Hydrobiology of Saline Agriculture Ecosystem: A Review of Scenario Change in South-West Region of Bangladesh
Abstract
:1. Introduction
2. Review Methodology
3. Increased Climate Change Effect and Anthropogenic Stress on the South-West Region of Bangladesh
3.1. Environmental Impacts of Shrimp Aquaculture
3.2. Impact of Salt Stress on Crop Production
3.3. Paradigm Shifting and Changing Ecosystem Services- Various Adaptation Techniques
3.4. Challenges and Opportunities of Saline Ecosystem
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arfanuzzaman, M.; Mamnun, N.; Islam, M.; Dilshad, T.; Syed, M. Evaluation of Adaptation Practices in the Agriculture Sector of Bangladesh: An Ecosystem Based Assessment. Climate 2016, 4, 11. [Google Scholar] [CrossRef]
- Hossain, P.R.; Ludwig, F.; Leemans, R. Adaptation pathways to cope with salinization in south-west coastal region of Bangladesh. Ecol. Soc. 2018, 23. [Google Scholar] [CrossRef]
- Chowdhury, M.A.; Hasan, M.K.; Islam, S.L.U. Climate change adaptation in Bangladesh: Current practices, challenges and the way forward. J. Clim. Chang. Health 2022, 6, 100108. [Google Scholar] [CrossRef]
- Rahman, M.A.; Dawes, L.; Donehue, P.; Rahman, M.R. Transformation of the coastal social-ecological system in southwest Bangladesh due to empolderment. Water Hist. 2022, 14, 147–167. [Google Scholar] [CrossRef]
- Ahmad, H. Coastal Zone Management Bangladesh Coastal Zone Management Status and Future Trends. J. Coast. Zone Manag. 2019, 22, 466. [Google Scholar] [CrossRef]
- Khanom, T. Effect of salinity on food security in the context of interior coast of Bangladesh. Ocean Coast. Manag. 2016, 130, 205–212. [Google Scholar] [CrossRef]
- Tareq, S.M.; Tauhid Ur Rahman, M.; Zahedul Islam, A.Z.M.; Baddruzzaman, A.B.M.; Ashraf Ali, M. Evaluation of climate-induced waterlogging hazards in the south-west coast of Bangladesh using Geoinformatics. Env. Monit Assess 2018, 190, 230. [Google Scholar] [CrossRef]
- Morshed, M.M.; Islam, M.S.; Lohano, H.D.; Shyamsundar, P. Production externalities of shrimp aquaculture on paddy farming in coastal Bangladesh. Agric. Water Manag. 2020, 238, 106213. [Google Scholar] [CrossRef]
- Shammi, M.; Rahman, M.M.; Islam, M.A.; Bodrud-Doza, M.; Zahid, A.; Akter, Y.; Quaiyum, S.; Kurasaki, M. Spatio-temporal assessment and trend analysis of surface water salinity in the coastal region of Bangladesh. Environ. Sci. Pollut. Res. Int. 2017, 24, 14273–14290. [Google Scholar] [CrossRef]
- Unnayan Onnesha. Salinity Intrusion in Interior Coast: A New Challenge to Agriculture in South Central Part of Bangladesh; Unnayan Onnesha: Dhaka, Bangladesh, 2012. [Google Scholar]
- Muhammad Abdullah, H.; Ahmed, S.M.; Khan, B.M.; Mohana, N.T.; Ahamed, T.; Islam, I. Agriculture and fisheries production in a regional blending and dynamic fresh and saline water systems in the coastal area of Bangladesh. Environ. Chall. 2021, 4, 100089. [Google Scholar] [CrossRef]
- Jamal, M.R.; Kristiansen, P.; Kabir, M.J.; Kumar, L.; Lobry de Bruyn, L. Trajectories of cropping system intensification under changing environment in south-west coastal Bangladesh. Int. J. Agric. Sustain. 2021, 20, 722–742. [Google Scholar] [CrossRef]
- Rahman, M.T.U.; Tabassum, F.; Rasheduzzaman, M.; Saba, H.; Sarkar, L.; Ferdous, J.; Uddin, S.Z.; Zahedul Islam, A.Z.M. Temporal dynamics of land use/land cover change and its prediction using CA-ANN model for southwestern coastal Bangladesh. Environ. Monit Assess 2017, 189, 565. [Google Scholar] [CrossRef] [PubMed]
- GED/Plancom/MP/GoB. Making Vision 2041 a Reality: Perspective Plan of Bangladesh 2021–2024. 2020. Available online: http://oldweb.lged.gov.bd/uploadeddocument/unitpublication/1/1049/vision%202021-2041.pdf (accessed on 5 November 2022).
- Affairs, N.s.M.o.F. Climate Change Profile Bangladesh. Available online: https://www.government.nl/binaries/government/documenten/publications/2019/02/05/climate-change-profiles/Bangladesh.pdf (accessed on 15 November 2018).
- Schwoerbel, J. Methods of Hydrobiology: (Freshwater Biology); Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Sohel, M.S.I.; Ullah, M.H. Ecohydrology: A framework for overcoming the environmental impacts of shrimp aquaculture on the coastal zone of Bangladesh. Ocean Coast. Manag. 2012, 63, 67–78. [Google Scholar] [CrossRef]
- Thomas, T.; Mainuddin, K.; Chiang, C.; Rahman, A.; Haque, A.; Islam, N.; Quasem, S.; Sun, Y. Agriculture and Adaptation in Bangladesh: Current and Projected Impacts of Climate Change; IFPRI Discussion Paper No. 01281; International Food Policy Research Institute: Washington, DC, USA, 2013. [Google Scholar] [CrossRef]
- Hossen, B.; Yabar, H.; Faruque, M.J. Exploring the Potential of Soil Salinity Assessment through Remote Sensing and GIS: Case Study in the Coastal Rural Areas of Bangladesh. Land 2022, 11, 1784. [Google Scholar] [CrossRef]
- Shoaib, M.U.J. Adoption of Sustainable Land Management (SLM) to Halt Salinization Bangladesh Coastal Region, Agricultural Extension in South Asia, Blog-166. 2022. [Google Scholar]
- Raoufi, R.S.; Soufizadeh, S. Simulation of the impacts of climate change on phenology, growth, and yield of various rice genotypes in humid sub-tropical environments using AquaCrop-Rice. Int. J. Biometeorol. 2020, 64, 1657–1673. [Google Scholar] [CrossRef]
- WB. Salinity Intrusion in a Changing Climate Scenario Will Hit Coastal Bangladesh Hard. 2015. Available online: https://www.worldbank.org/en/news/feature/2015/02/17/salinity-intrusion-in-changing-climate-scenario-will-hit-coastal-bangladesh-hard (accessed on 16 November 2022).
- Xenarios, S.; Nemes, A.; Sarker, G.W.; Sekhar, N.U. Assessing vulnerability to climate change: Are communities in flood-prone areas in Bangladesh more vulnerable than those in drought-prone areas? Water Resour. Rural Dev. 2016, 7, 1–19. [Google Scholar] [CrossRef]
- Huq, N.; Hugé, J.; Boon, E.; Gain, A. Climate Change Impacts in Agricultural Communities in Rural Areas of Coastal Bangladesh: A Tale of Many Stories. Sustainability 2015, 7, 8437–8460. [Google Scholar] [CrossRef]
- Hossain, M.S.; Ramirez, J.; Szabo, S.; Eigenbrod, F.; Johnson, F.A.; Speranza, C.I.; Dearing, J.A. Participatory modelling for conceptualizing social-ecological system dynamics in the Bangladesh delta. Reg. Environ. Chang. 2020, 20, 1–14. [Google Scholar] [CrossRef]
- Faruque, G.; Sarwer, R.H.; Karim, M.; Phillips, M.; Collis, W.J.; Belton, B.; Kassam, L. The evolution of aquatic agricultural systems in Southwest Bangladesh in response to salinity and other drivers of change. Int. J. Agric. Sustain. 2016, 15, 185–207. [Google Scholar] [CrossRef]
- Haque, M.M.; Islam, M.S.; Hossain, M.I.; Jahan, H. Conditions for participation of marginalized households in shrimp value chains of the coastal region of Bangladesh. Aquaculture 2022, 555, 738258. [Google Scholar] [CrossRef]
- Barai, K.R.; Harashina, K.; Satta, N.; Annaka, T. Comparative analysis of land-use pattern and socioeconomic status between shrimp- and rice- production areas in southwestern coastal Bangladesh: A land-use/cover change analysis over 30 years. J. Coast. Conserv. 2019, 23, 531–542. [Google Scholar] [CrossRef]
- Islam, M.R.; Tabeta, S. Shrimp vs prawn-rice farming in Bangladesh: A comparative impacts study on local environments and livelihoods. Ocean Coast. Manag. 2019, 168, 167–176. [Google Scholar] [CrossRef]
- Parven, A.; Pal, I.; Witayangkurn, A.; Pramanik, M.; Nagai, M.; Miyazaki, H.; Wuthisakkaroon, C. Impacts of disaster and land-use change on food security and adaptation: Evidence from the delta community in Bangladesh. Int. J. Disaster Risk Reduct. 2022, 78, 103119. [Google Scholar] [CrossRef]
- Kabir, M.H.; Iva, I.J. Ecological consequences of shrimp farming in Southwestern Satkhira District of Bangladesh. Austin. J. Earth Sci. 2014, 1, 7. [Google Scholar]
- AftabUddin, S.; Hussain, M.G.; Abdullah Al, M.; Failler, P.; Drakeford, B.M. On the potential and constraints of mariculture development in Bangladesh. Aquac. Int. 2021, 29, 575–593. [Google Scholar] [CrossRef]
- Basu, S.; Roy, A. An economic assessment of fish polyculture as an adaptation strategy against environmental change in the southwest coastal region of Bangladesh. Int. J. Environ. Stud. 2020, 78, 105–116. [Google Scholar] [CrossRef]
- Hasan, J.; Lima, R.A.; Shaha, D.C. Fisheries resources of Bangladesh: A review. Int. J. Fish. Aquat. Stud. 2021, 9, 131–138. [Google Scholar] [CrossRef]
- Akber, M.A.; Islam, M.A.; Rahman, M.M.; Rahman, M.R. Crop diversification in southwest coastal Bangladesh: Insights into farming adaptation. Agroecol. Sustain. Food Syst. 2021, 46, 316–324. [Google Scholar] [CrossRef]
- Hou, Y.; Yang, J.; Russoniello, C.J.; Zheng, T.; Wu, M.L.; Yu, X. Impacts of Coastal Shrimp Ponds on Saltwater Intrusion and Submarine Groundwater Discharge. Water Resour. Res. 2022, 58, e2021WR031866. [Google Scholar] [CrossRef]
- Hasan, N.A.; Haque, M.M.; Hinchliffe, S.J.; Guilder, J. A sequential assessment of WSD risk factors of shrimp farming in Bangladesh: Looking for a sustainable farming system. Aquaculture 2020, 526, 735348. [Google Scholar] [CrossRef]
- Heal, R.D.; Hasan, N.A.; Haque, M.M. Increasing disease burden and use of drugs and chemicals in Bangladesh shrimp aquaculture: A potential menace to human health. Mar Pollut. Bull. 2021, 172, 112796. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.S.; Uddin, M.J.; Fakhruddin, A.N.M. Impacts of shrimp farming on the coastal environment of Bangladesh and approach for management. Rev. Environ. Sci. Bio/Technol. 2013, 12, 313–332. [Google Scholar] [CrossRef]
- Adnan, M.S.G.; Abdullah, A.Y.M.; Dewan, A.; Hall, J.W. The effects of changing land use and flood hazard on poverty in coastal Bangladesh. Land Use Policy 2020, 99, 104868. [Google Scholar] [CrossRef]
- Rahman, M.S.; Rahman, M.A. Impacts of Climate Change on Crop Production in Bangladesh: A Review. J. Agric. Crops 2019, 5, 6–14. [Google Scholar] [CrossRef]
- Alam, M.Z.; Carpenter-Boggs, L.; Mitra, S.; Haque, M.M.; Halsey, J.; Rokonuzzaman, M.; Saha, B.; Moniruzzaman, M. Effect of Salinity Intrusion on Food Crops, Livestock, and Fish Species at Kalapara Coastal Belt in Bangladesh. J. Food Qual. 2017, 2017, 1–23. [Google Scholar] [CrossRef]
- Rakib, M.A.; Sasaki, J.; Pal, S.; Newaz, M.A.; Bodrud-Doza, M.; Bhuiyan, M.A.H. An investigation of coastal vulnerability and internal consistency of local perceptions under climate change risk in the southwest part of Bangladesh. J. Environ. Manag. 2019, 231, 419–428. [Google Scholar] [CrossRef]
- Akber, M.A.; Khan, M.W.R.; Islam, M.A.; Rahman, M.M.; Rahman, M.R. Impact of land use change on ecosystem services of southwest coastal Bangladesh. J. Land Use Sci. 2018, 13, 238–250. [Google Scholar] [CrossRef]
- Paul, P.L.C.; Bell, R.W.; Barrett-Lennard, E.G.; Kabir, E. Variation in the yield of sunflower (Helianthus annuus L.) due to differing tillage systems is associated with variation in solute potential of the soil solution in a salt-affected coastal region of the Ganges Delta. Soil Tillage Res. 2020, 197, 104489. [Google Scholar] [CrossRef]
- Salehin, M.; Chowdhury, M.; Arefin, M.; Clarke, D.; Mondal, S.; Nowreen, S.; Jahiruddin, M.; Haque, A. Mechanisms and Drivers of Soil Salinity in Coastal Bangladesh. In Ecosystem Services for Well-Being in Deltas; Palgrave Macmillan: Cham, switzerland, 2018; pp. 333–347. [Google Scholar]
- Mainuddin, M.; Maniruzzaman, M.; Alam, M.M.; Mojid, M.A.; Schmidt, E.J.; Islam, M.T.; Scobie, M. Water usage and productivity of Boro rice at the field level and their impacts on the sustainable groundwater irrigation in the North-West Bangladesh. Agric. Water Manag. 2020, 240, 106294. [Google Scholar] [CrossRef]
- Mainuddin, M.; Bell, R.W.; Gaydon, D.S.; Kirby, J.M.; Barrett-Lennard, E.G.; Glover, M.; Akanda, M.R.; Maji, B.; Ali, M.A.; Brahmachari, K. An Overview of the Ganges Coastal Zone: Climate, Hydrology, Land Use, and Vulnerability. J. Indian Soc. Coast. Agric. Res. 2019, 37, 1–11. [Google Scholar]
- Carcedo, A.J.P.; Bastos, L.M.; Yadav, S.; Mondal, M.K.; Jagadish, S.V.K.; Kamal, F.A.; Sutradhar, A.; Prasad, P.V.V.; Ciampitti, I. Assessing impact of salinity and climate scenarios on dry season field crops in the coastal region of Bangladesh. Agric. Syst. 2022, 200, 103428. [Google Scholar] [CrossRef]
- Samson, B.K.; Sengxua, P.; Vorlason, S.; Douangboupha, K.; Eberbach, P.; Vote, C.; Jackson, T.; Harnpichitvitaya, D.; Wade, L.J. Short-duration mungbean (Vigna radiata (L.) R. Wilczek) genotypes differ in performance, water use and apparent water-use efficiency in southern Lao PDR. Field Crops Res. 2020, 245, 107662. [Google Scholar] [CrossRef]
- Nisbett, N.; Davis, P.; Yosef, S.; Akhtar, N. Bangladesh’s story of change in nutrition: Strong improvements in basic and underlying determinants with an unfinished agenda for direct community level support. Glob. Food Secur. 2017, 13, 21–29. [Google Scholar] [CrossRef]
- Uitto, J.I.; Shaw, R. (Eds.) Sustainable Development and Disaster Risk Reduction: Introduction; Springer: Tokyo, Japan, 2016. [Google Scholar] [CrossRef]
- dos Santos, T.B.; Ribas, A.F.; de Souza, S.G.H.; Budzinski, I.G.F.; Domingues, D.S. Physiological Responses to Drought, Salinity, and Heat Stress in Plants: A Review. Stresses 2022, 2, 113–135. [Google Scholar] [CrossRef]
- Gengmao, Z.; Shihui, L.; Xing, S.; Yizhou, W.; Zipan, C. The role of silicon in physiology of the medicinal plant (Lonicera japonica L.) under salt stress. Sci. Rep. 2015, 5, 12696. [Google Scholar] [CrossRef] [PubMed]
- Safdar, H.; Amin, A.; Shafiq, Y.; Ali, A.; Yasin, R.; Sarwar, M.I. A Review: Impact of Salinity on Plant Growth. Nat. Sci. 2019, 1, 34–40. [Google Scholar] [CrossRef]
- Ahanger, M.A.; Agarwal, R.M. Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L.) as influenced by potassium supplementation. Plant Physiol. Biochem. 2017, 115, 449–460. [Google Scholar] [CrossRef]
- Sarwar, A.G.; Tinne, F.J.; Islam, N.; Islam, M.M.; Haque, M.S. Effects of Salt Stress on Growth and Accumulation of NA+, K+ And ca2+ Ions in Different Accessions of Sesbania. Bangladesh J. Bot. 2022, 51, 157–167. [Google Scholar] [CrossRef]
- Cantabella, D.; Piqueras, A.; Acosta-Motos, J.R.; Bernal-Vicente, A.; Hernandez, J.A.; Diaz-Vivancos, P. Salt-tolerance mechanisms induced in Stevia rebaudiana Bertoni: Effects on mineral nutrition, antioxidative metabolism and steviol glycoside content. Plant Physiol. Biochem. 2017, 115, 484–496. [Google Scholar] [CrossRef]
- Sapre, S.; Gontia-Mishra, I.; Tiwari, S. Klebsiella sp. confers enhanced tolerance to salinity and plant growth promotion in oat seedlings (Avena sativa). Microbiol. Res. 2018, 206, 25–32. [Google Scholar] [CrossRef]
- Jha, U.C.; Bohra, A.; Jha, R.; Parida, S.K. Salinity stress response and ‘omics’ approaches for improving salinity stress tolerance in major grain legumes. Plant Cell Rep. 2019, 38, 255–277. [Google Scholar] [CrossRef] [PubMed]
- Blum, A. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ. 2017, 40, 4–10. [Google Scholar] [CrossRef]
- Farooq, M.; Hussain, M.; Wakeel, A.; Siddique, K.H.M. Salt stress in maize: Effects, resistance mechanisms, and management. A review. Agron. Sustain. Dev. 2015, 35, 461–481. [Google Scholar] [CrossRef]
- Iqbal, S.; Hussain, S.; Abdul Qayyaum, M.; Ashraf, M.; Saifullah. The Response of Maize Physiology under Salinity Stress and Its Coping Strategies. In Plant Stress Physiology; Hossain, A., Ed.; IntechOpen Limited: London, UK, 2021. [Google Scholar] [CrossRef]
- Shahid, M.A.; Sarkhosh, A.; Khan, N.; Balal, R.M.; Ali, S.; Rossi, L.; Gómez, C.; Mattson, N.; Nasim, W.; Garcia-Sanchez, F. Insights into the Physiological and Biochemical Impacts of Salt Stress on Plant Growth and Development. Agronomy 2020, 10, 938. [Google Scholar] [CrossRef]
- Bosnic, P.; Bosnic, D.; Jasnic, J.; Nikolic, M. Silicon mediates sodium transport and partitioning in maize under moderate salt stress. Environ. Exp. Bot. 2018, 155, 681–687. [Google Scholar] [CrossRef]
- Hussain, A.; Tanveer, R.; Mustafa, G.; Farooq, M.; Amin, I.; Mansoor, S. Comparative phylogenetic analysis of aquaporins provides insight into the gene family expansion and evolution in plants and their role in drought tolerant and susceptible chickpea cultivars. Genomics 2020, 112, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Liu, X.; Mao, W.; Zhang, X.; Chen, S.; Zhan, K.; Bi, H.; Xu, H. Genome-Wide Identification and Analysis of HAK/KUP/KT Potassium Transporters Gene Family in Wheat (Triticum aestivum L.). Int. J. Mol. Sci. 2018, 19, 3969. [Google Scholar] [CrossRef]
- Amirbakhtiar, N.; Ismaili, A.; Ghaffari, M.R.; Nazarian Firouzabadi, F.; Shobbar, Z.S. Transcriptome response of roots to salt stress in a salinity-tolerant bread wheat cultivar. PLoS ONE 2019, 14, e0213305. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, Y. Unraveling salt stress signaling in plants. J. Integr. Plant Biol. 2018, 60, 796–804. [Google Scholar] [CrossRef] [Green Version]
- Kurotani, K.I.; Hattori, T.; Takeda, S. Overexpression of a CYP94 family gene CYP94C2b increases internode length and plant height in rice. Plant Signal Behav. 2015, 10, e1046667. [Google Scholar] [CrossRef]
- Ahmad, R.M.; Cheng, C.; Sheng, J.; Wang, W.; Ren, H.; Aslam, M.; Yan, Y. Interruption of Jasmonic Acid Biosynthesis Causes Differential Responses in the Roots and Shoots of Maize Seedlings against Salt Stress. Int. J. Mol. Sci. 2019, 20, 6202. [Google Scholar] [CrossRef] [PubMed]
- Miransari, M.; Smith, D. Sustainable wheat (Triticum aestivum L.) production in saline fields: A review. Crit. Rev. Biotechnol. 2019, 39, 999–1014. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Shaukat, M.; Ashraf, M.; Zhu, C.; Jin, Q.; Zhang, J. Salinity Stress in Arid and Semi-Arid Climates: Effects and Management in Field Crops. In Climate Change and Agriculture; Hussain, S., Ed.; IntechOpen: London, UK, 2019; pp. 201–655. [Google Scholar] [CrossRef]
- Neilson, E.H.; Edwards, A.M.; Blomstedt, C.K.; Berger, B.; Moller, B.L.; Gleadow, R.M. Utilization of a high-throughput shoot imaging system to examine the dynamic phenotypic responses of a C4 cereal crop plant to nitrogen and water deficiency over time. J. Exp. Bot. 2015, 66, 1817–1832. [Google Scholar] [CrossRef]
- Al-Tamimi, N.; Brien, C.; Oakey, H.; Berger, B.; Saade, S.; Ho, Y.S.; Schmockel, S.M.; Tester, M.; Negrao, S. Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping. Nat. Commun. 2016, 7, 13342. [Google Scholar] [CrossRef] [PubMed]
- Tilbrook, J.; Schilling, R.K.; Berger, B.; Garcia, A.F.; Trittermann, C.; Coventry, S.; Rabie, H.; Brien, C.; Nguyen, M.; Tester, M.; et al. Variation in shoot tolerance mechanisms not related to ion toxicity in barley. Funct. Plant Biol. 2017, 44, 1194–1206. [Google Scholar] [CrossRef]
- Atieno, J.; Li, Y.; Langridge, P.; Dowling, K.; Brien, C.; Berger, B.; Varshney, R.K.; Sutton, T. Exploring genetic variation for salinity tolerance in chickpea using image-based phenotyping. Sci. Rep. 2017, 7, 1300. [Google Scholar] [CrossRef]
- Liang, W.; Ma, X.; Wan, P.; Liu, L. Plant salt-tolerance mechanism: A review. Biochem. Biophys. Res. Commun. 2018, 495, 286–291. [Google Scholar] [CrossRef]
- Munns, R.; Passioura, J.B.; Colmer, T.D.; Byrt, C.S. Osmotic adjustment and energy limitations to plant growth in saline soil. New Phytol. 2020, 225, 1091–1096. [Google Scholar] [CrossRef] [Green Version]
- Adhikary, D.; Das, D.; Ali, M.Y.; Ullah, H.; Datta, A. Growth, grain yield, and water productivity of traditional rice landraces from coastal Bangladesh, as affected by salt stress. J. Crop. Improv. 2022, 5, 1–14. [Google Scholar] [CrossRef]
- Azam, A.K.M.F.; Hasan, M.F.; Khan, M.N.S.; Ghosh, S.; Saha, M.; Zabir, A.A. Salt Tolerance of Papaya (Carica Papaya), Indian Spinach (Basella Alba L.) and Okra (Abelmoschus Esculentus) in the South Central Coastal Region of Bangladesh. J. Agrofor. Environ. 2022, 15, 19–23. [Google Scholar] [CrossRef]
- Mashfiqur, R.; Mustafa, K.S.; Tazreen, S.M.; Shahriar, K.; Abu, R.M.; Fadrus, A.N.; Harunor, R. Performance of mustard varieties under saline prone areas of Bangladesh. Afr. J. Agric. Res. 2022, 18, 608–616. [Google Scholar] [CrossRef]
- Rahman, M.M.; Hossain, M.; Hossain, K.F.B.; Sikder, M.T.; Shammi, M.; Rasheduzzaman, M.; Hossain, M.A.; Alam, A.M.; Uddin, M.K. Effects of NaCl-Salinity on Tomato (Lycopersicon esculentum Mill.) Plants in a Pot Experiment. Open Agric. 2018, 3, 578–585. [Google Scholar] [CrossRef]
- Mahmud Ur, R.; Naser, I.B.; Mahmud, N.U.; Sarker, A.; Hoque, M.N.; Islam, T. A Highly Salt-Tolerant Bacterium Brevibacterium sediminis Promotes the Growth of Rice (Oryza sativa L.) Seedlings. Stresses 2022, 2, 275–289. [Google Scholar] [CrossRef]
- Devi, A.R.; Kotoky, R.; Pandey, P.; Sharma, G.D. Application of Bacillus Spp. for Sustainable Cultivation of Potato (Solanum Tuberosum L.) and the Benefits. In Bacilli and Agrobiotechnology; Islam, M.T., Rahman, M., Pandey, P., Jha, C.K., Aeron, A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 185–211. ISBN 978-3-319-44408-6. [Google Scholar]
- Hossain, M.T.; Islam, T. Amelioration of Salinity Stress by Bacillus Species as Promoters of Plant Growth in Saline Soil. In Bacilli in Agrobiotechnology; Springer: Cham, Switzerland, 2022; pp. 199–208. [Google Scholar]
- Lethin, J.; Byrt, C.; Berger, B.; Brien, C.; Jewell, N.; Roy, S.; Mousavi, H.; Sukumaran, S.; Olsson, O.; Aronsson, H. Improved Salinity Tolerance-Associated Variables Observed in EMS Mutagenized Wheat Lines. Int. J. Mol. Sci. 2022, 23, 11386. [Google Scholar] [CrossRef]
- Bai, Y.; Yan, Y.; Zuo, W.; Gu, C.; Xue, W.; Mei, L.; Shan, Y.; Feng, K. Coastal Mudflat Saline Soil Amendment by Dairy Manure and Green Manuring. Int. J. Agron. 2017, 2017, 1–9. [Google Scholar] [CrossRef]
- Shammi, M.; Anirban, D.; Salma, U.; Sakib, A.; Rahman, M. Effectiveness of Adaptation Measures for Reducing the Effect of Salinity Intrusion in Agriculture Practice: A Case study from Kolapara Upazila, Bangladesh. Bangladesh J. Environ. Res. 2020, 11, 38–54. [Google Scholar]
- Shammi, M.; Karmakar, B.; Rahman, M.M.; Islam, M.S.; Rahman, R.; Uddin, M.K. Assessment of salinity hazard of irrigation water quality in monsoon season of Batiaghata Upazila, Khulna District, Bangladesh and adaptation strategies. Pollution 2016, 2, 183–197. [Google Scholar]
- Hossain, M.A.R.; Ahmed, M.; Ojea, E.; Fernandes, J.A. Impacts and responses to environmental change in coastal livelihoods of south-west Bangladesh. Sci. Total Environ. 2018, 637–638, 954–970. [Google Scholar] [CrossRef]
- Hasan, M.K.; Kumar, L. Changes in coastal farming systems in a changing climate in Bangladesh. Reg. Environ. Chang. 2022, 22, 1–16. [Google Scholar] [CrossRef]
- Rahman, M.S.; Kazal, M.M.H.; Rayhan, S.J. Impacts of the training of mud crab farmers: An adaptation strategy to cope with salinity intrusion in Bangladesh. Mar. Policy 2020, 120, 104159. [Google Scholar] [CrossRef]
- Rahman, M.M.; Haque, S.M.; Islam, M.A.; Paul, A.K.; Iqbal, S.; Atique, U.; Wahab, A.; Egna, H.; Brown, C. Assessment of mud crab fattening and culture practices in coastal Bangladesh: Understanding the current technologies and development perspectives. Aquac. Aquar. Conserv. Legislation 2020, 2, 582–596. [Google Scholar]
- Ferdoushi, Z.; Xiang-Guo, Z. An assessment on the barriers in mud crab (Scylla sp.) fattening and marketing in Bangladesh. J. Sci. Technol. 2013, 11, 151–157. [Google Scholar]
- Salam, M.A.; Ross, L.G.; Beveridge, C.M.M. A comparison of development opportunities for crab and shrimp aquaculture in southwestern Bangladesh, using GIS modelling. Aquaculture 2003, 220, 477–494. [Google Scholar] [CrossRef]
- Rahi, M.L.; Ferdusy, T.; Wali Ahmed, S.; Khan, M.N.; Aziz, D.; Salin, K.R. Impact of salinity changes on growth, oxygen consumption and expression pattern of selected candidate genes in the orange mud crab (Scylla olivacea). Aquac. Res. 2020, 51, 4290–4301. [Google Scholar] [CrossRef]
- Sujan, M.H.K.; Kazal, M.M.H.; Ali, M.S.; Rahman, M.S. Cost-benefit analysis of mud crab fattening in coastal areas of Bangladesh. Aquac. Rep. 2021, 19, 100612. [Google Scholar] [CrossRef]
- Rahman, M.M.; Haque, S.M.; Galib, S.M.; Islam, M.A.; Parvez, M.T.; Hoque, M.N.; Wahab, M.A.; Egna, H.; Brown, C. Mud crab fishery in climate vulnerable coastal Bangladesh: An analysis towards sustainable development. Aquac. Int. 2020, 28, 1243–1268. [Google Scholar] [CrossRef]
- Chang, Z.Q.; Neori, A.; He, Y.Y.; Li, J.T.; Qiao, L.; Preston, S.I.; Liu, P.; Li, J. Development and current state of seawater shrimp farming, with an emphasis on integrated multi-trophic pond aquaculture farms, in China—A review. Rev. Aquac. 2020, 12, 2544–2558. [Google Scholar] [CrossRef]
- Rahman, M.M.; Haque, S.M.; Wahab, A.; Egna, H.; Brown, C. Soft-shell crab production in coastal Bangladesh: Prospects, challenges and sustainability. World Aquac. 2018, 49, 43–47. [Google Scholar]
- Basu, S.; Roy, A. Economic assessment of mud crab (Scylla Serrata) culture as an adaptation strategy to salinity intrusion in south-west region of Bangladesh. Int. J. Environ. Stud. 2018, 75, 891–902. [Google Scholar] [CrossRef]
- Lahiri, T.; Nazrul, K.M.S.; Rahman, M.A.; Saha, D.; Egna, H.; Wahab, M.A.; Mamun, A.A. Boom and bust: Soft-shell mud crab farming in south-east coastal Bangladesh. Aquac. Res. 2021, 52, 5056–5068. [Google Scholar] [CrossRef]
- Bianchi, E.; Malki-Epshtein, L. Evaluating the risk to Bangladeshi coastal infrastructure from tropical cyclones under climate change. Int. J. Disaster Risk Reduct. 2021, 57, 102147. [Google Scholar] [CrossRef]
- Urruty, N.; Tailliez-Lefebvre, D.; Huyghe, C. Stability, robustness, vulnerability and resilience of agricultural systems. A review. Agron. Sustain. Dev. 2016, 36, 1–15. [Google Scholar] [CrossRef]
- Islam, M.A.; Lobry de Bruyn, L.; Warwick, N.W.M.; Koech, R. Salinity-affected threshold yield loss: A signal of adaptation tipping points for salinity management of dry season rice cultivation in the coastal areas of Bangladesh. J. Environ. Manag. 2021, 288, 112413. [Google Scholar] [CrossRef] [PubMed]
- Jamal, M.R.; Kristiansen, P.; Kabir, M.J.; de Bruyn, L.L. Risks and adaptation dynamics in shrimp and prawn-based farming systems in southwest coastal Bangladesh. Aquaculture 2023, 562, 738819. [Google Scholar] [CrossRef]
Districts/Region | Change of Crop Cultivation | Land use Change Shrimp/Prawn Ghers/Ponds | Others | Method of Study | References | ||
---|---|---|---|---|---|---|---|
Satkhira Tala Upazila | - | - | 0.7% of the study area (246 ha) was underwater in 1989 | 89% inundation by salt water inundation in 2015 | 64.4% reduction of fallow lands from 1989–2015 | LULC analysis 1989–2015, FGD | [7] |
Khulna (Tildanga and Kamarkhola) | Paddy 37.2% in 1988 | 18% in 2017 | ponds/waterbodies 16.5% in 1988 | 33.9% in 2017 | - | LULC analysis 1988–2017 | [28] |
South-west coast | - | - | 14,773 ton in 1986–1987 | to140,261 ton in 2012–13 | - | Production 1986–2012 | [29] |
South-west coast | Aman rice 47% | Aman 27% | Prawn 0.4% | Prawn 7% | Fallow land 30% in 1991 to 12% in 2018 | Cropping intensity 1991–2018 | [12] |
Boro 5% | Boro 22% | Shrimp 8% | Shrimp 17% | - | |||
Aus 4% | Aus 2% | Non rice crop 6% | Non rice crop 11% | - | |||
Satkhira district | - | - | 22% in 1990 | 38% in 2016 | - | LULC analysis 1990–2016 | [8] |
Satkhira district (Assasuni Upazila) | - | - | 21% bare lands transformed into Shrimp lands | 25.9% increase in shrimp lands | - | LULC analysis 1989–2015 | [13] |
Coastal districts and islands | - | - | Aquaculture has increased by more than 100% by converting water bodies (61%) and fallow land (27%). | - | 47% decrease of fallow land from 1990–2015 | LULC analysis 1990–2015 and interview method | [30] |
Ecosystem | Temp | Salinity | Remarks | Factors to consider | References |
---|---|---|---|---|---|
Agriculture | 28 °C air |
| Decreased due to high salinity and climate change | Irrigation water unavailability, surface and groundwater salinity Saline-tolerant crop species | [26,92,101] |
Fisheries | 27–29 °C water |
| Freshwater fisheries also decreased due to high salinity, climate change | Saline surface water, less profit | [26,92] |
Shrimp | 25–32 °C water |
|
|
| [26,92,101] |
Mud crab (Scylla serrata) | 22–30 °C water |
|
|
| [93,97,98,101,102,103] |
Regions | Adaptation Methods | Assessment Types | References |
---|---|---|---|
Satkhira (Shyamnagar Upazila) | Fish polyculture | Economic assessment | [33] |
Both south-east and south-west coast | Changes in farming systems | Random questionnaire survey and random forest classification model | [92] |
South-west coast: Khulna, Bagerhat, and Satkhira | Adaptation pathways for salinisation | Random household interview, key informant interview and DPSIR analysis | [2] |
Satkhira and Chittagong | Adaptation tipping points approach to investigate threshold yield loss | Semi-structured interview, key informant interview | [106] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akter, R.; Hasan, N.; Reza, F.; Asaduzzaman, M.; Begum, K.; Shammi, M. Hydrobiology of Saline Agriculture Ecosystem: A Review of Scenario Change in South-West Region of Bangladesh. Hydrobiology 2023, 2, 162-180. https://doi.org/10.3390/hydrobiology2010011
Akter R, Hasan N, Reza F, Asaduzzaman M, Begum K, Shammi M. Hydrobiology of Saline Agriculture Ecosystem: A Review of Scenario Change in South-West Region of Bangladesh. Hydrobiology. 2023; 2(1):162-180. https://doi.org/10.3390/hydrobiology2010011
Chicago/Turabian StyleAkter, Rayhana, Nazmul Hasan, Farhadur Reza, Md. Asaduzzaman, Kohinoor Begum, and Mashura Shammi. 2023. "Hydrobiology of Saline Agriculture Ecosystem: A Review of Scenario Change in South-West Region of Bangladesh" Hydrobiology 2, no. 1: 162-180. https://doi.org/10.3390/hydrobiology2010011
APA StyleAkter, R., Hasan, N., Reza, F., Asaduzzaman, M., Begum, K., & Shammi, M. (2023). Hydrobiology of Saline Agriculture Ecosystem: A Review of Scenario Change in South-West Region of Bangladesh. Hydrobiology, 2(1), 162-180. https://doi.org/10.3390/hydrobiology2010011