Minimal Terracini Loci in a Plane and Their Generalizations
Abstract
:1. Introduction
- for all ;
- There is with a critical scheme Z with ;
- There is no positive integer y such that there is with a critical scheme with .
2. Preliminaries
3. Proofs of Theorems 1–3
4. Gaps for the Critical Schemes
5. Classification for
6. Generalized Terracini Loci
7. Queries about the Maximal Non-Empty Terracini Loci
8. Methods
9. Conclusions
- Are non-minimal Terracini loci non-empty for all numbers ?
- What is the computation of the cardinality of the second non-empty Terracini locus?
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ådlandsvik, B. Joins and higher secant varieties. Math. Scand. 1987, 61, 213–222. [Google Scholar] [CrossRef]
- Abo, H.; Ottaviani, G.; Peterson, C. Induction for secant varieties of Segre varieties. Trans. Amer. Math. Soc. 2009, 361, 767–792. [Google Scholar] [CrossRef]
- Landsberg, J.M. Tensors: Geometry and Applications; Graduate Studies in Mathematics; American Mathematical Soc.: Providence, RI, USA, 2012; Volume 128. [Google Scholar]
- Alexander, J.; Hirschowitz, A. Un lemme d’Horace différentiel: Application aux singularité hyperquartiques de P5. J. Alg. Geom. 1 1992, 1, 411–426. [Google Scholar]
- Alexander, J.; Hirschowitz, A. La méthode d’Horace éclaté: Application à l’interpolation en degré quatre. Invent. Math. 1992, 107, 585–602. [Google Scholar] [CrossRef]
- Alexander, J.; Hirschowitz, A. Polynomial interpolation in several variables. J. Alg. Geom. 1995, 4, 201–222. [Google Scholar]
- Abo, H. On non-defectivity of certain Segre-Veronese varieties. J. Symb. Comput. 2010, 45, 1254–1269. [Google Scholar] [CrossRef]
- Abo, H.; Brambilla, M.C. Secant varieties of Segre-Veronese varieties × embedded by O(1, 2). Exp. Math. 2009, 18, 369–384. Available online: http://projecteuclid.org/euclid.em/1259158472 (accessed on 3 February 2024). [CrossRef]
- Abo, H.; Brambilla, M.C. New examples of defective secant varieties of Segre-Veronese varieties. Collect. Math. 2012, 63, 287–297. [Google Scholar] [CrossRef]
- Abo, H.; Brambilla, M.C. On the dimensions of secant varieties of Segre-Veronese varieties. Ann. Mat. Pura Appl. 2013, 192, 61–92. [Google Scholar] [CrossRef]
- Vannieuwenhoven, N. A condition number for the tensor rank decomposition. Linear Algebra Appl. 2017, 353, 35–86. [Google Scholar] [CrossRef]
- Ballico, E. Terracini loci: Dimension and description of its components. Mathematics 2023, 11, 4702. [Google Scholar] [CrossRef]
- Ballico, E.; Brambilla, M.C. On minimally Terracini finite sets of points in projective spaces. arXiv 2023, arXiv:2306.07161. [Google Scholar]
- Ballico, E.; Brambilla, M.C. Minimal Terracini loci in the plane: Gaps and non-gaps. arXiv 2024, arXiv:2024.17930. [Google Scholar]
- Galgano, V. Identifiability and singular locus of secant varieties to spinor varieties. arXiv 2023, arXiv:2302.05295. [Google Scholar]
- Galgano, V.; Staffolani, R. Identifiability and singular locus of secant varieties to Grassmannians. arXiv 2022, arXiv:2212.05811. [Google Scholar] [CrossRef]
- Galuppi, F.; Santarsiero, P.; Torrance, D.A.; Teixeira Turatti, E. Geometry of first nonempty Terracini loci. arXiv 2023, arXiv:2311.09067. [Google Scholar]
- Chiantini, C.; Gesmundo, F. Decompositions and Terracini loci of cubic forms of low rank. arXiv 2023, arXiv:2302.03715. [Google Scholar]
- Ballico, E.; Bernardi, A.; Santarsiero, P. Terracini loci for 3 points on a Segre variety. Asian J. Math. 2023, 27, 375–404. [Google Scholar] [CrossRef]
- Ellia, P. Arithmetically Cohen-Macaulay space curves reloaded. arXiv 2011, arXiv:111.5722. [Google Scholar]
- Ellia, P.; Peskine, C. Groupes de points de P2: Caractère et position uniforme. In Algebraic Geometry; Lecture Notes in Mathematics; Springer: Berlin, Germany, 1990; Volume 1417, pp. 111–116. [Google Scholar]
- Hartshorne, R. Algebraic Geometry; Springer: Berlin/Heidelberg, Germany, 1977. [Google Scholar]
- Harris, J. On the Severi problem. Invent. Math. 1986, 84, 445–461. [Google Scholar] [CrossRef]
- Treger, R. Plane curves with nodes. Canadian J. Math. 1989, 41, 193–212. [Google Scholar] [CrossRef]
- Chiantini, L.; Ciliberto, C. Weakly defective varieties. Trans. Amer. Math. Soc. 2002, 454, 151–178. [Google Scholar] [CrossRef]
- Arbarello, E.; Cornalba, M. A few remarks about the variety of irreducible plane curves of given degree and genus. Ann. Sci. École Norm. Sup. 1983, 16, 467–488. [Google Scholar] [CrossRef]
- Arbarello, E.; Cornalba, M. On a notable property of the morphisms of a curve with general moduli into a projective space. Rend. Sem. Mat. Univ. Politec. Torino 1980, 38, 87–99. [Google Scholar]
- Hirschowitz, A. La méthode d’Horace pour l’interpolation à plusieurs variables. Horace’s method for interpolation of several variables. Manuscripta Math. 1985, 50, 337–388. [Google Scholar] [CrossRef]
- Ciliberto, C.; Miranda, R. Interpolation on curvilinear schemes. J. Algebra 1998, 203, 677–678. [Google Scholar] [CrossRef]
- Bernardi, A.; Gimigliano, A.; Idà, M. Computing symmetric rank for symmetric tensors. J. Symbolic. Comput. 2011, 46, 34–55. [Google Scholar] [CrossRef]
- Galuppi, F. Collisions of fat points and applications to interpolation theory. J. Algebra 2019, 534, 100–128. [Google Scholar] [CrossRef]
- Bernardi, A.; Catalisano, M.V.; Gimigliano, A.; Idà, M. Osculating varieties of Veronese varieties and their higher secant varieties. Canad. J. Math. 2007, 59, 488–502. [Google Scholar] [CrossRef]
- Bertin, J. The punctual Hilbert scheme: An introduction. In Geometric Methods in Representation Theory; France, Paris, 2012; pp. 1–102.
- Briançon, J. Description de HilbnC{x,y}. Invent. Math. 1977, 41, 45–89. [Google Scholar] [CrossRef]
- Briançon, J.; Iarrobino, A. Dimension of the punctual Hilbert scheme. J. Algebra 1978, 55, 536–544. [Google Scholar] [CrossRef]
- Granger, M. Géométrie des Schémas de Hilbert Ponctuels; Gauthier-Villars: Paris, France, 1983; pp. 1–84. [Google Scholar]
- Chiantini, L.; Ottaviani, G.; Vannieuwenhoven, N. On generic identifiability of symmetric tensors of subgeneric rank. Trans. Amer. Math. Soc. 2017, 369, 4021–4042. [Google Scholar] [CrossRef]
- Bolognesi, M.; Pirola, G. Osculating spaces and diophantine equations (with an Appendix by P. Corvaja, P. and U. Zannier). Math. Nachr. 2011, 284, 960–972. [Google Scholar] [CrossRef]
- Kaji, H. On the tangentially degenerate curves. J. London Math. Soc. 1986, 33, 430–440. [Google Scholar] [CrossRef]
- Kaji, H. On the tangentially degenerate curves. II. Bull. Braz. Math. Soc. New Ser. 2014, 45, 745–752. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ballico, E. Minimal Terracini Loci in a Plane and Their Generalizations. AppliedMath 2024, 4, 529-543. https://doi.org/10.3390/appliedmath4020028
Ballico E. Minimal Terracini Loci in a Plane and Their Generalizations. AppliedMath. 2024; 4(2):529-543. https://doi.org/10.3390/appliedmath4020028
Chicago/Turabian StyleBallico, Edoardo. 2024. "Minimal Terracini Loci in a Plane and Their Generalizations" AppliedMath 4, no. 2: 529-543. https://doi.org/10.3390/appliedmath4020028
APA StyleBallico, E. (2024). Minimal Terracini Loci in a Plane and Their Generalizations. AppliedMath, 4(2), 529-543. https://doi.org/10.3390/appliedmath4020028