Influence of the Thickness of the Seasonally Thawed Layer of Permafrost in the Eastern Siberia Catchments on the Content of Organic Matter in River Waters
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shepelev, A.G. Cryogenic soil organic matter from the ice complex in Central Yakutia, northeastern Siberia. In Collection of Materials of the All-Russian Scientific Conference with International Participation, Dedicated to the 50th Anniversary of the Institute of Soil Science and Agrochemistry SB RAS; Publishing House of the National Research Tomsk State University: Tomsk, Russia, 2018; pp. 140–144. (In Russian) [Google Scholar]
- Shepelev, A.G.; Starostin, E.V.; Fedorov, A.N.; Maksimov, T.K. Preliminary analysis of organic carbon and nitrogen reserves in the rocks of the ice complex of Central Yakutia. Sci. Educ. 2016, 82, 35–42. (In Russian) [Google Scholar]
- Smith, L.C.; MacDonald, G.M.; Velichko, A.A.; Beilman, D.W.; Borisova, O.K.; Frey, K.E.; Kremenetski, K.V.; Sheng, Y. Siberian peatlands a net carbon sink and global methane source since the early Holocene. Science 2004, 303, 353–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prokushkin, A.S.; Pokrovsky, O.S.; Prokushkina, M.P.; Korets, M.A. Quantitative and qualitative characteristics of dissolved organic matter in the river runoff of the Central Siberian Plateau (the basin of the Yenisei River). In Proceedings of the VI All-Russian Symposium with International Participation “Organic Matter and Biogenic Elements in Inland Waters and Marine Waters”, Barnaul, Russia, 5–10 September 2017; pp. 197–202. (In Russian). [Google Scholar]
- González, E.J.; Roldán, G. Eutrophication and Phytoplankton: Some Generalities from Lakes and Reservoirs of the Americas. In Microalgae-from Physiology to Application; Vítová, M., Ed.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Lemley, D.A.; Adams, J.B.; Bate, G.C. A review of microalgae as indicators in South African estuaries. S. Afr. J. Bot. 2016, 107, 12–20. [Google Scholar] [CrossRef]
- Barinova, S. On the Classification of Water Quality from an Ecological Point of View. Int. J. Environ. Sci. Nat. Resour. 2017, 2, 1–8. [Google Scholar] [CrossRef]
- MacLean, R.; Oswood, M.W.; Irons, J.G.; McDowell, W.H. The effect of permafrost on stream biogeochemistry: A case study of two streams in the Alaskan (USA) taiga. Biogeochemistry 1999, 47, 239–267. [Google Scholar] [CrossRef]
- Striegl, R.G.; Dornblaser, M.M.; Aiken, G.R.; Wickland, K.P.; Raymond, P.A. Carbon export and cycling by the Yukon, Tanana, and Porcupine rivers, Alaska, 2001–2005. Water Resour. Res. 2007, 43, W02411. [Google Scholar] [CrossRef] [Green Version]
- Petrone, K.C.; Hinzman, L.D.; Shibata, H.; Jones, J.B.; Boone, R.D. The influence of fire and permafrost on sub-arctic stream chemistry during storms. Hydrol. Process. 2007, 21, 423–434. [Google Scholar] [CrossRef]
- Petrone, K.C.; Jones, J.B.; Hinzman, L.D.; Boone, R.D. Seasonal export of carbon, nitrogen, and major solutes from Alaskan catchments with discontinuous permafrost. J. Geophys. Res. 2006, 111, G02020. [Google Scholar] [CrossRef]
- Striegl, R.G.; Aiken, G.R.; Dornblaser, M.M.; Raymond, P.A.; Wickland, K.P. A decrease in discharge-normalized DOC export by the Yukon River during summer through autumn. Geophys. Res. Lett. 2005, 32, L21413. [Google Scholar] [CrossRef]
- Carey, S.K. Dissolved organic carbon fluxes in a discontinuous permafrost subarctic alpine catchment. Permafr. Periglac. Process. 2003, 14, 161–171. [Google Scholar] [CrossRef]
- Kawahigashi, M.; Kaiser, K.; Kalbitz, K.; Rodionov, A.; Guggenberger, G. Dissolved organic matter in small streams along a gradient from discontinuous to continuous permafrost. Glob. Chang. Biol. 2004, 10, 1576–1586. [Google Scholar] [CrossRef]
- Prokushkin, A.S.; Gleixner, G.; McDowell, W.H.; Ruehlow, S.; Schulze, E.D. Source- and substrate-specific export of dissolved organic matter from permafrost-dominated forested watershed in central Siberia. Glob. Biogeochem. Cycles 2007, 21, GB4003. [Google Scholar] [CrossRef]
- Kutscher, L.; Mörth, C.-M.; Porcelli, D.; Hirst, C.; Maximov, T.C.; Petrov, R.E.; Andersson, P.S. Spatial variation in concentration and sources of organic carbon in the Lena River, Siberia. J. Geophys. Res.-Biogeosci. 2017, 122, 1999–2016. [Google Scholar] [CrossRef] [Green Version]
- Frey, K.E.; Smith, L.C. Amplified carbon release from vast West Siberian peatlands by 2100. Geophys. Res. Lett. 2005, 32, L09401. [Google Scholar] [CrossRef] [Green Version]
- Frauenfeld, O.W.; Zhang, T.J.; Barry, R.G.; Gilichinsky, D. Interdecadal changes in seasonal freeze and thaw depths in Russia. J. Geophys. Res.-Atmos. 2004, 109, D05101. [Google Scholar] [CrossRef]
- Stendel, M.; Christensen, J.H. Impact of global warming on permafrost conditions in a coupled GCM. Geophys. Res. Lett. 2002, 29, 1632. [Google Scholar] [CrossRef] [Green Version]
- Anisimov, O.A.; Lobanov, V.A.; Reneva, S.A.; Shiklomanov, N.I.; Zhang, T.J.; Nelson, F.E. Uncertainties in gridded air temperature fields and effects on predictive active layer modeling. J. Geophys. Res.-Earth Surf. 2007, 112, F02S14. [Google Scholar] [CrossRef]
- Jamalov, R.G.; Safronova, T.I. Influence of permafrost rocks on the formation of water resources in Eastern Siberia (on the example of individual rivers of Eastern Siberia). Water Resour. 2018, 45, 341–352. [Google Scholar] [CrossRef]
- Gibson, G.A.; Elliot, S.; Kinney, J.C.; Piliouras, A.; Jeffery, N. Assessing the Potential Impact of River Chemistry on Arctic Coastal Production. Front. Mar. Sci. 2022, 9, 738363. [Google Scholar] [CrossRef]
- Frey, K.E.; McClelland, J.W. Impacts of permafrost degradation on arctic river biogeochemistry. Hydrol. Process. 2009, 23, 169–182. [Google Scholar] [CrossRef]
- Semenov, A.D. Guidance on the Chemical Analysis of Surface Waters of the Land; Gidrometeoizdat: Leningrad, Russia, 1977; 540p. (In Russian) [Google Scholar]
- Gabyshev, V.A.; Gabysheva, O.I. Phytoplankton of the Largest Rivers of Yakutia and Adjacent Territories of Eastern Siberia; ANS SibAK Publishing House: Novosibirsk, Russia, 2018; 414p. (In Russian) [Google Scholar]
- Novakovsky, A.B. Abilities and base principles of program module “GRAPHS”. Sci. Rep. Komi Sci. Cent. Ural. Div. Russ. Acad. Sci. 2004, 27, 1–28. [Google Scholar]
- Beer, C.; Fedorov, A.N.; Torgovkin, Y. Permafrost temperature and active-layer thickness of Yakutia with 0.5-degree spatial resolution for model evaluation. Earth Syst. Sci. Data 2013, 5, 305–310. [Google Scholar] [CrossRef] [Green Version]
- Permafrost. Scale 1:15000000. Seasonal freezing and thawing of soils. Scale 1:30000000. In National Atlas of Russia; Nature Ecology; Borodko, A.V., Ed.; Roskartografiya: Moscow, Russia, 2001; Volume 2, pp. 240–242. (In Russian) [Google Scholar]
- Kim, J.-O.; Muller, C.W.; Klekka, W.R. Factor, Discriminant and Cluster Analysis; Finance and Statistics: Moscow, Russia, 1989; 215p. (In Russian) [Google Scholar]
- Afifi, A.A.; Azen, S.P. Statistical Analysis a Computer Oriented Approach; Academic Press: New York, NY, USA, 1979; pp. 314–392. [Google Scholar]
- Apton, G. Analysis of Contingency Tables; Finance and Statistics: Moscow, Russia, 1982; 143p. (In Russian) [Google Scholar]
- Glantz, S. Medico-Biological Statistics; Practice: Moscow, Russia, 1998; 459p. (In Russian) [Google Scholar]
- Muller, P.; Neumann, P.; Storm, R. Tables on Mathematical Statistics; Finance and Statistics: Moscow, Russia, 1982; 278p. (In Russian) [Google Scholar]
- Grzhibovsky, A.M. Analysis of nominal data (independent observations). Hum. Ecol. 2008, 6, 58–68. (In Russian) [Google Scholar]
- Dittmar, T.; Kattner, G. The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: A review. Mar. Chem. 2003, 83, 103–120. [Google Scholar] [CrossRef]
- McDowell, W.; Likens, G.H. Origin, composition, and flux of dissolved organic carbon in the Hubbard Brook Valley. Ecol. Monogr. 1988, 58, 177–195. [Google Scholar] [CrossRef]
- Sheng, Y.; Smith, L.C.; MacDonald, G.M.; Kremenetski, K.V.; Frey, K.E.; Velichko, A.A.; Lee, M.; Beilman, D.W.; Dubinin, P. A high resolution GIS-based inventory of the west Siberian peat carbon pool. Glob. Biogeochem. Cycles 2004, 18, GB3004. [Google Scholar] [CrossRef]
Variable Groups | Variable Name |
---|---|
Organic matter | Color, Pt-Co units |
COD, mg L−1 | |
BOD5, mg L−1 | |
Characteristics of the seasonally thawed permafrost layer | Minimum Active Layer Thickness, m |
Maximum Active Layer Thickness, m | |
Mean Active Layer Thickness, m | |
Geographical coordinates of sampling points (observations) | East, degrees |
North, degrees |
Variable | Clusters | F | p | |
---|---|---|---|---|
1 | 2 | |||
Color, Pt-Co units | 58.27 | 16.98 | 577.6 | 0.0000 |
COD, mg L−1 | 41.82 | 21.99 | 184.4 | 0.0000 |
BOD5, mg L−1 | 1.11 | 0.86 | 9.2 | 0.0027 |
Variable | Water Color | COD | BOD5 | Abundance | Biomass |
---|---|---|---|---|---|
Water Color | 0 | 0.48 | 0.15 | 0 * | 0.08 |
COD | 0 | 0 | 0.02 * | 0.08 | 0.19 |
BOD5 | 0.009 | 0.783 | 0 | 0.05 * | 0.04 * |
Abundance | 0.967 | 0.177 | 0.423 | 0 | 0.36 |
Biomass | 0.190 | 0.001 | 0.442 | 0 | 0 |
Variable | Clusters | F | p | ||
---|---|---|---|---|---|
1 | 2 | 3 | |||
Minimum Active Layer Thickness, m | 0.96 | 0.19 | 0.46 | 916.1 | 0.0000 |
Maximum Active Layer Thickness, m | 3.24 | 1.58 | 3.51 | 800.5 | 0.0000 |
Mean Active Layer Thickness, m | 2.00 | 0.95 | 1.78 | 302.0 | 0.0000 |
Summary Results | Cl_2O | All Gradations | |||
---|---|---|---|---|---|
Cluster 1 | Cluster 2 | ||||
Observed frequency | Cl_3P | Cluster 1 | 0 | 33 | 33 |
Expected frequency | 10.78 | 22.22 | - | ||
Observed minus expected frequencies | −10.78 | 10.78 | 0 | ||
Chi-square by cell | 10.782 | 5.233 | - | ||
Observed frequency | Cluster 2 | 48 | 77 | 125 | |
Expected frequency | 40.84 | 84.16 | - | ||
Observed minus expected frequencies | 7.16 | −7.16 | 0 | ||
Chi-square by cell | 1.255 | 0.609 | - | ||
Observed frequency | Cluster 3 | 51 | 94 | 145 | |
Expected frequency | 47.38 | 97.62 | - | ||
Observed minus expected frequencies | 3.62 | −3.62 | 0 | ||
Chi-square by cell | 0.277 | 0.135 | - | ||
Observed frequency | All gradations | 99 | 204 | 303 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabysheva, O.I.; Gabyshev, V.A.; Barinova, S.; Yakshina, I.A.; Pavlov, I.S. Influence of the Thickness of the Seasonally Thawed Layer of Permafrost in the Eastern Siberia Catchments on the Content of Organic Matter in River Waters. Hydrobiology 2022, 1, 243-251. https://doi.org/10.3390/hydrobiology1020018
Gabysheva OI, Gabyshev VA, Barinova S, Yakshina IA, Pavlov IS. Influence of the Thickness of the Seasonally Thawed Layer of Permafrost in the Eastern Siberia Catchments on the Content of Organic Matter in River Waters. Hydrobiology. 2022; 1(2):243-251. https://doi.org/10.3390/hydrobiology1020018
Chicago/Turabian StyleGabysheva, Olga I., Viktor A. Gabyshev, Sophia Barinova, Irina A. Yakshina, and Innokentiy S. Pavlov. 2022. "Influence of the Thickness of the Seasonally Thawed Layer of Permafrost in the Eastern Siberia Catchments on the Content of Organic Matter in River Waters" Hydrobiology 1, no. 2: 243-251. https://doi.org/10.3390/hydrobiology1020018
APA StyleGabysheva, O. I., Gabyshev, V. A., Barinova, S., Yakshina, I. A., & Pavlov, I. S. (2022). Influence of the Thickness of the Seasonally Thawed Layer of Permafrost in the Eastern Siberia Catchments on the Content of Organic Matter in River Waters. Hydrobiology, 1(2), 243-251. https://doi.org/10.3390/hydrobiology1020018