Optimization of Plate Vibration Based on Innovative Elliptical Thickness Variation
Abstract
1. Introduction
2. Analysis
2.1. Geometry of the Plate
2.2. Governing Differential Equation of Motion of Isotropic Rectangle Plate
2.3. Assumptions Made in the Problem
3. Solution for Frequency
4. Numerical Results and Discussion
5. Comparisons of Frequency Modes
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, H.; Zhong, H. Transverse free vibration analysis of thin sectorial plates by the weak form quadrature element method. J. Vib. Control 2024, 30, 5560–5577. [Google Scholar] [CrossRef]
- Zhou, H.; Han, K.; Elmaimouni, L.; Wang, X.; Yu, J. Double Legendre polynomial quadrature-free method for axisymmetric vibration of functionally graded piezoelectric circular plates. J. Vib. Control 2024, 30, 598–615. [Google Scholar] [CrossRef]
- Lal, R.; Saini, R. Vibration analysis of functionally graded circular plates of variable thickness under thermal environment by generalized differential quadrature method. J. Vib. Control 2020, 26, 73–87. [Google Scholar] [CrossRef]
- Su, X.; Bai, E. Analytical free vibration solutions of fully free orthotropic rectangular thin plates on two-parameter elastic foundations by the symplectic superposition method. J. Vib. Control 2022, 28, 3–16. [Google Scholar] [CrossRef]
- Monajati, L.; Farid, N.; Farid, M.; Parandvar, H. Free vibration analyses of functionally graded plates based on improved refined shear and normal deformation theory considering thickness stretching effect using Airy stress function. J. Vib. Control 2023, 29, 2332–2347. [Google Scholar] [CrossRef]
- Barati, M.R.; Zenkour, A.M. Electro-thermoelastic vibration of plates made of porous functionally graded piezoelectric materials under various boundary conditions. J. Vib. Control 2018, 24, 1910–1926. [Google Scholar] [CrossRef]
- Bemani Khouzestani, L.; Khorshidvand, A.R. Axisymmetric free vibration and stress analyses of saturated porous annular plates using generalized differential quadrature method. J. Vib. Control 2019, 25, 2799–2818. [Google Scholar] [CrossRef]
- Moruzzi, M.C.; Cinefra, M.; Bagassi, S. Free vibration of variable-thickness plates via adaptive finite elements. J. Sound Vib. 2024, 577, 118336. [Google Scholar]
- Deutsch, A.; Eisenberger, M. Benchmark analytic in-plane vibration frequencies of orthotropic rectangular plates. J. Sound Vib. 2022, 541, 117248. [Google Scholar] [CrossRef]
- Papkov, S.O.; Banerjee, J.R. Free vibration of thick rectangular orthotropic plates with clamped edges- using asymptotic analysis of infinite systems. J. Sound Vib. 2021, 508, 116209. [Google Scholar] [CrossRef]
- Khanna, A.; Singhal, A. Effect of plate’s parameters on vibration of isotropic tapered rectangular plate with different boundary conditions. J. Low Freq. Noise, Vib. Act. Control 2016, 35, 139–151. [Google Scholar] [CrossRef]
- Khanna, A.; Singhal, A. Influence of temperature variation on vibration of rectangular plate of visco-elastic material. World Sci. News 2020, 139, 61–75. [Google Scholar]
- Kumar, A.S.; Kumar, S.; Choudhary, P.K.; Gupta, A.; Narayan, A. Free vibration characteristics of elastic foundation-supported porous functionally graded nanoplates using Rayleigh-Ritz approach. Int. J. Struct. Integr. 2024, 15, 298–321. [Google Scholar] [CrossRef]
- Bagheri, A.; Mortezaei, A.; Sayarinejad, M.A. Analysis of free in-plane vibrations of a rectangular plate with various boundary conditions canonical form using the modified Riley-Ritz method. Results Eng. 2024, 21, 101768. [Google Scholar] [CrossRef]
- Singh, P.P.; Azam, M.S. Free vibration and buckling analysis of elastically supported transversely inhomogeneous functionally graded nanoplate in thermal environment using Rayleigh–Ritz method. J. Vib. Control 2021, 27, 2835–2847. [Google Scholar] [CrossRef]
- Kaur, N.; Khanna, A.; Ozer, O. Thermoelastic Vibrational Analysis of Tapered Triangular Plates with Different Boundary Conditions. Mech. Solids 2023, 58, 1370–1377. [Google Scholar] [CrossRef]
- Khanna, A.; Kaur, N. Theoretical Study on Vibration of Non-homogeneous Tapered Visco-Elastic Rectangular Plate. Proc. Natl. Acad. Sci. USA 2016, 86, 259–266. [Google Scholar] [CrossRef]
- Sharma, A.K.; Bensal, S. Free vibration analysis of square structure plate with different boundary conditions. Rom. J. Acoust. Vib. 2023, 20, 13–26. [Google Scholar]
- Khanna, A.; Kaur, N. Vibration of Non-Homogeneous Plate Subject to Thermal Gradient. J. Low Freq. Noise, Vib. Act. Control 2014, 33, 13–26. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Mani, N.; Sharma, A. Natural vibration of tapered rectangular plate with exponential variation in non-homogeneity. J. Vibroeng. 2019, 21, 187–197. [Google Scholar]
- Sharma, A. Vibration Frequencies Of A Rectangular Plate With Linear Variation In Thickness And Circular Variation In Poisson’s Ratio. J. Theor. Appl. Mech. 2019, 57, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Khanna, A.; Kaur, N. Effect of non-homogeneity on free vibration of visco-elastic rectangular plate with varying structural parameters. J. Vibroeng. 2013, 15, 2146–2155. [Google Scholar]
- Khanna, A.; Kaur, N. Effect of structural parameters on the vibrational response of a visco-elastic rectangular plate with clamped ends. Proc. Est. Acad. Sci. USA 2015, 64, 127–138. [Google Scholar] [CrossRef]
0.0 | 27.04405 | 106.8763 | 24.43494 | 96.64258 | 21.48535 | 85.19486 |
0.2 | 27.06581 | 106.8830 | 24.45867 | 96.66707 | 21.51144 | 85.24220 |
0.4 | 27.08747 | 106.8896 | 24.48228 | 96.69146 | 21.53739 | 85.28930 |
0.6 | 27.10903 | 106.8963 | 24.50577 | 96.71575 | 21.56320 | 85.33614 |
0.8 | 27.13049 | 106.9029 | 24.52916 | 96.73995 | 21.58887 | 85.38275 |
1.0 | 27.15186 | 106.9096 | 24.55243 | 96.76403 | 21.61440 | 85.42912 |
0.0 | 27.04405 | 106.8763 | 27.08747 | 106.8896 | 27.13049 | 106.9029 |
0.2 | 25.77446 | 101.8875 | 25.81975 | 101.9177 | 25.86461 | 101.9476 |
0.4 | 24.43494 | 96.64258 | 24.48228 | 96.69146 | 24.52916 | 96.73995 |
0.6 | 23.01169 | 91.09765 | 23.06127 | 91.16770 | 23.11034 | 91.23709 |
0.8 | 21.48535 | 85.19486 | 21.53739 | 85.28930 | 21.58887 | 85.38275 |
0.25 | 365.3686 | 1488.038 | 348.3270 | 1425.384 | 325.1387 | 1359.022 |
0.50 | 98.52109 | 394.0161 | 91.38154 | 365.9131 | 83.01672 | 335.7481 |
0.75 | 51.07602 | 200.9572 | 46.81366 | 184.0707 | 41.94837 | 165.6482 |
1.0 | 35.99981 | 140.8842 | 32.76909 | 128.0797 | 29.11053 | 113.9718 |
1.25 | 29.91236 | 117.4524 | 27.12788 | 106.4049 | 23.98144 | 94.16941 |
1.50 | 27.04405 | 106.8763 | 24.48228 | 96.69146 | 21.58887 | 85.38275 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lather, N.; Mani, N.; Shukla, R.; Sharma, A. Optimization of Plate Vibration Based on Innovative Elliptical Thickness Variation. AppliedMath 2025, 5, 63. https://doi.org/10.3390/appliedmath5020063
Lather N, Mani N, Shukla R, Sharma A. Optimization of Plate Vibration Based on Innovative Elliptical Thickness Variation. AppliedMath. 2025; 5(2):63. https://doi.org/10.3390/appliedmath5020063
Chicago/Turabian StyleLather, Neeraj, Naveen Mani, Rahul Shukla, and Amit Sharma. 2025. "Optimization of Plate Vibration Based on Innovative Elliptical Thickness Variation" AppliedMath 5, no. 2: 63. https://doi.org/10.3390/appliedmath5020063
APA StyleLather, N., Mani, N., Shukla, R., & Sharma, A. (2025). Optimization of Plate Vibration Based on Innovative Elliptical Thickness Variation. AppliedMath, 5(2), 63. https://doi.org/10.3390/appliedmath5020063