Introducing a Parallel Genetic Algorithm for Global Optimization Problems
Abstract
:1. Introduction
2. Method Description
2.1. The Genetic Algorithm
2.2. Parallelization of Genetic Algorithm and Propagation Techniques
Algorithm 1 The steps of the genetic algorithm. |
|
Algorithm 2 The overall algorithm. |
|
- 1to1: Optimal solutions migrate from a random island to another random one, replacing the worst solutions (see Figure 2a).
- 1toN: Optimal solutions migrate from a random island to all others, replacing the worst solutions (see Figure 2b).
- Nto1: All islands send their optimal solutions to a random island, replacing the worst solutions (see Figure 2c).
- NtoN: All islands send their optimal solutions to all other islands, replacing the worst solutions (see Figure 2d).
2.3. Termination Rule
- In each generation k, the chromosome with the best functional value is retrieved from the population. If this value does not change for a number of generations, then the algorithm should probably terminate.
- Consider as the associated variance of the quantity at generation k. The algorithm terminates when
3. Experiments
3.1. Test Functions
- The Bent cigar function is defined as follows:
- The Bf1 function (Bohachevsky 1) is defined as follows:
- The Bf2 function (Bohachevsky 2) is defined as follows:
- The Branin function is given by with and with .
- The CM function. The cosine mixture function is given by the following:
- Discus function. The function is defined as follows:
- The Easom function. The function is given by the following equation:
- The exponential function. The function is given by the following:The global minimum is situated at , with a value of . In our experiments, we applied this function for , and referred to the respective instances as EXP4, EXP16, EXP64, and EXP100.
- Griewank2 function. The function is given by the following:
- Gkls function. is a function with w local minima, described in [68] with , and n is a positive integer between 2 and 100. The value of the global minimum is −1, and in our experiments, we used and .
- Hansen function. , . The global minimum of the function is −176.541793.
- Hartman 3 function. The function is given by the following:The value of the global minimum is −3.862782.
- Hartman 6 function.
- The high-conditioned elliptic function is defined as follows:Featuring a global minimum at , the experiments were conducted using the value .
- Potential function. As a test case, the molecular conformation corresponding to the global minimum of the energy of N atoms interacting via the Lennard–Jones potential [69] is utilized. The function to be minimized is defined as follows:In the current experiments, two different cases were studied: .
- Rastrigin function. This function is given by the following:
- Shekel 7 function.
- Shekel 5 function.
- Shekel 10 function.
- Sinusoidal function. The function is given by the following:The global minimum is situated at with a value of . In the performed experiments, we examined scenarios with and . The parameter (z) is employed to offset the position of the global minimum [70].
- Test2N function. This function is given by the following equation:The function has in the specified range; in our experiments, we used .
- Test30N function. This function is given by the following:
3.2. Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Törn, A.; Žilinskas, A. Global Optimization; Springer: Berlin/Heidelberg, Germany, 1989; Volume 350, pp. 1–255. [Google Scholar]
- Fouskakis, D.; Draper, D. Stochastic optimization: A review. Int. Stat. Rev. 2002, 70, 315–349. [Google Scholar] [CrossRef]
- Cherruault, Y. Global optimization in biology and medicine. Math. Comput. Model. 1994, 20, 119–132. [Google Scholar] [CrossRef]
- Lee, E.K. Large-Scale Optimization-Based Classification Models in Medicine and Biology. Ann. Biomed. Eng. 2007, 35, 1095–1109. [Google Scholar] [CrossRef]
- Liwo, A.; Lee, J.; Ripoll, D.R.; Pillardy, J.; Scheraga, H.A. Protein structure prediction by global optimization of a potential energy function. Biophysics 1999, 96, 5482–5485. [Google Scholar] [CrossRef] [PubMed]
- Shin, W.H.; Kim, J.K.; Kim, D.S.; Seok, C. GalaxyDock2: Protein-ligand docking using beta-complex and global optimization. J. Comput. Chem. 2013, 34, 2647–2656. [Google Scholar] [CrossRef] [PubMed]
- Duan, Q.; Sorooshian, S.; Gupta, V. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res. 1992, 28, 1015–1031. [Google Scholar] [CrossRef]
- Yang, L.; Robin, D.; Sannibale, F.; Steier, C.; Wan, W. Global optimization of an accelerator lattice using multiobjective genetic algorithms, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers. Detect. Assoc. Equip. 2009, 609, 50–57. [Google Scholar] [CrossRef]
- Iuliano, E. Global optimization of benchmark aerodynamic cases using physics-based surrogate models. Aerosp. Sci. Technol. 2017, 67, 273–286. [Google Scholar] [CrossRef]
- Maranas, C.D.; Androulakis, I.P.; Floudas, C.A.; Berger, A.J.; Mulvey, J.M. Solving long-term financial planning problems via global optimization. J. Econ. Dyn. Control 1997, 21, 1405–1425. [Google Scholar] [CrossRef]
- Gaing, Z. Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE Trans. Power Syst. 2003, 18, 1187–1195. [Google Scholar] [CrossRef]
- Liberti, L.; Kucherenko, S. Comparison of deterministic and stochastic approaches to global optimization. Int. Trans. Oper. Res. 2005, 12, 263–285. [Google Scholar] [CrossRef]
- Wolfe, M.A. Interval methods for global optimization. Appl. Math. Comput. 1996, 75, 179–206. [Google Scholar] [CrossRef]
- Csendes, T.; Ratz, D. Subdivision Direction Selection in Interval Methods for Global Optimization. SIAM J. Numer. Anal. 1997, 34, 922–938. [Google Scholar] [CrossRef]
- Maranas, C.D.; Floudas, C.A. A deterministic global optimization approach for molecular structure determination. J. Chem. Phys. 1994, 100, 1247. [Google Scholar] [CrossRef]
- Barhen, J.; Protopopescu, V.; Reister, D. TRUST: A Deterministic Algorithm for Global Optimization. Science 1997, 276, 1094–1097. [Google Scholar] [CrossRef]
- Evtushenko, Y.; Posypkin, M.A. Deterministic approach to global box-constrained optimization. Optim. Lett. 2013, 7, 819–829. [Google Scholar] [CrossRef]
- Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [Google Scholar] [CrossRef]
- Socha, K.; Dorigo, M. Ant colony optimization for continuous domains. Eur. J. Oper. Res. 2008, 185, 1155–1173. [Google Scholar] [CrossRef]
- Price, W.L. Global optimization by controlled random search. J. Optim. Theory Appl. 1983, 40, 333–348. [Google Scholar] [CrossRef]
- Křivý, I.; Tvrdík, J. The controlled random search algorithm in optimizing regression models. Comput. Stat. Data Anal. 1995, 20, 229–234. [Google Scholar] [CrossRef]
- Ali, M.M.; Törn, A.; Viitanen, S. A Numerical Comparison of Some Modified Controlled Random Search Algorithms. J. Glob. Optim. 1997, 11, 377–385. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar] [CrossRef]
- Trelea, I.C. The particle swarm optimization algorithm: Convergence analysis and parameter selection. Inf. Process. Lett. 2003, 85, 317–325. [Google Scholar] [CrossRef]
- Poli, R.; Kennedy, J.; Blackwell, T. Particle swarm optimization An Overview. Swarm Intell. 2007, 1, 33–57. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Ingber, L. Very fast simulated re-annealing. Math. Comput. Model. 1989, 12, 967–973. [Google Scholar] [CrossRef]
- Eglese, R.W. Simulated annealing: A tool for operational research. Eur. J. Oper. Res. 1990, 46, 271–281. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Liu, J.; Lampinen, J. A Fuzzy Adaptive Differential Evolution Algorithm. Soft Comput. 2005, 9, 448–462. [Google Scholar] [CrossRef]
- Goldberg, D. Genetic Algorithms in Search, Optimization and Machine Learning; Addison-Wesley Publishing Company: Reading, MA, USA, 1989. [Google Scholar]
- Michaelewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Grady, S.A.; Hussaini, M.Y.; Abdullah, M.M. Placement of wind turbines using genetic algorithms. Renew. Energy 2005, 30, 259–270. [Google Scholar] [CrossRef]
- Lepagnot, I.B.J.; Siarry, P. A survey on optimization metaheuristics. Inf. Sci. 2013, 237, 82–117. [Google Scholar]
- Dokeroglu, T.; Sevinc, E.; Kucukyilmaz, T.; Cosar, A. A survey on new generation metaheuristic algorithms. Comput. Ind. Eng. 2019, 137, 106040. [Google Scholar] [CrossRef]
- Hussain, K.; Salleh, M.N.M.; Cheng, S.; Shi, Y. Metaheuristic research: A comprehensive survey. Artif. Intell. Rev. 2019, 52, 2191–2233. [Google Scholar] [CrossRef]
- Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73. [Google Scholar] [CrossRef]
- Stender, J. Parallel Genetic Algorithms: Theory & Applications; IOS Press: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Santana, Y.H.; Alonso, R.M.; Nieto, G.G.; Martens, L.; Joseph, W.; Plets, D. Indoor genetic algorithm-based 5G network planning using a machine learning model for path loss estimation. Appl. Sci. 2022, 12, 3923. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, D.; Tao, B.; Jiang, G.; Sun, Y.; Kong, J.; Chen, B. Genetic algorithm-based trajectory optimization for digital twin robots. Front. Bioeng. Biotechnol. 2022, 9, 793782. [Google Scholar] [CrossRef] [PubMed]
- Nonoyama, K.; Liu, Z.; Fujiwara, T.; Alam, M.M.; Nishi, T. Energy-efficient robot configuration and motion planning using genetic algorithm and particle swarm optimization. Energies 2022, 15, 2074. [Google Scholar] [CrossRef]
- Liu, K.; Deng, B.; Shen, Q.; Yang, J.; Li, Y. Optimization based on genetic algorithms on energy conservation potential of a high speed SI engine fueled with butanol–Gasoline blends. Energy Rep. 2022, 8, 69–80. [Google Scholar] [CrossRef]
- Zhou, G.; Zhu, Z.; Luo, S. Location optimization of electric vehicle charging stations: Based on cost model and genetic algorithm. Energy 2022, 247, 123437. [Google Scholar] [CrossRef]
- Min, D.; Song, Z.; Chen, H.; Wang, T.; Zhang, T. Genetic algorithm optimized neural network based fuel cell hybrid electric vehicle energy management strategy under start-stop condition. Appl. Energy 2022, 306, 118036. [Google Scholar] [CrossRef]
- Doewes, R.I.; Nair, R.; Sharma, T. Diagnosis of COVID-19 through blood sample using ensemble genetic algorithms and machine learning classifier. World J. Eng. 2022, 19, 175–182. [Google Scholar] [CrossRef]
- Choudhury, S.; Rana, M.; Chakraborty, A.; Majumder, S.; Roy, S.; RoyChowdhury, A.; Datta, S. Design of patient specific basal dental implant using Finite Element method and Artificial Neural Network technique. J. Eng. Med. 2022, 236, 1375–1387. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Hu, X. Design of intelligent control system for agricultural greenhouses based on adaptive improved genetic algorithm for multi-energy supply system. Energy Rep. 2022, 8, 12126–12138. [Google Scholar] [CrossRef]
- Graham, R.L.; Woodall, T.S.; Squyres, J.M. Open MPI: A flexible high performance MPI. In Proceedings of the Parallel Processing and Applied Mathematics: 6th International Conference (PPAM 2005), Poznań, Poland, 11–14 September 2005; Revised Selected Papers 6. Springer: Berlin/Heidelberg, Germany, 2006; pp. 228–239. [Google Scholar]
- Ayguadé, E.; Copty, N.; Duran, A.; Hoeflinger, J.; Lin, Y.; Massaioli, F.; Zhang, G. The design of OpenMP tasks. IEEE Trans. Parallel Distrib. Syst. 2008, 20, 404–418. [Google Scholar] [CrossRef]
- Onbaşoğlu, E.; Özdamar, L. Parallel simulated annealing algorithms in global optimization. J. Glob. Optim. 2001, 19, 27–50. [Google Scholar] [CrossRef]
- Schutte, J.F.; Reinbolt, J.A.; Fregly, B.J.; Haftka, R.T.; George, A.D. Parallel global optimization with the particle swarm algorithm. Int. J. Numer. Methods Eng. 2004, 61, 2296–2315. [Google Scholar] [CrossRef] [PubMed]
- Regis, R.G.; Shoemaker, C.A. Parallel stochastic global optimization using radial basis functions. J. Comput. 2009, 21, 411–426. [Google Scholar] [CrossRef]
- Harada, T.; Alba, E. Parallel Genetic Algorithms: A Useful Survey. ACM Comput. Surv. 2020, 53, 86. [Google Scholar] [CrossRef]
- Anbarasu, L.A.; Narayanasamy, P.; Sundararajan, V. Multiple molecular sequence alignment by island parallel genetic algorithm. Curr. Sci. 2000, 78, 858–863. [Google Scholar]
- Tosun, U.; Dokeroglu, T.; Cosar, C. A robust island parallel genetic algorithm for the quadratic assignment problem. Int. Prod. Res. 2013, 51, 4117–4133. [Google Scholar] [CrossRef]
- Nandy, A.; Chakraborty, D.; Shah, M.S. Optimal sensors/actuators placement in smart structure using island model parallel genetic algorithm. Int. J. Comput. 2019, 16, 1840018. [Google Scholar] [CrossRef]
- Tsoulos, I.G.; Tzallas, A.; Tsalikakis, D. PDoublePop: An implementation of parallel genetic algorithm for function optimization. Comput. Phys. Commun. 2016, 209, 183–189. [Google Scholar] [CrossRef]
- Shonkwiler, R. Parallel genetic algorithms. In ICGA; Morgan Kaufmann Publishers Inc: San Francisco, CA, USA, 1993; pp. 199–205. [Google Scholar]
- Cantú-Paz, E. A survey of parallel genetic algorithms. Calc. Paralleles Reseaux Syst. Repartis 1998, 10, 141–171. [Google Scholar]
- Mühlenbein, H. Parallel genetic algorithms in combinatorial optimization. In Computer Science and Operations Research; Elsevier: Amsterdam, The Netherlands, 1992; pp. 441–453. [Google Scholar]
- Lawrence, D. Handbook of Genetic Algorithms; Thomson Publishing Group: London, UK, 1991. [Google Scholar]
- Yu, X.; Gen, M. Introduction to Evolutionary Algorithms; Springer: Berlin/Heidelberg, Germany, 2010; ISBN 978-1-84996-128-8. e-ISBN 978-1-84996-129-5. [Google Scholar] [CrossRef]
- Kaelo, P.; Ali, M.M. Integrated crossover rules in real coded genetic algorithms. Eur. J. Oper. Res. 2007, 176, 60–76. [Google Scholar] [CrossRef]
- Tsoulos, I.G. Modifications of real code genetic algorithm for global optimization. Appl. Math. Comput. 2008, 203, 598–607. [Google Scholar] [CrossRef]
- Powell, M.J.D. A Tolerant Algorithm for Linearly Constrained Optimization Calculations. Math. Program. 1989, 45, 547–566. [Google Scholar] [CrossRef]
- Floudas, C.A.; Pardalos, P.M.; Adjiman, C.; Esposoto, W.; Gümüs, Z.; Harding, S.; Klepeis, J.; Meyer, C.; Schweiger, C. Handbook of Test Problems in Local and Global Optimization; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999. [Google Scholar]
- Ali, M.M.; Khompatraporn, C.; Zabinsky, Z.B. A Numerical Evaluation of Several Stochastic Algorithms on Selected Continuous Global Optimization Test Problems. J. Glob. Optim. 2005, 31, 635–672. [Google Scholar] [CrossRef]
- Gaviano, M.; Ksasov, D.E.; Lera, D.; Sergeyev, Y.D. Software for generation of classes of test functions with known local and global minima for global optimization. ACM Trans. Math. Softw. 2003, 29, 469–480. [Google Scholar] [CrossRef]
- Lennard-Jones, J.E. On the Determination of Molecular Fields. Proc. R. Soc. Lond. A 1924, 106, 463–477. [Google Scholar]
- Zabinsky, Z.B.; Graesser, D.L.; Tuttle, M.E.; Kim, G.I. Global optimization of composite laminates using improving hit and run. In Recent Advances in Global Optimization; Princeton University Press: Princeton, NJ, USA, 1992; pp. 343–368. [Google Scholar]
- Charilogis, V.; Tsoulos, I. Toward an Ideal Particle Swarm Optimizer for Multidimensional Functions. Information 2022, 13, 217. [Google Scholar] [CrossRef]
- Charilogis, V.; Tsoulos, I.; Tzallas, A.; Karvounis, E. Modifications for the Differential Evolution Algorithm. Symmetry 2022, 14, 447. [Google Scholar] [CrossRef]
- Wall, M. GAlib: A C++ Library of Genetic Algorithm Components; Mechanical Engineering Department, Massachusetts Institute of Technology: Cambridge, MA, USA, 1996; p. 54. [Google Scholar]
- Charilogis, V.; Tsoulos, I.G. A Parallel Implementation of the Differential Evolution Method. Analytics 2023, 2, 17–30. [Google Scholar] [CrossRef]
- Charilogis, V.; Tsoulos, I.G.; Tzallas, A. An Improved Parallel Particle Swarm Optimization. Comput. Sci. 2023, 4, 766. [Google Scholar] [CrossRef]
Parameter | Value | Explanation |
---|---|---|
500 × 1, 250 × 2, 100 × 5, 50 × 10 | Chromosomes | |
200 | Max generations | |
1, 2, 5, 10 | Processing units or islands | |
no propagation in Table 2, 1: in every generation in Table 3 | Rate of propagation | |
0 in Table 2, 10: in Table 3 | Chromosomes for migration | |
no in Table 2, 1to1 Figure 2a, 1toN Figure 2b, Nto1 Figure 2c, NtoN Figure 2d | Propagation technique | |
10% | Selection rate | |
5% | Mutation rate | |
0.1% in Table 2, 0.5% in Table 3 | Local search rate |
Problems | Calls | Time | Calls | Time | Calls | Time | Calls | Time |
---|---|---|---|---|---|---|---|---|
BF1 | 10,578 | 0.557 | 10,555 | 0.193 | 10,533 | 0.126 | 10,511 | 0.121 |
BF2 | 10,568 | 0.554 | 10,545 | 0.192 | 10,523 | 0.127 | 10,533 | 0.119 |
BRANIN | 46,793 | 2.308 | 31,231 | 0.562 | 11,125 | 0.134 | 10,533 | 0.169 |
CAMEL | 26,537 | 1.338 | 15,875 | 0.29 | 15,833 | 0.188 | 10,861 | 0.123 |
CIGAR10 | 10,502 | 1.089 | 10,577 | 0.383 | 10,583 | 0.222 | 10,541 | 0.206 |
CM4 | 10,614 | 1.054 | 10,583 | 0.249 | 10,581 | 0.151 | 10,556 | 0.139 |
DISCUS10 | 10,548 | 1.09 | 10,532 | 0.382 | 10,500 | 0.222 | 10,502 | 0.205 |
EASOM | 100,762 | 4.504 | 100,610 | 1.66 | 94,541 | 1.089 | 22,845 | 0.248 |
ELP10 | 10,601 | 1.15 | 10,590 | 0.436 | 10,574 | 0.26 | 10,557 | 0.242 |
EXP4 | 16,621 | 1.092 | 10,587 | 0.249 | 10,560 | 0.15 | 10,544 | 0.143 |
EXP16 | 10,680 | 1.336 | 10,654 | 0.53 | 10,643 | 0.287 | 10,626 | 0.258 |
EXP64 | 10,857 | 2.333 | 10,829 | 1.235 | 10,814 | 0.825 | 10,830 | 0.728 |
EXP100 | 10,855 | 3.517 | 10,901 | 1.763 | 10,868 | 1.25 | 10,887 | 1.052 |
GKLS250 | 50,804 | 2.825 | 25,832 | 0.607 | 11,711 | 0.194 | 10,870 (93) | 0.198 |
GKLS350 | 40,707 | 2.327 | 23,720 | 0.522 | 17,646 | 0.26 | 14,130 | 0.202 |
GRIEWANK2 | 10555 | 0.565 | 10532 | 0.197 | 10,517 | 0.126 | 10,492 | 0.118 |
GRIEWANK10 | 10,679 | 1.079 | 10,629 | 0.407 | 10,613 | 0.239 | 10,609 | 0.22 |
POTENTIAL3 | 39,607 | 2.057 | 34,327 | 0.881 | 18,313 | 0.34 | 15,471 | 0.279 |
PONTENTIAL5 | 33,542 | 1.653 | 33737 | 1.074 | 12,040 | 0.34 | 11,082 | 0.291 |
PONTENTIAL6 | 28,901 (3) | 1.56 | 26,419 (16) | 1.018 | 14,265 (3) | 0.478 | 11,109 (10) | 0.356 |
PONTENTIAL10 | 42,644 (13) | 3.316 | 37,897 (23) | 2.538 | 14,080 (10) | 0.937 | 11,319 (6) | 0.66 |
HANSEN | 46,894 (90) | 2.494 | 28,191 (80) | 0.575 | 11,085 (56) | 0.153 | 11,065 | 0.158 |
HARTMAN3 | 22,235 | 1.525 | 19,030 | 0.379 | 16,463 | 0.212 | 12,048 | 0.146 |
HARTMAN6 | 18,352 | 1.505 | 15,902 | 0.429 | 16,726 | 0.279 | 12,243 | 0.196 |
RASTRIGIN | 16,567 | 0.855 | 10,543 | 0.193 | 10,521 | 0.125 | 10,506 | 0.116 |
ROSENBROCK8 | 10,863 | 0.916 | 10,700 | 0.333 | 10,698 | 0.199 | 10,772 | 0.196 |
POSENBROCK16 | 10,918 | 1.371 | 10946 | 0.516 | 10,867 | 0.304 | 10,886 | 0.271 |
SHEKEL5 | 32,319 (50) | 2.069 | 17,913 (50) | 0.412 | 11,185 (36) | 0.159 | 11,010 (40) | 0.15 |
SHEKEL7 | 51,183 (73) | 3.277 | 14,981 (53) | 0.342 | 11,457 (60) | 0.163 | 11,035 (50) | 0.154 |
SHEKEL10 | 47,337 (70) | 2.977 | 46,927 (76) | 1.113 | 16,310 (56) | 0.23 | 11,329 (70) | 0.152 |
SINU4 | 66,625 (83) | 4.344 | 31,511 (86) | 0.77 | 13,979 (73) | 0.211 | 11,004 (43) | 0.161 |
SINU8 | 29,705 | 2.57 | 27,613 | 0.987 | 24,592 | 0.549 | 11,422 | 0.236 |
TEST2N4 | 25,553 | 1.558 | 17,701 | 0.397 | 24,763 | 0.359 | 13,217 | 0.178 |
TEST2N5 | 20,297 | 1.327 | 18,440 | 0.457 | 16,759 | 0.265 | 11,483 | 0.168 |
TEST2N6 | 20,450 | 1.311 | 20,837 | 0.566 | 18,123 | 0.315 | 11,988 | 0.194 |
TEST2N7 | 26,113 | 1.924 | 23,940 | 0.723 | 20,825 | 0.384 | 11,339 | 0.196 |
TEST2N8 | 18,846 | 1.454 | 18,549 | 0.585 | 16,700 | 0.329 | 11,658 | 0.218 |
TEST2N9 | 18,154 | 1.582 | 18,803 | 0.649 | 17,100 | 0.368 | 13,299 | 0.262 |
TEST30N3 | 49,235 | 2.46 | 24,129 | 0.458 | 14,743 | 0.188 | 12,345 | 0.152 |
TEST30N4 | 29,667 | 1.553 | 17,501 | 0.358 | 13,367 | 0.186 | 11,778 | 0.151 |
SUM | 1,105,268 | 74.376 | 851,319 | 25.61 | 633,126 | 12.923 | 465,835 | 9.532 |
MINIMUM | 10,502 | 0.554 | 10,532 | 0.192 | 10,500 | 0.125 | 10492 | 0.116 |
MAXIMUM | 100,762 | 4.504 | 100,610 | 2.538 | 94,541 | 1.25 | 22,845 | 1.052 |
AVERAGE | 27,631.7 | 1.859 | 21,282.975 | 0.640 | 15,828.15 | 0.323 | 11,645.875 | 0.238 |
STDEV | 19,305.784 | 0.972 | 15,829.020 | 0.482 | 13,335.509 | 0.260 | 2109.230 | 0.180 |
Problems | No Propagation Calls | No Propagation Time | 1to1 Calls | 1to1 Time | 1toN Calls | 1toN Time | Nto1 Calls | Nto1 Time | NtoN Calls | NtoN Time |
---|---|---|---|---|---|---|---|---|---|---|
BF1 | 10,809 | 0.123 | 10,741 | 0.127 | 10,770 | 0.126 | 10,746 | 0.127 | 10,808 | 0.136 |
BF2 | 10,725 | 0.124 | 10,773 | 0.126 | 10,764 | 0.13 | 10,783 | 0.126 | 10,731 | 0.136 |
BRANIN | 48,364 | 0.56 | 31,470 | 0.397 | 18,776 | 0.251 | 35,367 | 0.448 | 19,224 | 0.284 |
CAMEL | 29,087 | 0.337 | 18,597 | 0.23 | 14,429 | 0.185 | 24,977 | 0.313 | 19,341 | 0.286 |
CIGAR10 | 10,854 | 0.233 | 10,880 | 0.216 | 10,915 | 0.222 | 10,890 | 0.22 | 10,869 | 0.235 |
CM4 | 10,911 | 0.147 | 10,923 | 0.15 | 10,941 | 0.15 | 10,918 | 0.15 | 10,915 | 0.163 |
DISCUS10 | 10,651 | 0.222 | 10,632 | 0.213 | 10,651 | 0.217 | 10,641 | 0.22 | 10,606 | 0.231 |
EASOM | 99,569 | 1.094 | 100,163 | 1.106 | 100,160 | 1.121 | 100,155 | 1.139 | 98,336 | 1.156 |
ELP10 | 10,832 | 0.276 | 10,902 | 0.261 | 10,829 | 0.266 | 10,811 | 0.26 | 10,952 | 0.278 |
EXP4 | 10,803 | 0.151 | 12,037 | 0.167 | 12,695 | 0.183 | 11,416 | 0.164 | 10,819 | 0.158 |
EXP16 | 11,228 | 0.272 | 11,259 | 0.276 | 11,262 | 0.285 | 11253 | 0.28 | 11,260 | 0.294 |
EXP64 | 12,127 | 0.837 | 12,204 | 0.848 | 12,184 | 0.85 | 12,151 | 0.849 | 12,199 | 0.877 |
EXP100 | 12,396 | 1.397 | 12,376 | 1.4 | 12,372 | 1.36 | 12,460 | 1.387 | 12,414 | 1.42 |
GKLS250 | 48,672 | 0.813 | 55,586 | 0.949 | 31,493 | 0.564 | 58,638 | 1.007 | 27,840 | 0.532 |
GKLS350 | 55,231 | 0.815 | 42,100 | 0.636 | 28,609 | 0.459 | 46,923 | 0.72 | 25,341 | 0.428 |
GRIEWANK2 | 10,682 | 0.127 | 10,670 | 0.125 | 10,697 | 0.126 | 10,683 | 0.127 | 10,684 | 0.134 |
GRIEWANK10 | 11,144 | 0.239 | 11,102 | 0.232 | 11,123 | 0.239 | 11,171 | 0.229 | 11,153 | 0.254 |
POTENTIAL3 | 45,748 | 0.832 | 33,598 | 0.643 | 17,276 | 0.347 | 32,603 | 0.631 | 16,870 | 0.358 |
PONTENTIAL5 | 41,946 | 1.156 | 41,112 | 1.179 | 19,912 | 0.597 | 37,687 | 1.089 | 19,622 | 0.614 |
PONTENTIAL6 | 46,507 | 1.639 | 40,518 | 1.449 | 21,941 | 0.817 | 36,138 | 1.315 | 21,528 | 0.844 |
PONTENTIAL10 | 47,031 | 3.4 | 45,166 | 3.361 | 40,212 | 3.239 | 42,057 | 3.183 | 34,750 | 2.883 |
HANSEN | 63,130 | 0.85 | 65,414 | 0.918 | 39,649 | 0.595 | 67,369 | 0.947 | 31,149 | 0.507 |
HARTMAN3 | 19,170 | 0.248 | 20,339 | 0.274 | 16,280 | 0.226 | 20,001 | 0.265 | 14,587 | 0.219 |
HARTMAN6 | 23,725 | 0.423 | 16,856 | 0.285 | 14,141 | 0.233 | 16,955 | 0.288 | 13,964 | 0.239 |
RASTRIGIN | 11,264 | 0.147 | 11,256 | 0.132 | 10,652 | 0.126 | 10,668 | 0.128 | 11,290 | 0.145 |
ROSENBROCK8 | 11,727 | 0.204 | 11,892 | 0.2 | 11,681 | 0.203 | 11,708 | 0.199 | 11,882 | 0.217 |
POSENBROCK16 | 12372 | 0.42 | 12,187 | 0.304 | 12,394 | 0.313 | 12,438 | 0.324 | 12,455 | 0.324 |
SHEKEL5 | 44,893 | 0.645 | 54,184 | 0.751 | 34,937 | 0.491 | 53,277 | 0.755 | 40,859 | 0.621 |
SHEKEL7 | 45,722 | 0.638 | 55,109 | 0.778 | 33,440 | 0.472 | 49,029 | 0.702 | 46,066 | 0.696 |
SHEKEL10 | 58,361 | 0.854 | 49,400 | 0.721 | 32,691 | 0.471 | 52,798 | 0.783 | 38,305 | 0.608 |
SINU4 | 64,584 | 0.972 | 59,414 | 0.922 | 36,052 | 0.591 | 62,924 | 0.972 | 52,937 | 0.857 |
SINU8 | 32,572 | 0.793 | 25,552 | 0.63 | 19,461 | 0.462 | 28,744 | 0.716 | 18,173 | 0.445 |
TEST2N4 | 23,430 | 0.339 | 20,474 | 0.3 | 17,001 | 0.261 | 21,468 | 0.316 | 18,436 | 0.294 |
TEST2N5 | 22,662 | 0.358 | 20,614 | 0.33 | 16,171 | 0.262 | 19,697 | 0.316 | 16,421 | 0.282 |
TEST2N6 | 21,663 | 0.365 | 18,721 | 0.323 | 16,600 | 0.289 | 19,556 | 0.339 | 14,633 | 0.299 |
TEST2N7 | 24,401 | 0.456 | 18,990 | 0.354 | 15,792 | 0.3 | 20,967 | 0.405 | 13,995 | 0.28 |
TEST2N8 | 21,017 | 0.418 | 18,532 | 0.369 | 16,644 | 0.339 | 20,139 | 0.413 | 13,980 | 0.298 |
TEST2N9 | 22,684 | 0.488 | 18,538 | 0.407 | 16302 | 0.353 | 18,929 | 0.421 | 14,620 | 0.344 |
TEST30N3 | 24,524 | 0.318 | 22,799 | 0.296 | 20,436 | 0.297 | 23,186 | 0.311 | 19,968 | 0.316 |
TEST30N4 | 21,090 | 0.28 | 25,160 | 0.358 | 21,216 | 0.319 | 19,444 | 0.276 | 16,711 | 0.267 |
Total | 1,164,308 | 24.01 | 1,088,240 | 22.74 | 829,551 | 18.33 | 1,097,765 | 22.86 | 836,693 | 18.95 |
PROBLEMS | PSO | IPSO | RDE | TDE | GA | GAlib | PGA |
---|---|---|---|---|---|---|---|
BF1 | 50,398 | 11,478 | 7943 (86) | 5535 | 10,578 | 11,641 | 10,501 |
BF2 | 50,397 | 11,292 | 8472 (76) | 5539 | 10,568 | 11,321 | 10,510 |
BRANIN | 44,800 | 10,849 | 5513 | 5514 | 46,793 | 34,487 | 10,838 |
CAMEL | 48,242 | 11,051 | 5555 | 5514 | 26,537 | 17,321 | 11,087 |
CIGAR10 | 50,581 | 12,331 | 5586 | 100,573 | 10,502 | 11,567 (50) | 10,566 |
CM4 | 48,559 | 11,767 | 5550 | 5538 | 10,614 | 11,118 (70) | 10,548 |
DISCUS10 | 50,523 | 14,328 | 18,187 | 100,518 | 10,548 | 10,988 | 10,503 |
EASOM | 21,786 | 10,938 | 29,256 | 24,691 | 100,762 | 79,689 | 10,797 |
ELP10 | 49,837 | 4323 | 11,933 | 100,584 | 10,601 | 11,673 | 10,559 |
EXP4 | 48,523 | 11,041 | 46,752 | 19,467 | 16,621 | 16,045 | 10,503 |
EXP16 | 50,518 | 10,973 | 5537 | 69,494 | 10,680 | 10,500 | 10,595 |
GKLS250 | 43,925 | 10,869 | 41,016 | 11,430 | 50,804 | 31,298 | 10,893 (76) |
GKLS350 | 48,202 | 10,750 | 56,220 | 16,831 | 40,707 | 29,897 (96) | 11,555 (96) |
GRIEWANK2 | 44,021 | 13,514 | 5538 | 5533 | 10,555 | 14,419 (67) | 10,498 |
GRIEWANK10 | 50,557 (3) | 12,258 (86) | 5612 (13) | 85,742 (3) | 10,679 | 10,800 | 10,576 |
POTENTIAL3 | 49,213 | 12,124 | 5530 | 5523 | 39,607 | 33,452 | 11,039 |
PONTENTIAL5 | 50,548 | 16,027 | 5587 | 5569 | 33,542 | 31,285 | 11,134 |
PONTENTIAL6 | 50,558 (3) | 24,414 (66) | 5607 (6) | 5588 (3) | 28,901 (3) | 28,444 (10) | 11,143 (10) |
PONTENTIAL10 | 50,641 (6) | 31,434 | 5670 (3) | 5661 (6) | 42,644 (13) | 38,883 (20) | 11,290 (20) |
HANSEN | 47,296 | 13,131 | 5522 | 5521 | 46,894 (90) | 45,440 | 11,055 |
HARTMAN3 | 47,778 | 10,961 | 5525 | 5522 | 22,235 | 19,434 | 11,097 |
HARTMAN6 | 50,088 (33) | 11,085 (86) | 5536 (83) | 5536 | 18,352 | 18,444 (60) | 11,273 |
RASTRIGIN | 47,433 | 11,594 | 5542 | 5524 | 16,567 | 16,286 (96) | 10,506 |
ROSENBROCK8 | 50,549 | 13,487 | 72,088 | 100,503 | 10,863 | 11,419 | 10,645 |
POSENBROCK16 | 50,584 | 12,659 | 21,517 | 10,645 | 10,918 | 11,681 | 10,957 |
SHEKEL5 | 49,944 (33) | 13,058 (93) | 5532 (86) | 5524 (93) | 32,319 (50) | 29,287 | 10,883 (43) |
SHEKEL7 | 50,062 (53) | 12,134 (96) | 5533 (96) | 5523 | 51183 (73) | 47,245 (77) | 10,926 (53) |
SHEKEL10 | 50,124 (63) | 14,176 | 5535 (90) | 5523 | 47,337 (70) | 45,911 (77) | 11,207 (80) |
SINU4 | 49,239 | 11,349 | 5527 | 5510 | 66,625 (83) | 66,383 | 11,063 (76) |
SINU8 | 50,224 | 11,295 | 5537 (80) | 5520 | 29,705 | 29,234 | 11,378 |
TEST2N4 | 50,112 (93) | 13,173 | 5529 | 5519 | 25,553 | 19,913 | 11049 |
TEST2N9 | 50,517 (13) | 17,510 (60) | 5546 (6) | 5535 (56) | 18,154 | 15,376 | 11,145 |
TEST30N3 | 44,301 | 19,638 | 5515 | 5511 | 49,235 | 49,234 | 11,051 |
TEST30N4 | 49,177 | 20,839 | 5514 | 5511 | 29,667 | 33,428 | 11,301 |
TOTAL | 1,639,257 | 457,850 | 446,562 | 767,771 | 997,850 | 903,547 | 370,671 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charilogis, V.; Tsoulos, I.G. Introducing a Parallel Genetic Algorithm for Global Optimization Problems. AppliedMath 2024, 4, 709-730. https://doi.org/10.3390/appliedmath4020038
Charilogis V, Tsoulos IG. Introducing a Parallel Genetic Algorithm for Global Optimization Problems. AppliedMath. 2024; 4(2):709-730. https://doi.org/10.3390/appliedmath4020038
Chicago/Turabian StyleCharilogis, Vasileios, and Ioannis G. Tsoulos. 2024. "Introducing a Parallel Genetic Algorithm for Global Optimization Problems" AppliedMath 4, no. 2: 709-730. https://doi.org/10.3390/appliedmath4020038
APA StyleCharilogis, V., & Tsoulos, I. G. (2024). Introducing a Parallel Genetic Algorithm for Global Optimization Problems. AppliedMath, 4(2), 709-730. https://doi.org/10.3390/appliedmath4020038