, the presence of asbestiform minerals in serpentinites highlights a significant and often underestimated health risk associated with their extraction, processing, and use. Despite its importance, detailed fibre count data are rarely published or made publicly accessible, hindering both transparent risk assessment and informed decision-making. By integrating petrographic, mineralogical, and physical–mechanical characterisation with fibre quantification, this study not only assesses the technical suitability of Monteferrato serpentinites for restoration of Tuscan monuments but also contributes to a more responsible and evidence-based approach to their use, emphasising the urgent need for transparency and health protection in conservation practices. Full article
Show Figures

Figure 1

16 pages, 3986 KB  
Article
Polyphenols and Fibre: Key Players with Antioxidant Activity in Two Extracts from Pomegranate (Punica granatum)
by Jessica Maiuolo, Federico Liuzzi, Francesca Oppedisano, Anna Spagnoletta, Rosamaria Caminiti, Valeria Mazza, Saverio Nucera, Salvatore Ragusa, Luigi Tucci, Giuseppe Trunfio, Lucia Carmela Passacatini, Sara Ilari, Giancarlo Statti, Vincenzo Mollace and Carolina Muscoli
Int. J. Mol. Sci. 2025, 26(19), 9807; https://doi.org/10.3390/ijms26199807 - 9 Oct 2025
Viewed by 536
Abstract
The pomegranate fruit offers numerous health benefits to humans due to its rich composition of various chemical components, including polyphenols, fibre, flavonoids, minerals, vitamins, organic acids, alkaloids, and amino acids, among others. The antioxidant properties of pomegranate are well known, and this study [...] Read more.
The pomegranate fruit offers numerous health benefits to humans due to its rich composition of various chemical components, including polyphenols, fibre, flavonoids, minerals, vitamins, organic acids, alkaloids, and amino acids, among others. The antioxidant properties of pomegranate are well known, and this study aims to compare these activities in two extracts obtained from the fruit (“Whole Fruit Extract”, WFE and “Internal Membranes Extract”, IME). Various experiments were conducted using both extracts: (1) quantification of polyphenols and flavonoids using the Folin–Ciocalteu colorimetric assay and the aluminium chloride assay, respectively; (2) the measurement of the antioxidant activity was carried out by Reducing Power, Chelating Activity of Ferrous Ions (Fe2+), Radical Absorbance Capacity of Oxygen, Free Radical Scavenging Activity DPPH, and antioxidant effect in vitro; (3) quantitative and quantitative evaluation of the fibre was performed. IME has demonstrated a significantly greater antioxidant effect than WFE, despite possessing a smaller amount of both polyphenols and flavonoids (polyphenols: 68 mg GAE/g for WFE; 47 mg GAE/g for IME; flavonoids: 51mg QE/g for WFE; 35 mg QE/g for IME). For this reason, we evaluated the fibre composition in both extracts. The higher amount of glucans, xylans, and pectin in IME suggested that these fibrous components may be responsible for the greater antioxidant effect detected compared to WFE. Full article
(This article belongs to the Special Issue Updates on Synthetic and Natural Antioxidants)
Show Figures

Figure 1

16 pages, 4491 KB  
Article
New Methodology for Evaluating Uncertainty in Mineral Resource Estimation
by José Alberto Arias, Alain Carballo, Elmidio Estévez, Reinaldo Rojas, Domingo A. Martín and Jorge L. Costafreda
Appl. Sci. 2025, 15(19), 10616; https://doi.org/10.3390/app151910616 - 30 Sep 2025
Viewed by 365
Abstract
Geological modeling is generally based on deterministic models, which provide a single representation of reality. Probabilistic modeling is more appropriate when quantifying or understanding the uncertainty associated with a parameter of interest as it considers several equally probable geological scenarios. The object of [...] Read more.
Geological modeling is generally based on deterministic models, which provide a single representation of reality. Probabilistic modeling is more appropriate when quantifying or understanding the uncertainty associated with a parameter of interest as it considers several equally probable geological scenarios. The object of this study is to quantify the uncertainty in the estimation of the minerals in the Punta Alegre gypsum deposit, by applying a new method based on the simple normal equation geostatistical simulation technique. The Punta Alegre gypsum deposit is a sedimentary deposit of clastic origin, formed by the complex redeposition of salts, gypsum and other sediments. To carry out this research, 50 equiprobable scenarios were simulated, reproducing overburden, gypsum series (different types of gypsum) and intercalated non-mineral lithologies (limestone and other rocks) in a network of nodes measuring 5 × 5 × 5 m, using a training image, composites and prior probability maps as input data. As a result of scaling the previously simulated geological units, three-dimensional models of volume proportions and estimation error for gypsum were obtained for panels measuring 10 × 10 × 5 m. The quantification of the uncertainty of the gypsum volume, determined by the root mean square error, established that the volume estimation error is small at a global scale (6.51%), given that there is no significant variation when comparing the deterministic model with the gypsum proportion model obtained from the 50 simulated scenarios. Conversely, at the local scale, there is a significant variation in gypsum volume of 42% in the 10 × 10 × 5 m panels with a future impact on recoverable mining resources, given the uncertainty at a local scale, which will cause an increase in mining dilution due to the inclusion of non-mineral lithologies within the extracted mineral that will be sent to the processing plant. On the other hand, it will cause changes in the mining company’s plan in areas where there are panels that were previously accounted for by the deterministic model as minerals and are not actually exploitable. Full article
Show Figures

Figure 1

20 pages, 5116 KB  
Article
Phase Guard: A False Positive Filter for Automatic Rietveld Quantitative Phase Analysis Based on Counting Statistics in HighScore Plus
by Matteo Pernechele and Sheida Makvandi
Minerals 2025, 15(10), 1041; https://doi.org/10.3390/min15101041 - 30 Sep 2025
Viewed by 572
Abstract
Accurate quantification of minor mineral phases is important in Powder X-Ray Diffraction (PXRD) and Rietveld phase quantification. The precise limit of quantification for the various phases is rarely considered but rather approximated to 0.2–2 wt% by applying a global minimum weight percentage threshold. [...] Read more.
Accurate quantification of minor mineral phases is important in Powder X-Ray Diffraction (PXRD) and Rietveld phase quantification. The precise limit of quantification for the various phases is rarely considered but rather approximated to 0.2–2 wt% by applying a global minimum weight percentage threshold. This approximation often leads to false positive or false negative phase quantity, jeopardizing the trustworthiness of the analytic method in general. In this work (1) we propose a dynamic and adaptable false positive filtering method for Rietveld Quantitative X-ray diffraction (QXRD) based on a phase-specific signal-to-noise ratio referred to as “Phase-SNR”; (2) we introduce the method baptized “Phase Guard” which is implemented in the software HighScore Plus. Phase Guard is based on peaks counting statistics and it automatically adapts to different mineral scattering powers, different mineral crystallinity, instrumental configuration and measurement time. Its applicability and benefits are demonstrated with several examples in cement and mining applications. The adoption of Phase Guard is especially beneficial for industrial black-box solutions, where all “probable” phases are included in the model, even when they are absent from the sample. Phase Guard eliminates false positives, it reduces the likelihood of false negatives, and it is an essential tool to answer the question “what is the limit of quantification for Rietveld analysis?” Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Graphical abstract

25 pages, 1282 KB  
Article
Comprehensive Characterization of Armoracia rusticana Roots and Leaves: Physicochemical Properties, Functional Potential, and Nutritional Composition
by Bianca Șuian, Sonia Amariei and Ancuța Petraru
Int. J. Mol. Sci. 2025, 26(19), 9462; https://doi.org/10.3390/ijms26199462 - 27 Sep 2025
Viewed by 497
Abstract
The present study aimed to comprehensively characterize the physicochemical, nutritional, and functional properties of Armoracia rusticana leaves and roots, with a focus on their potential as sources of bioactive compounds. Quality parameters (color, moisture, titratable acidity, pH), macronutrient (proteins, fats, carbohydrates, fibers) and [...] Read more.
The present study aimed to comprehensively characterize the physicochemical, nutritional, and functional properties of Armoracia rusticana leaves and roots, with a focus on their potential as sources of bioactive compounds. Quality parameters (color, moisture, titratable acidity, pH), macronutrient (proteins, fats, carbohydrates, fibers) and micronutrient (minerals, vitamins) content were determined. Polyphenolic profiles were evaluated using HPLC-DAD in two types of extracts: methanol–water (1:1, v/v) and deionized water. Flavonols (quercetin, kaempferol, myricetin), hydroxybenzoic acids (p-hydroxybenzoic, vanillic, caffeic), and hydroxycinnamic acids (chlorogenic, p-coumaric, rosmarinic) were identified. Freeze-drying proved effective in preserving thermolabile compounds, such as vitamin C (299.78 mg/100 g) and polyphenols (107.14 mg/100 g). Antioxidant capacity of the leaf extracts ranged between 74.52% and 76.90%, while pigment quantification revealed high levels of chlorophyll a (360.7 mg/100 g), chlorophyll b (110.03 mg/100 g), and total carotenoids (72.35 mg/100 g). FTIR spectroscopy was employed to assess molecular structures and functional group composition. Overall, the results support the valorization of A. rusticana leaves—an underutilized plant part—alongside roots, for applications in functional foods and nutraceutical development. Full article
(This article belongs to the Collection Feature Papers in Bioactives and Nutraceuticals)
Show Figures

Figure 1

12 pages, 3923 KB  
Article
Quantitative Study on the Adsorption State of n-Octane in Kaolinite Slit-like Pores Based on Four Angular Parameters
by Fang Zeng, Shansi Tian, Zhentao Dong, Hongli Dong, Bo Liu, Valentina Erastova and Haiyang Liu
Molecules 2025, 30(18), 3739; https://doi.org/10.3390/molecules30183739 - 15 Sep 2025
Viewed by 418
Abstract
Shale oil extraction efficiency hinges on the interfacial interactions between oil molecules and reservoir clay minerals, such as kaolinite, whose slit-like pores serve as primary storage spaces for alkanes. This study introduces a novel multi-dimensional quantification method using four angular parameters—elevation angle (θ), [...] Read more.
Shale oil extraction efficiency hinges on the interfacial interactions between oil molecules and reservoir clay minerals, such as kaolinite, whose slit-like pores serve as primary storage spaces for alkanes. This study introduces a novel multi-dimensional quantification method using four angular parameters—elevation angle (θ), azimuth angle (φ), rotation angle (ω), and dihedral angle (τ)—to systematically investigate the adsorption configuration of n-octane in kaolinite slit pores ranging from 0.45 to 14.05 nm. Through molecular simulations and advanced trajectory analysis, we elucidate the impact of pore sizes on alkane adsorption density, layering, and molecular configurations. Results reveal that pore size regulates molecular behavior via steric hindrance and potential field superposition, while the four angular parameters can effectively capture subtle changes in. this molecular behavior: (1) the elevation angle (θ) around 0° indicates complete alignment parallel to surface, but is modulated at increasing distance from the surface into the pore-region highlighting a disordered state; (2) the azimuth angle (φ) is concentrated at 60° and 120° on the siloxane tetrahedral surface due to lattice regulation, but shows a disordered distribution on the hydroxyl octahedral surface; (3) the rotation angle (ω) is mainly concentrated at 0° and 90° indicating molecular plane being either parallel or perpendicular to the surface; (4) the dihedral angle (τ) remains at ~0°, indicating that the molecular chains are straight. In pores smaller than 4.26 nm, strong confinement yields ordered molecular arrangements (θ = 0°, φ at 60° or 120°, ω = 0°) with high adsorption density; for larger pores than 4.26 nm, disordered configurations and increased layering (up to eight layers) with stable density and adsorption capacity per unit area are observed. The proposed parameter system overcomes limitations of traditional qualitative approaches, offering a standardized, scalable tool for quantifying alkane-clay interactions. This framework enhances understanding of shale oil occurrence mechanisms and supports optimized extraction strategies, with broad applicability to other chain molecules and 2D materials in interface science. Full article
Show Figures

Figure 1

26 pages, 7402 KB  
Article
Hybrid Architecture for Tight Sandstone: Automated Mineral Identification and Quantitative Petrology
by Lanfang Dong, Chenxu Sun, Xiaolu Yu, Xinming Zhang, Menglian Chen and Mingyang Xu
Minerals 2025, 15(9), 962; https://doi.org/10.3390/min15090962 - 11 Sep 2025
Viewed by 403
Abstract
This study proposes an integrated computer vision system for automated petrological analysis of tight sandstone micro-structures. The system combines Zero-Shot Segmentation SAM (Segment Anything Model), Mask R-CNN (Region-Based Convolutional Neural Networks) instance segmentation, and an improved MetaFormer architecture with Cascaded Group Attention (CGA) [...] Read more.
This study proposes an integrated computer vision system for automated petrological analysis of tight sandstone micro-structures. The system combines Zero-Shot Segmentation SAM (Segment Anything Model), Mask R-CNN (Region-Based Convolutional Neural Networks) instance segmentation, and an improved MetaFormer architecture with Cascaded Group Attention (CGA) attention mechanism, together with a parameter analysis module to form a hybrid deep learning system. This enables end-to-end mineral identification and multi-scale structural quantification of granulometric properties, grain contact relationships, and pore networks. The system is validated on proprietary tight sandstone datasets, SMISD (Sandstone Microscopic Image Segmentation Dataset)/SMIRD (Sandstone Microscopic Image Recognition Dataset). It achieves 92.1% mIoU segmentation accuracy and 90.7% mineral recognition accuracy while reducing processing time from more than 30 min to less than 2 min per sample. The system provides standardized reservoir characterization through automated generation of quantitative reports (Excel), analytical images (JPG), and structured data (JSON), demonstrating production-ready efficiency for tight sandstone evaluation. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

11 pages, 1332 KB  
Article
Unlocking the Biochemical Potential of Diadema setosum Tests: A Pathway Toward Circular Marine Bioeconomy
by Bilge Bilgin Fıçıcılar and Koray Korkmaz
Molecules 2025, 30(18), 3700; https://doi.org/10.3390/molecules30183700 - 11 Sep 2025
Viewed by 889
Abstract
This study investigates the biochemical and elemental composition of the test of Diadema setosum (D. setosum), a sea urchin species increasingly processed in Turkey, where the shell is commonly treated as industrial waste. Specimens were collected from the Mediterranean and [...] Read more.
This study investigates the biochemical and elemental composition of the test of Diadema setosum (D. setosum), a sea urchin species increasingly processed in Turkey, where the shell is commonly treated as industrial waste. Specimens were collected from the Mediterranean and Aegean Seas, and the test material was subjected to amino acid profiling, protein quantification, and X-ray fluorescence (XRF) analysis. The results revealed a considerable protein content (8.03%) and a rich amino acid spectrum dominated by glycine, aspartic acid, and arginine, supporting the presence of residual structural proteins even after processing. Mineral analysis showed a high calcium oxide concentration (43.19%), alongside significant levels of magnesium, phosphorus, strontium, and trace elements such as zinc, copper, and molybdenum. Rare earth elements and radionuclides including neodymium, samarium, and uranium were also detected, suggesting sediment interaction. These findings suggest that D. setosum tests could represent a sustainable source of bioavailable minerals and proteinaceous material, with prospective applications in fish or livestock feed, hydroxyapatite synthesis, or calcium oxide production, pending further validation. Full article
Show Figures

Graphical abstract

19 pages, 1331 KB  
Article
Evaluation of Bioprocess-Based Technique for Iron and Zinc Fortification in Red Rice Genotypes
by Sai Sruthi Shree Kavitha Kumaravel and Nagarajan Srividya
Foods 2025, 14(18), 3162; https://doi.org/10.3390/foods14183162 - 11 Sep 2025
Viewed by 588
Abstract
Iron (Fe) and zinc (Zn) deficiencies, globally prevalent nutritional disorders, underscore the need for effective fortification strategies in staple foods like rice. This study evaluates a bioprocess-based technique for single (SF) and double fortification (DF) of two heritage red rice genotypes (Chennangi—CH, Karungkuruvai—KK) [...] Read more.
Iron (Fe) and zinc (Zn) deficiencies, globally prevalent nutritional disorders, underscore the need for effective fortification strategies in staple foods like rice. This study evaluates a bioprocess-based technique for single (SF) and double fortification (DF) of two heritage red rice genotypes (Chennangi—CH, Karungkuruvai—KK) to enhance mineral content and bioavailability. Whole rice grains were germinated in sodium iron EDTA and zinc chloride solutions (SF: 50 and 100 mg/L Fe/Zn; DF: Fe + Zn at a 2:1 ratio). Mineral quantification via microwave plasma atomic emission spectrometry (MPAES) revealed that SF significantly increased fortified mineral content but reduced accessibility of the non-fortified mineral. In contrast, DF substantially enhanced both Fe (2-fold) and Zn (7-fold) content while improving bioaccessibility (Fe: 2–2.5x; Zn: 3–7x), supported by reduced phytate levels. Both genotypes exhibited high Zn accumulation and retention. Cooked DF rice has good sensory acceptability and improved cooking characteristics. At daily consumption levels of 30–150 g, DF rice could meet 16–70% of Fe and nearly 100% Zn Recommended Dietary Intake (RDI) across age groups. This simple, scalable bioprocessing method effectively enhances Fe and Zn bioavailability in wholegrains, offering a promising solution to combat micronutrient deficiencies through dietary staples, contributing to Sustainable Development Goals (SDG 2 and 3) by promoting accessible nutrition for healthier populations. Full article
Show Figures

Graphical abstract

20 pages, 11423 KB  
Article
Clay Mineral Characteristics and Smectite-to-Illite Transformation in the Chang-7 Shale, Ordos Basin: Processes and Controlling Factors
by Kun Ling, Ziyi Wang, Yaqi Cao, Yifei Liu and Lin Dong
Minerals 2025, 15(9), 951; https://doi.org/10.3390/min15090951 - 5 Sep 2025
Cited by 1 | Viewed by 1145
Abstract
As critical components in continental shale systems, the composition and evolution of clay minerals are fundamental to their diagenetic processes and petrophysical properties. The Chang-7 shales in the Ordos Basin exhibit abundant clay mineral content, offering a valuable case study for clay mineral [...] Read more.
As critical components in continental shale systems, the composition and evolution of clay minerals are fundamental to their diagenetic processes and petrophysical properties. The Chang-7 shales in the Ordos Basin exhibit abundant clay mineral content, offering a valuable case study for clay mineral research under moderate diagenetic conditions. This study employed XRD analysis to determine the whole-rock mineralogy, clay mineral composition, and the evolution characteristics of illite-smectite mixed-layer minerals (I/S). Comprehensive clay mineral datasets compiled from 13 newly analyzed wells and existing literature revealed distinct lateral distribution patterns. Total Organic Carbon (TOC) analysis and vitrinite reflectance (Ro) measurements provided systematic quantification of organic matter abundance and thermal maturation parameters in the studied samples. The results reveal that the Chang-7 shale exhibits a characteristic clay mineral assemblage, with I/S (average 44.2%) predominating over illite (34.7%), followed by chlorite (15.6%) and limited kaolinite (5.4%). Frequent volcanic activities provided substantial precursor materials for smectite formation, which actively participated in subsequent illitization processes, while chlorite and kaolinite distributions were predominantly controlled by provenance inputs and sedimentary facies, respectively. Inconsistencies exist between diagenetic stages inferred from I/S mixed-layer ratios and Ro values, particularly in low-maturity samples exhibiting accelerated illitization. The observed negative correlation between TOC content and mixed-layer ratios in Well YY1 and YSC Section samples demonstrates the catalytic role of organic matter in facilitating smectite-to-illite transformation. These results systematically clarify the coupled effects of sedimentary-diagenetic processes, offering new insights into the mutual interactions between inorganic and organic phases during illitization under natural geological conditions. The findings advance the understanding of Chang-7 shale oil and gas systems and offer practical guidance for future exploration. Full article
Show Figures

Figure 1

30 pages, 11585 KB  
Article
Multifractal Characterization of Marine Shale Pore Structure Alteration Induced by Supercritical CO2–Water–Rock Interaction
by Haonan Wei, Yi Du, Changqing Fu, Gaoqiang Fu, Yingfang Zhou, Jinfeng Ma, Zhenliang Wang, Zhejun Pan and Wei Gao
Fractal Fract. 2025, 9(9), 582; https://doi.org/10.3390/fractalfract9090582 - 2 Sep 2025
Viewed by 624
Abstract
Supercritical CO2 (ScCO2) injection has emerged as a promising method to enhance shale gas recovery while simultaneously achieving CO2 sequestration. This research investigates how ScCO2 interacts with water and shale rock, altering the pore structure characteristics of shale [...] Read more.
Supercritical CO2 (ScCO2) injection has emerged as a promising method to enhance shale gas recovery while simultaneously achieving CO2 sequestration. This research investigates how ScCO2 interacts with water and shale rock, altering the pore structure characteristics of shale reservoirs. The study examines shale samples from three marine shale formations in southern China under varying thermal and pressure regimes simulating burial conditions at 1000 m (45 °C and 10 MPa) and 2000 m (80 °C and 20 MPa). The research employs multiple analytical techniques including XRD for mineral composition analysis, MICP, N2GA, and CO2GA for comprehensive pore characterization, FE–SEM for visual observation of mineral and pore changes, and multifractal theory to analyze pore structure heterogeneity and connectivity. Key findings indicate that ScCO2–water–shale interactions lead to dissolution of minerals such as kaolinite, calcite, dolomite, and chlorite, and as the reaction proceeds, substantial secondary mineral precipitation occurs, with these changes being more pronounced under 2000 m simulation conditions. Mineral dissolution and precipitation cause changes in pore structure parameters of different pore sizes, with macropores showing increased PV and decreased SSA, mesopores showing decreased PV and SSA, and micropores showing insignificant changes. Moreover, mineral precipitation effects are stronger than dissolution effects. These changes in pore structure parameters lead to alterations in multifractal parameters, with mineral precipitation reducing pore connectivity and consequently enhancing pore heterogeneity. Correlation analysis further revealed that H and D−10D10 exhibit a significant negative correlation, confirming that reduced connectivity corresponds to stronger heterogeneity, while mineral composition strongly controls the multifractal responses of macropores and mesopores, with micropores mainly undergoing morphological changes. However, these changes in micropores are mainly manifested as modifications of internal space. Siliceous shale samples exhibit stronger structural stability compared to argillaceous shale, which is attributed to the mechanical strength of the quartz framework. By integrating multifractal theory with multi–scale pore characterization, this study achieves a unified quantification of shale pore heterogeneity and connectivity under ScCO2–water interactions at reservoir–representative pressure–temperature conditions. This novelty not only advances the methodological framework but also provides critical support for understanding CO2–enhanced shale gas recovery mechanisms and CO2 geological sequestration in depleted shale gas reservoirs, highlighting the complex coupling between geochemical reactions and pore structure evolution. Full article
Show Figures

Figure 1

13 pages, 1650 KB  
Article
Refining Biodegradability Assessments of Polymers Through Microbial Biomolecule Quantification
by Woo Yeon Cho and Pyung Cheon Lee
Polymers 2025, 17(17), 2376; https://doi.org/10.3390/polym17172376 - 31 Aug 2025
Viewed by 834
Abstract
The accumulation of plastic waste has intensified the pursuit of biodegradable alternatives, yet standard methods such as CO2 evolution, oxygen demand, and mass loss fail to fully capture microbial physiological responses during degradation. This study introduces a biochemical assay-based approach to quantify [...] Read more.
The accumulation of plastic waste has intensified the pursuit of biodegradable alternatives, yet standard methods such as CO2 evolution, oxygen demand, and mass loss fail to fully capture microbial physiological responses during degradation. This study introduces a biochemical assay-based approach to quantify proteins, lipids, and carbohydrates in soil as indicators of microbial activity during polymer biodegradation. For microcrystalline cellulose (MCC), proteins, lipids, and carbohydrates increased by 2.09-, 6.47-, and 11.22-fold, respectively (all p-values < 0.001), closely aligning with CO2 evolution trends. Non-biodegradable poly(vinyl chloride) (PVC) exhibited no significant changes. Synthesized poly(butylene glutarate) (PBG) also showed significant biomolecule accumulation (up to 2.70-fold) alongside CO2 production. Biomolecule quantification complements CO2-based methods by revealing microbial proliferation and metabolic activity that persist beyond the mineralization plateau, offering a more comprehensive assessment of biodegradability. Full article
(This article belongs to the Special Issue Sustainable Polymer Chemistry and Processing)
Show Figures

Figure 1

14 pages, 2531 KB  
Article
SEM-Based Approaches for the Identification and Quantification of Anhydrite
by Emmanuele Giordano, Arianna Paschetto, Emanuele Costa, Sabrina M. R. Bonetto, Pietro Mosca, Gianluca Frasca and Chiara Caselle
Appl. Sci. 2025, 15(17), 9584; https://doi.org/10.3390/app15179584 - 30 Aug 2025
Viewed by 546
Abstract
For investigating and modeling the swelling potential of anhydrite rocks, it is important to define a fast but accurate, reliable, and repeatable procedure for mineral identification and quantification of anhydrite mineral in rock samples. We propose a quantitative evaluation of the applicability of [...] Read more.
For investigating and modeling the swelling potential of anhydrite rocks, it is important to define a fast but accurate, reliable, and repeatable procedure for mineral identification and quantification of anhydrite mineral in rock samples. We propose a quantitative evaluation of the applicability of two different SEM-based approaches (namely, image analysis and the use of the O/S atomic ratio) for the identification and quantification of anhydrite in polished slices of rock. We compare the results obtained with the bulk densities of the samples and with the outcomes of thermogravimetric analyses, demonstrating high convergence between the different data. We eventually propose a critical comparison between the proposed approaches and the existing methods, overall providing a practical guide for the selection of the best analytical procedure for the quantification of anhydrite content in rocks and, consequently, for the correct estimation of swelling potential. Full article
Show Figures

Figure 1

19 pages, 1165 KB  
Article
Integrated (Statistical) Analysis of Honey Enriched with Aromatic Herbs: Phenolic Profile, Heavy Metal and NIR Spectroscopy
by Berat Durmishi, Vesna Knights, Tamara Jurina, Smajl Rizani, Gorica Pavlovska, Valbonë Mehmeti, Ana Jurinjak Tušek, Maja Benković, Davor Valinger and Jasenka Gajdoš Kljusurić
Processes 2025, 13(8), 2598; https://doi.org/10.3390/pr13082598 - 17 Aug 2025
Viewed by 719
Abstract
Honey is recognized as a nutritionally rich and functional option, often used as a natural sweetener due to its content of glucose, fructose, vitamins, minerals, enzymes and antioxidants. Its antioxidant, antibacterial and anti-inflammatory properties are well known. Recently, interest has grown in functional [...] Read more.
Honey is recognized as a nutritionally rich and functional option, often used as a natural sweetener due to its content of glucose, fructose, vitamins, minerals, enzymes and antioxidants. Its antioxidant, antibacterial and anti-inflammatory properties are well known. Recently, interest has grown in functional honey enriched with bioactive plant components, such as extracts of rosemary, lavender, oregano, and sage, which can enhance phenolic content and antioxidant capacity. However, such enrichment may alter honey’s sensory characteristics and introduce contaminants, including heavy metals, necessitating comprehensive quality assessment. This study aimed to evaluate the chemical and functional quality of honey enriched with aromatic plant extracts from Kosovo, Albania, and North Macedonia, using an integrated approach. The research included the quantification of total phenolic compounds (TPCs), analysis of heavy metal content, and the application of near-infrared (NIR) spectroscopy with two devices (laboratory and portable). The results showed that geographical origin and herbal additions significantly affect TPC and heavy metal concentrations. Honey from Kosovo had the highest TPC, while Albanian honey showed higher concentrations of iron and nickel. Enrichment with oregano and rosemary significantly increased TPC and, levels of heavy metals such as lead and nickel. These findings underscore both the nutritional potential and safety considerations of enriched honey products. Accurate, non-destructive techniques like NIR spectroscopy offer valuable tools for quality control; however, further work is needed to evaluate sensory acceptance and long-term safety of enriched honey. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

33 pages, 7573 KB  
Article
A Stochastic Framework for Mineral Resource Uncertainty Quantification and Management at Compañía Minera Doña Inés de Collahuasi
by Alejandro Cáceres, Xavier Emery, Felipe Ibarra, Jorge Pérez, Sebastián Seguel, Gonzalo Fuster, Andrés Pérez and Rodrigo Riquelme
Minerals 2025, 15(8), 855; https://doi.org/10.3390/min15080855 - 13 Aug 2025
Cited by 1 | Viewed by 21463
Abstract
Mineral resource classification plays a critical role in communicating confidence levels, yet supporting methodologies such as drill-hole spacing analysis and geostatistical simulations are not consistently applied in routine updates of deterministic resource models. As a result, both local and global uncertainty quantification remain [...] Read more.
Mineral resource classification plays a critical role in communicating confidence levels, yet supporting methodologies such as drill-hole spacing analysis and geostatistical simulations are not consistently applied in routine updates of deterministic resource models. As a result, both local and global uncertainty quantification remain underutilized, and drilling requirements are often defined without a clear link to uncertainty reduction. This paper introduces a mineral resource uncertainty and drilling policy framework developed and applied at Compañía Minera Doña Inés de Collahuasi (CMDIC). The framework quantifies the uncertainty of each mineral resource model update when new data are available and provides an initial approach to determining drilling requirements based on CMDIC’s risk acceptance policies for different project stages. The proposed approach is a stochastic workflow that uses the current deterministic mineral resource model and database to generate geostatistical simulations. These simulations account for data quality, quantity, geological variability, and copper-grade variability. They form the basis for mineral resource classification with an explicit uncertainty quantification and provide an optimized drilling campaign to achieve desired risk levels subject to budget constraints. Because stochastic modeling updates faster than deterministic modeling, it provides timely insights from new drilling campaigns and delivers valuable insights for subsequent deterministic geological and grade modeling updates. The implementation of this workflow demonstrates its feasibility as a standard step following deterministic modeling, leading to cost-effective mineral resource development and management by aligning technical practices with the organization’s strategic objectives and risk preferences. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

Back to TopTop