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Abstract: We study properties of the minimal Terracini loci, i.e., families of certain zero-dimensional
schemes, in a projective plane. Among the new results here are: a maximality theorem and the
existence of arbitrarily large gaps or non-gaps for the integers x for which the minimal Terracini locus
in degree d is non-empty. We study similar theorems for the critical schemes of the minimal Terracini
sets. This part is framed in a more general framework.
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1. Introduction

Terracini loci came to life from the so-called Terracini Lemma ([1], Cor. 1.11), which
helped to prove a huge number of important theorems on the dimensions of secant varieties,
even in cases important for applications, e.g., low-rank approximation of tensors [2,3], the
additive decompositions of forms [4–6], or cases of partially symmetric tensors [7–11]. They
are an active topic of research [12–18].

For all positive integers x and any variety X, let S(X, x) denote the set of all A ⊂ X
such that #A = x. For any smooth point p of X, let (2p, X) (or just 2p if X = Pn) be the
closed subscheme of X, with (Ip)2 as its ideal sheaf. Hence, (2p, X) is a zero-dimensional
scheme of degree dim X + 1 with {p} as its reduction. For any finite subset S of X contained
in the smooth locus of X, set (2S, X) := ∪p∈S2p. If X = Pn, set 2S := (2S,Pn). For any
set A ⊂ Pn, let ⟨A⟩ denote its linear span. Fix positive integers n, d and x. The Terracini
locus T(n, d; x) is the set of all S ∈ S(Pn, x) such that ⟨S⟩ = Pn, h0(I2S(d)) > 0 and
h1(I2S(d)) > 0 [12–14]. More important is the minimal Terracini locus T(n, d; x)′, which is
the set of all S ∈ T(n, d; x) such that h1(I2A(d)) = 0 for all A ⊊ S.

To the best of our knowledge, the notion of minimality for Terracini sets was explicitly
defined for Veronese embeddings in [13] and for arbitrary varieties in [12]. Since it is a very
natural notion, it occurs “in nature” even if it is not explicitly defined. For instance, in the
list in [19] of cardinality 3 Terracini sets for the Segre embeddings, the non-minimal ones
are [19], Examples 4.1 and 4.2.

The minimal Terracini locus is usually very different from the non-minimal one [12–14].
In the setup of the Veronese embeddings on Pn, the minimal one and the non-minimal one
were considered in [13]. In that paper, many differences were pointed out. For instance,
for almost all pairs (n, d), we have T(n, d; x) ̸= ∅ for all x ≫ 0 ([13], Th. 1.1(iii)), while
T(n, d; x)′ = ∅ for all x > ⌈(n+d

n )/(n + 1)⌉ ([13], Prop. 3.1). In this paper, we only consider
the case n = 2 (as in [13]), and our tools (mainly the Hilbert function of the critical schemes
of the elements of T(2, d; x)′) are strong enough only for n = 2. For the case n > 2, we raise
several questions.

We prove the following results.

Theorem 1. Fix an integer d ≥ 6, and set ρ := ⌈(d + 2)(d + 1)/6⌉. Then T(2, d; ρ)′ ̸= ∅ and
T(2, d; x)′ = ∅ for all x > ρ.
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Theorem 2. Fix a positive integer e. Then there is an integer d(e) ≥ 3 such that for all integers
d ≥ d(e), we have T(2, d; x)′ ̸= ∅ for e consecutive integers x.

Theorem 3. Fix an integer e > 0. Then there is an integer d1(e) such that for all integers
d ≥ d1(e), there are integers x > 0, y < x − e such that T(2, d; x)′ ̸= ∅, T(2, d; y)′ ̸= ∅ and
T(2, d; c)′ = ∅ for all x − e ≤ c < x.

Question 1. Are Theorems 1, 2 and/or 3 true in Pn, n ≥ 3 with ρ := ⌈(n+d
m )/(n + 1)⌉ and large

integers d(n, e) and d1(n, e) depending on n and e?

Theorem 3 shows that for d ≫ 0, there are arbitrarily large consecutive gaps and
arbitrarily large consecutive non-gaps.

Question 2. Is it possible (taking a larger d1(e) or a larger d(e)) to get that there are exactly c
consecutive gaps or non-gaps?

Our tools for making large consecutive gaps or large consecutive non-gaps seems not
to be able to address Question 2.

As in [14], a key tool is the numerical character of any critical scheme of any
S ∈ T(2, d; x)′ (see Section 2 on the preliminaries).

In Section 3, we prove Theorems 1–3.
In Section 4, we prove the results on the possible degrees of the critical schemes of

S ∈ T(2, d; x)′ (Theorem 6). In particular, we prove that Z ̸= S (Proposition 1). Then, we
prove the following theorem.

Theorem 4. Fix an integer c ≥ 3, and set d0(c) := 6c + 3. Then for all d ≥ d0(c), there are
integers xi, 1 ≤ i ≤ c with the following properties:

1. xi ≥ xi−1 + 2 for all i = 2, . . . , c;
2. There is S ∈ T(2, d; xi)

′ with a critical scheme Z with deg(Z) = 2xi;
3. There is no positive integer y such that there is A ∈ T(2, d; y)′ with a critical scheme Z′ with

2xi − 2 ≤ deg(Z′) ≤ 2xi − 1.

Theorem 4 is analogous to [14], Th. 1.3 for the degrees of the critical schemes of
minimally Terracini sets.

In Section 5, we classify the pairs (d, x) such that T(2, d; x)′ ̸= ∅ and d ≤ 8.
In Section 6, we consider several related definitions of Terracini sets. One of the

main results (Theorem 7) applies also to the degrees of the critical schemes of elements
of T(2, d; x)′. It says that for d ≫ 0, there are arbitrarily large gaps in the degrees of
critical schemes.

In the last section, we discuss some questions related to the maximal integer x such
that T(n, d; x)′ ̸= ∅.

It would be very interesting to extend [20,21] to some or all toric surfaces. Even an
extension to only P1 × P1 would be nice.

We thank the referees for suggestions, which improved the presentation of the paper.

2. Preliminaries

We work over an algebraically closed field with characteristic 0.
Each set T(n, d; x) and T(n, d; x)′ is constructible ([22], Ex. II.3.18, Ex. II.3.19), and

hence, we may speak about the dimensions and the irreducible components of the Terracini
loci and the minimal Terracini loci.

For any zero-dimensional scheme Z ⊂ P2, Z ̸= ∅, let τ(Z) denote the maximal integer
≥ −1 such that h1IZ(d)) > 0. Let s(Z) be the first integer s such that h0(IZ(s)) > 0. The
numerical character n0, . . . , ns−1, s := s(Z) is a string of s integers n0 ≥ n1 ≥ · · · ≥ ns−1
that uniquely determines the Hilbert function of Z [14,20,21]. We have n0 = τ(Z) + 2 and
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ns−1 ≥ s. The numerical character n0, . . . , ns−1 is said to be connected if ni ≤ ni+1 + 1
for i = 0, . . . , s − 2. Fix any S ∈ T(n, d; x). A critical scheme of S is a subscheme Z ⊂ 2S
such that each connected component of Z has a degree of at most 2. If S ∈ T(n, d; x)′, then
Zred = S for all critical schemes Z of S ([13], Lemma 2.11). The numerical character of any
critical scheme of any element of T(2, d; x)′ is connected ([14], Th. 2.10).

Remark 1. Fix integers d > t > 0. Let T ⊂ P2 be any integral degree t curve. Since h1(OP2(d −
t)) = 0, the long cohomology exact sequence associated with the inclusion D ⊂ P2 gives
h0(T,OT(d)) = (d+2

2 )− (d+2−t
2 ) = t(2d + 3 − t)/2, and the restriction map H0(OP2(d)) →

H0(T,OT(d)) is surjective.

Remark 2. Take any S ∈ T(2, d; x)′ and any critical scheme Z of S. By ([13], Lemma 2.11), we
have Zred = S, and hence, deg(Z) ≥ x. Easy examples show that the latter inequality is not true
(for many d and x) for the critical schemes of elements of T(2, d; x) that are not minimal.

We use the following result ([14], Lemma 2.9).

Lemma 1. Let Z ⊂ P2, Z ̸= ∅ be a zero-dimensional scheme. Set z := deg(Z), s := s(Z) and
d := τ(Z). Assume that the numerical character n0, . . . , ns−1 is connected, s ≤ (d + 3)/2, and
there exists an integer t such that t2 ≤ z and z

t + t − 3 ≤ d. Then t = s, z = s(d + 3 − s) and Z
is the complete intersection of a curve of degree z/t and a curve of degree t.

Remark 3. Let Z ⊂ P2 be any zero-dimensional scheme that is the complete intersection of a curve
of degree a and a curve of degree b. We have deg(Z) = ab, h1(IZ(a+ b− 3)) = 1, h1(IZ(t)) = 0
for all t ≥ a + b − 2 and h1(IW(a + b − 3)) = 0 for all W ⊊ Z.

Remark 4. Take any S ∈ T(2, d; x)′ and any critical scheme Z of S. Set z := deg(Z). Obviously
z ≤ 2x. Since Zred = S ([13], Lemma 2.11), we have z ≥ x. Later we will prove that z > x
(Proposition 1 for d ≥ 6, Remark 6 for d = 4 and Proposition 2 for d = 5). Let µ = n0, . . . , ns−1 be
the numerical character of Z. Since τ(Z) = d and h1(IZ(d)) = 1 ([13], Lemma 2.10 and Th. 3.1).
d = τ(S) = n0 − 2, n1 < n0, and µ is connected, i.e., ni ≤ ni+1 + 1 for all i = 0, . . . , s − 2 ([14],
Th. 2.10). By [14], Equation (2), we have

s−1

∑
i=0

ni = z +
(

s
2

)
(1)

Remark 5. Fix S ∈ T(2, d; x)′ and take any critical scheme Z of S. We have h1(IZ(d)) = 1 ([13],
Lemma 2.10 or Th. 3.1). We have Zred = S ([13], Lemma 2.11).

Remark 6. Assume T(2, d; x)′ ̸= ∅. By [13], Proposition 3.5 and Theorem 1, we have
x < ⌈(d + 2)(d + 1)/6⌉. By [13], Proposition 5.2, we have x ≥ d + 1, and if x = d + 1,
then any element of T(2, d; x)′ is contained in a unique reduced conic, C. If x = d + 1 is odd, then
C is smooth. If x = d + 1 is even, C may be singular with x/2 points on each of its irreducible
components. Thus, T(2, 4; x)′ ̸= ∅ if and only x = 5, and T(2, 4; 5)′ is the set of all S ∈ S(P2, 5)
such that no 3 of the points of S are collinear (or, equivalently, the set of all S contained in a smooth
conic). Hence, T(2, 4; 5)′ is irreducible of dimension 10.

3. Proofs of Theorems 1–3

Remark 7. Fix integers c ≥ 0 and t such that t ≥ (c − 1)(c − 2)/2. There is an integral nodal
curve D ⊂ P2 with exactly a nodes. Moreover, if 3a < (t+2

2 ) and t ≥ 6, we may take as Sing(D) a
general subset of P2 with cardinality a [23–25].

Proof of Theorem 1: By [13], Proposition 3.5, we have T(2, d; x)′ = ∅ for all x > ρ. By [12],
Th. 2, we have T(2, d; ρ)′ ̸= ∅ if d ≡ 1, 2 (mod 3), i.e., if ρ = (d + 2)(d + 1)/6.
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Now, assume d ≡ 0 (mod 3).
For all integers x such that 0 ≤ x ≤ (d − 1)(d − 2)/2, let W(d, x) denote the Sev-

eri variety of all integral and nodal curves with exactly x nodes. The set W(d, x) is an
irreducible variety of dimension (d+2

2 )− 1 − x [23,24,26,27]. Take a general C ∈ W(d, ρ)
and set S := Sing(C). Since S is contained in the singular locus of a degree d curve,
h0(I2S(d)) > 0. Since deg(2S) = 3ρ = (d+2

2 ) + 2, h1(I2S(d)) > 0. Thus, to conclude
the proof, it is sufficient to prove that S is minimal. Let E be the set of all subsets of S
with cardinality ρ − 1. The semicontinuity theorem for cohomology gives that, restricting
W(d, ρ) to an open dense subset W, we may assume that all Sing(D), D ∈ W have subsets
of cardinality ρ − 1, B with the same h1(I2B(d)) (so either all Sing(D) are minimal or none
is minimal). We may assume C ∈ W. Fix A ∈ E and assume h1(I2A(d)) > 0. Thus,
h0(I2A(d)) ≥ 2. Hence, there is a 1-dimensional family of curves with A contained in their
singular locus. Since C is irreducible, the general element of this 1-dimensional family is
irreducible. Varying D in W, we get a family W of integral degree d curves with at least
ρ − 1 nodes, and dimW = dim V(d, ρ) + 1 = dim V(d, ρ − 1) and h1(I2B(d)) > 0 for all
B ∈ S(P2, ρ − 1) arising from some D ∈ W. The Severi conjecture proved in [23] also
proves that each integral plane curve with at least ρ − 1 singular points is in the closure
W(d, ρ − 1) of W(d, ρ − 1) (see the beginning of the Introduction of [26] or see [27] (in
Italian) for a full proof). A general D ∈ W(d, ρ − 1) has as its singular locus a general
element of S(P2, ρ − 1), and hence, h1(I2Sing(D)(d)) = 0. Hence, V(d, ρ − 1) ̸= W . Thus,
dimW < dim W(d, ρ − 1), which is a contradiction.

Remark 8. As in [12], Th. 2, the proof of Theorem 1 gives the existence of an irreducible family of
dimension 2ρ − 3 of the family of all S ∈ S(P2, ρ) formed by minimal Terracini sets.

Proof of Theorem 2: Set t := 4e + 4 and d(e) := 8t. Fix an integer d ≥ d(e). Note that
d ≥ 8t. Since t ≡ 0 mod 4, the integer (d+2

2 )− (d+2−t
2 ) = t(2d + 3 − t)/2 is even. Fix a

general E ⊂ P2 such that #E = 2e− 1. Remark 7 and the assumption on t give h1(I2E(d)) =
0 and the existence of an integral and nodal degree t curve D such that Sing(D) = E. Take
an odd integer a such that 1 ≤ a ≤ 2e − 1. Since a is odd, the integer (d+2

2 )− (d+2−t
2 )− 3a is

odd. Fix Aa ⊆ E such that #Aa, and set fa := ((d+2
2 )− (d−t+2

2 ) + 1 − 3a)/2. Note that 3a +
2 fa = h0(Da,ODa(d)) + 1. Fix a general Ba ⊂ D such that #Ba = fa and set Sa := Aa ∪ Ba.
Since Ba is general in D, Ba ∩ E = ∅, and hence, deg(2Ba ∩ D) = 2 fa. The set Aa is a general
subset of P2 with cardinality a because E is a general subset with #E = 2e − 1. Note that
2Aa ⊂ D. Since d ≥ 5 and d ≥ t > 3a, h1(I2Aa(d)) = 0 [28]. Thus, h1(D, I2Aa ,D(d)) = 0.
Thus, h0(D, I2Aa ,D(d)) = (d+2

2 )− (d−t+2
2 )− 3a. Since Ba is general in D, (2Ba, D) gives the

maximal possible number of independent conditions to the vector space H0(D, I2Aa ,D(d)).
Thus, h0(D, I2Aa∪(2Ba ,D),D(d)) = 0. Hence, h1(D, I2A+a∪(2Ba ,D),D(d)) = 1.

Claim 1: We have h1(IBa(d − t)) = 0 and h0(IBa(d − t)) > 0.

Proof of Claim 1: Remember that d > 3t. Since d ≥ 2t and Ba is contained in the degree
t curve D, h0(IBa(d − t)) > 0. We have 3a + 2 fa = h0(D,OD(d)) + 1. Since Ba is general
in D, d > t and g = h1(OP2(d − 2t)) = 0, h1(IBa(d − t)) = 0 if and only if h1(D, IBa ,D(d −
t)) = 0. Hence, to prove that h1(IBa(d − t)) = 0 for all a, it is sufficient to prove that
f1 ≤ h0(D,OD(d − t)). Since d ≥ 3t, we have h0(D,OD(d − t)) = t(2d + 3 − 3t)/2 and
3 + 2 f1 = t(2d + 3 − t)/2. Since 3 ≥ 0, it is sufficient to prove that 2t(2d + 3 − 3t) ≥
t(2d + 3 − t), i.e., 2d + 3 − 6t ≥ −t. The last inequality is true because d > 3t.

Claim 2: Sa ∈ T(2, d; a + fa)′ and h1(I2Sa(d)) = 1.

Proof of Claim 2: Note that 2Sa ∩ D = 2Aa ∪ (2Ba, D). Since h1(D, I2Sa∪D,D(d)) = 1 and
h1(OP2(d− t)) = 0, we get h1(I2Sa∩D(d)) = 1. Since 2Aa ⊂ D and Ba ∩ E = ∅, the residual
exact sequence of D is the following exact sequence:

0 → IBa(d − t) → I2Sa(d) → I2Sa∩D,D(d) → 0 (2)
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By Claim 1, we have h0(IBa(d− t)) > 0 and h1(IBa(d− t)) = 0. Thus, the long cohomology
exact sequence of (2) gives h0(I2Sa(d)) > 0 and h1(I2Sa(d)) = 1. Hence, to conclude the
proof of Claim 2, it is sufficient to prove that h1(I2S′(d)) = 0 for all S′ ⊂ Sa such that
#S′ = a + fa − 1. First, assume Aa ⊂ S′, and hence, S′ = Aa ∪ B′ with B′ ⊂ Ba and
#B′ = fa − 1. In this case, we have the following residual exact sequence:

0 → IB′(d − t) → I2S′(d) → I2Aa∪(2B′ ,D),D(d) → 0 (3)

Since B′ ⊂ Ba and h1(IBa(d− t)) = 0, we have h1(IB′(d− t)) = 0. Recall that h1(D,I3Aa(d)) =
0 and that h0(D, I2Aa ,D(d))) = 2 fa − 1. Since B′ is a general subset of D with #B′ = 2 fa − 1,
ref. [29] gives h1(D, I2Aa∪(2B′ ,D),D(d)) = 0. Thus, the long cohomology exact sequence of
(3) gives h1(I2S′(d)) = 0. Now assume Aa ⊈ S′, and hence, S′ = Ba ∪ A′ with A′ ⊂ Aa and
#A′ = a − 1. Since 2A′ ⊂ 2A ⊂ D, the residual exact sequence of D gives the following
exact sequence:

0 → IBa(d − t) → I2S′(d) → I2A′∪(2Ba ,D),D(d) → 0 (4)

Since #A′ = #Aa − 1 and h1(D, I2Aa ,D(d)) = 0, we have h1(D, I2A′ ,D(d)) = 0, and hence,
h0(D, I2A′ ,D(d)) = h0(D, I2Aa ,D(d)) + 3 = 2 fa + 2. Since Ba is general in D and 2 fa ≤
h0(D, I2Aa(d)), ref. [29] gives h1(D, I2Aa∪(2Ba ,D),D(d)) = 0. The long cohomology exact
sequence of (4) gives h1(I2S′(d)) = 0, concluding the proof of Claim 2.

Take an odd integer a such that 1 ≤ a ≤ 2e − 3. Thus, h0(D,OD(d))− 3(a + 2) ≡
h0(D,OD(d))− 3a (mod 2)), and Aa+2, fa+2 and Ba+2 are well-defined. Since 3a + 2 fa =
h0(OD(d))− 1 = 3(a + 2) + 2 fa+2, we have fa+2 = fa − 3, and hence, #Sa+2 = #Sa − 1.
Thus, taking all odd integers a between 1 and 2e − 1, we see that Claim 2 proves that
T(2, d; x)′ ̸= ∅ for e consecutive integers.

Proof of Theorem 3: Set t := 2e + 4 and d1(e) := 8t. Note that t is even. Fix an integer
d ≥ d1(e). We have d ≥ 8t. Set x := t(d + 3 − t)/2 and y := (t − 2)(d + 5 − t)/2. By [14],
Proof of Prop. 3.1, a general complete intersection of a curve of degree t/2 and a curve
of degree d + 3 − t is an element of T(2, d; x)′, while a general complete intersection of a
curve of degree (t − 2)/2 and a curve of degree d + 5 − t is an element of T(2, d; y)′. Since
d ≥ 2t + e + 2, we have y < x − e. Fix an integer c such that 1 ≤ c ≤ x. Assume, by
contradiction, the existence of S ∈ T(2, d; x − c)′, and let Z be a critical scheme of S. Set
z := deg(Z). Since Zred = S ([13], Lemma 2.11) and each connected component of Z has a
degree of at most 2, x − c ≤ z ≤ 2x − 2c. Since 2x = t(d + 3 − t), we have d ≥ t − 3 + z/t.
Since x = t(d + 3 − t)/2, z ≥ x and d + 3 − t ≥ 2t, we have t2 ≤ z. Let n0, . . . , ns−1,
s := s(Z) be the numerical of Z. )

Claim 1: We have s ≤ (d + 3)/2.

Proof of Claim 1: Assume s ≥ (d + 4)/2. Since ns−1 ≥ s, (1) and Lemma give z ≥
(s+1

2 ) ≥ (d + 5)(d + 3)/8. Since z ≤ 2x − 2c with t(d + 3 − t)/2 and t ≤ d/8, we get a
contradiction.

Since the numerical character of Z is connected ([14], Th. 2.10), Claim 1 and Lemma 1
give c = 0, which is a contradiction.

4. Gaps for the Critical Schemes

In this section, we prove Theorem 4 and give several results on the degrees of criti-
cal schemes.

Proposition 1. Take any S ∈ T(2, d; x)′, d ≥ 6 and any critical scheme Z of S. Then Z ̸= S.



AppliedMath 2024, 4 534

Proof. Since S = Zred (Remark 5), we have S ⊆ Z. Assume S = Z. Set s := s(Z) and let
µ = n0, . . . , ns−1 be the numerical character of S. Since S = Z, d = τ(S) = n0 − 2, n1 < n0
and µ is connected, i.e., ni ≤ ni+1 + 1 for all i = 0, . . . , s − 2. By (1), we have

s−1

∑
i=0

ni = x +

(
s
2

)
(5)

Since n0 = d + 2 and µ is connected, ni ≥ d + 2 − i for all i, and hence, ∑s−1
i=0 ni ≥

s(d+ 2)− (s
2). Thus, (5) gives x ≥ s(d+ 3− s). Fix any T ∈ |IS(s)| and any S′ ⊂ S such that

#S′ = x − 1. Since d ≥ 6, Lemma 2 gives h0(T,OT(d)) = sd + 1 − (s − 1)(s − 2)/2. Since
S is minimal, h1(I2S′(d)) = 0. Hence, h1(T, I((2S)∩T,T(d)) = 0. Note that deg(T ∩ 2S′) ≥
2x − 2. Hence, 2x − 2 ≤ sd + 1 − (s − 1)(s − 2)/2. Recall that x ≥ s(d + 3 − s). Thus,
2x − 2 ≥ s(2d + 6 − s) − 2. Hence, sd + 1 − (s − 1)(s − 2)/2 ≥ s(2d + 6 − s) − 2, i.e.,
3 − (s − 1)(s − 2)/2 ≥ sd + 6s − s2, i.e., 3 + s2/2 − 6s + (3/2)s ≥ sd. Since d ≥ s − 2
(Lemma 2), we get 3 − s2/2 − 4s + (3/2)s ≥ 0, which is a contradiction.

Lemma 2. Take S ∈ T(2, d; x)′, and set s := s(Z). We have d ≥ s − 2 if d ≥ 6.

Proof. Assume s ≥ d − 1. Since ns−1 ≥ s and ni ≥ ni+1 for all i ≤ s − 2, we get z ≥ s2 ≥
(d − 1)2. Hence, x ≥ (d − 1)2/2. Recall that x ≤ (d + 2)(d + 1)/6 if d ≡ 1, 2 mod 3 and
x ≤ (d2 + 3d + 6)/6 if d ≡ 0 mod 3 (Remark 6), contradicting the assumption d ≥ 6 and
the inequality z ≤ 2x.

Theorem 5. Fix an integer t ≥ 4 and an integer d ≥ 3t such that d + 3 − t is even. Set
x := t(d + 3 − t)/2. Then there is S ∈ T(2, d; x)′ with a critical scheme of degree 2x.

Moreover, for all integers w such that

2x − td + 3t2/2 + t/2 + 3 < w < 2x (6)

there is no pair (y, A) such that A ∈ T(2, d; y)′ and A has a critical scheme of degree w.

Proof. Let S ⊂ P2 be a finite set that is the complete intersection of a smooth curve C
of degree t and a curve of degree (d + 3 − t)/2. Set Z := C ∩ 2S = (2S, C). Since Z
is the complete intersection of C and a curve of degree d + 3 − t, h1(IZ(d)) = 1 and
h1(IZ′(d)) = 0 for all Z′ ⊊ Z (Remark 3). Thus, h1(C, IZ,C(d)) = 1 and h1(C, IZ′ ,C(d)) = 0
for all Z′ ⊊ Z. Since d + 3 − t ≥ t ≥ 2, ⟨S⟩ = P2. Since C is smooth, for any A ⊆ S, the
residual exact sequence of C gives the following exact sequence:

0 → IA(d − t) → I2A(d) → I((2A∩C),C(d) → 0 (7)

Recall that h1(C, IZ,C(d)) = 1 and h1(C, IZ′ ,C(d)) = 0 for all Z′ ⊊ Z. Thus, the long
cohomology exact sequence of (7) shows that to prove that h1(I2S(d)) = 1 and that
h1(I2A(d)) = 0 for all A ⊊ S (and hence, to prove that S is minimal), it is sufficient to
prove that h1(IS(d − t)) = 0. This is true by [14], Proof of Prop. 3.1 because S is the
complete intersection of a curve of degree t and a curve of degree (d + 3 − t)/2 and d − t ≥
t + (d + 3 − t)/2 − 2. Now take t ≥ 4 such that d + 3 − t ≡ 0 (mod 2), and fix w < 2x.
If w < t2, then we are done, and hence, we may assume w ≥ t2. Assume the existence
of y, E ∈ T(2, d; y)′ and a critical scheme W for E such that deg(W) = w. Since w < 2x,
we have d > t − 3 + w/t. Recall that the numerical character of W is connected ([14], Th.
2.10). By [21], Cor. 2 and the inequality w ≥ t2, there is an integer m ∈ {1, . . . , t − 1} and
a degree m curve D ⊂ P2 such that W ⊂ D and m(d + 3 − m) ≤ w ≤ m(d + (3 − m)/2).
Thus, E ⊂ D. Since w < 2x and m < t, 2x − w ≥ td − t2/2 + t/2 + 3. Thus, we get
the theorem.

Remark 9. Fix integers d ≥ 3t ≥ 12. Then td ≥ 3t2/2 + t/2 + 5.
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Proof of Theorem 4: Note that if t ≥ 4, we have 3t2 ≥ 5 + 3t2/2 + t/2. Thus, if t ≥ 4,
x = t(d + 3 − t)/2, d ≥ 3t and d + 3 − t is even, then td ≥ 5 + 3t2/2 + t/2. Hence, the
range of values of w in the equality (6) contains the integers 2x − 2 and 2x − 1.

Consider the function f (t) := t(d + 3− t)/2, which is strictly increasing in the interval
(0, (d + 3)/2). For any i = 1, . . . , c, we define:

xi =

{
f (2i) = i(d + 3 − 2i) if d is odd,
f (2i + 1) = (2i + 1)(d + 2 − 2i)/2 if d is even

Set t := 2i if d is odd and t := 2i + 1 if d is even. To conclude the proof of the proposition, it
is sufficient to prove that the assumptions of Proposition 5 are satisfied. Use Remark 9.

Theorem 6. Fix positive integer d ≥ 3 and x such that T(2, d; x)′ ̸= ∅, and take any S ∈
T(2, d; x)′ and any critical scheme Z of S. Then deg(Z) ≤ 2x, and

2x − deg(Z) ≤ s(d + 3 − s)− 3 + (s − 1)(s − 2)/2. (8)

Proof. Set z := deg(Z). Since every connected component of Z has degree 1 or degree
2, deg(Z) ≤ 2x. Set s := s(Z) and τ := τ(Z). Let n0, . . . , ns−1 denote the numerical
character of Z. Thus, ns−1 ≥ s, n0 = d + 2 (Remark 4). Since n0 = d + 2 and µ is connected,
ni ≥ d + 2 − i for all i, and hence, ∑s−1

i=0 ni ≥ s(d + 2)− (s
2). Thus, (1) gives

z ≥ s(d + 3 − s). (9)

Now assume z ̸= 2x. Take T ∈ |IZ(s)|. Thus, there is a union W of x − 1 connected
components of Z such that deg(W) = z − 1. Since Z is a critical scheme, h1(IW(d)) = 0.
Since W ⊂ Z, W ⊂ T. The restriction map ρ : H0(OP2(d)) → H0(T,OT(d)) gives
h1(T, IW,T(d)) = 0. If d ≤ 5, we conclude by Remark 1. Now assume d ≥ 6. Lemma 2
gives d ≥ s − 2. Since T is a degree s plane curve, we get h1(T,OT(d)) = 0. Thus,
Riemann–Roch gives h0(T,OT(d)) = sd + 1 − (s − 1)(s − 2)/2. Fix any S′ ⊂ S such that
#S′ = x − 1. Since d ≥ 6, Lemma 2 gives h0(T,OT(d)) = sd + 1 − (s − 1)(s − 2)/2. Since
S is minimal, h1(I2S′(d)) = 0. The restriction map ρ : H0(OP2(d)) → H0(T,OT(d)) gives
h1(T, I((2S′)∩T,T(d)) = 0. Note that deg(T ∩ 2S′) ≥ 2x − 2. Hence,

2x − 2 ≤ sd + 1 − (s − 1)(s − 2)/2. (10)

From (9) and (10) we get (8).

Example 1. Fix integers d ≥ r + 2 ≥ 5. There is a line L ⊂ Pr and a smooth degree d non-
degenerate rational curve X ⊂ Pr such that X contains exactly 3 points of X and L is not a tangent
line of X. Set S := L ∩ X. Obviously S ∈ T(X; 3). Since L is not one of the tangent lines of X, S
is minimal. Obviously, S is the unique critical scheme of itself.

The following result is the equivalent of Theorem 3 for the degrees of the criti-
cal schemes:

Theorem 7. Fix a positive integer e. Then there is a positive integer d0(e) such that for all
d ≥ d0(e), there are integers 0 < x1 < x2 such that T(2, d; xi)

′ ̸= ∅, i = 1, 2, and there are
Si ∈ T(2, d; xi)

′ and critical schemes Zi of Si with deg(Zi) = 2xi, while there is no (y, A, Z) with y
a positive integer. A ∈ T(2, d; y)′, and Z is a critical scheme of A; hence, 2x2 − e ≤ deg(Z) < 2x2.

Proof. We take x1 = d + 1 (for any d ≥ 5). By Remark 6, there is S1 ∈ T(2, d; d + 1) with
critical scheme Z1 of degree 2d + 2 and contained in a smooth conic.

Set t := 4e + 4 and d(e) := 8t. Fix an integer d ≥ d(e). Mimic the proof of Theorem 3
with S2 as a complete intersection or apply Theorem 6.
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5. Classification for d ≤ 8

In this section, we consider pairs (d, x) such that T(2, d; x)′ ̸= ∅ for d ≤ 8. The cases
with d ≤ 4 are well-known [13], Remark 2.3 and Lemmas 3.6, 3.7 or Remark 6).

Remark 6 gives the following result.

Proposition 2. We have T(2, 5; x)′ ̸= ∅ if and only if x ∈ {6, 7}. Every element of T(2, 5; 6)′ is
contained in a reduced conic.

Proposition 3. We have T(2, 6; x)′ ̸= ∅ if and only if x ∈ {7, 9, 10}.

Proof. By Remark 6, we have 7 ≤ x ≤ 10, T(2, 6; 7)′ ̸= ∅ and T(2, 6; 10)′ ̸= ∅. Remark 6
also gives a description of T(2, 6; 7)′. The case x = 10 is described in [12], Prop. 13.

(a) Assume x = 8. Assume, by contradiction, the existence of S ∈ T(2, 6; 8)′ and take a
critical scheme Z of S. We have 8 ≤ z := deg(Z) ≤ 16. Take Y ∈ |OP2(3)| such that S ⊂ Y,
and among the cubic containing S, one with w := deg(Z ∩ Y) maximal. Assume for the
moment Z ⊈ Y. Consider the residual exact sequence of Y:

0 → IResY(Z)(3) → IZ(6) → IZ∩Y,Y(6) → 0 (11)

Since Z ∩ Y ⊈ Z and Z is critical, h1(IZ∩Y(6)) = 0. The restriction map H0(OP2(6)) →
H0(OY(6)) gives h1(Y, IZ∩Y,Y(6)) = 0. Thus, the long cohomology exact sequence of
(11) gives h1(IResY(Z)(3)) > 0. We have deg(ResY(Z)) = z − w ≤ 16 − 9 = 7. By [30],
Lemma 34 there is a line L such that deg(ResY(Z)) ≥ 5. Since S ⊂ Y, ResY(Z) ⊆ S ⊂ Y.
Thus, the theorem of Bezout gives that L is an irreducible component of Y. Note that
ResL(Z) ⊇ ResY(Z). Since each connected component of Z has degree ≤ 2, we get
#(S ∩ L) ≥ 5, contradicting the minimality of S.

Now assume Z ⊂ Y. Since h1(OP2(3)) = 0, the long cohomology exact sequence of
(11) gives h1(Y, IZ,Y(6)) > 0. This inequality is false if Y is irreducible because IZ,Y(6) is a
positive degree rank 1 torsion free sheaf on Y and Y has arithmetic genus 1. Now assume
that Y is reducible. Since S is minimal, #(S ∩ R) ≤ 3 for all lines R and #(S ∩ D) ≤ 6 for
each conic D.

First, assume Y = M ∪ D with D a reduced conic, M a line and #(S ∩ D) = 6. Thus,
#(S ∩ (M \ M ∩ D)) = 2. The long cohomology exact sequence of the residual exact
sequence of D gives h1(IResD(Z)(4)) > 0. Since #(S ∩ M) ≤ 3, we have #(S ∩ M ∩ D) ≤ 1,
and hence, deg(ResD(Z)) ≤ 5, contradicting [30, Lemma 34]. Now assume the non-
existence of such a reduced conic. We get Y = R ∪ T with R a line, T a reduced conic,
#(S ∩ R) = 3 and S ∩ R ∩ T = ∅. The long cohomology exact sequence of R gives
h1(IResR(Z)(5)) > 0. Since Z ⊂ Y and S ∩ R ∩ T = ∅, deg(ResR(Z)) ≤ 2(#(S ∩ T)) = 10.
By [30], Lemma 34, there is a line L such that deg(L ∩ ResR(Z)) ≥ 7. Thus, #(S ∩ L) ≥ 4,
which is a contradiction.

(b) Assume x = 9. Take the complete intersection S = C ∩ C′ of 2 smooth cubics. Set
Z := C ∩ 2C′. Remark 3 gives h1(IZ(6)) = 1 and hence, S ∈ T(2, 6; 9). Fix A ⊊ S. Since C
has genus 1, any degree 8 zero-dimensional subscheme W of C (respectively, C′) satisfies
h1IW(3)) = 0; the long cohomology exact sequence of C′ gives that S is minimal.

Proposition 4. We have T(2, 7; x)′ ̸= ∅ if and only if x ∈ {8, 11, 12}.
(i) An element S ∈ S(P2, 8) is contained in T(2, 7; 8)′ if and only if S is contained in a reduced

conic D, with the restriction that if D is reducible, each irreducible component of D contains exactly
4 points of S.

(ii) No element of T(2, 7; 12)′ is contained in a plane cubic.

Proof. Fix S ∈ T(2, 7; x)′, and call Z a critical scheme of S. Thus, z := deg(Z) ≤ 2x. By
Remark 6, we have 8 ≤ x ≤ 12. Remark 6 also gives part (i). Thus, from now on, we
assume 9 ≤ x ≤ 12. Since S is minimal, #(S ∩ L) ≤ 4 for all lines L and #(S ∩ D) ≤ 6 for
any reduced conic D. Set s := s(Z). Recall that the numerical character n0, . . . , ns−1 ≥ s
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of Z is connected, n1 < n0 and n0 = d + 2. For any plane cubic C, we have the following
residual exact sequence:

0 → IResC(Z)(4) → IZ(7) → IC∩Z,C(7) → 0 (12)

For any plane conic D, we have the following residual exact sequence:

0 → IResD(Z)(5) → IZ(7) → ID∩Z,D(7) → 0 (13)

Consider the restriction maps ρC : H0(OP2(7)) → H0(C,OC(7)) of C and ρD : H0(OP2(7)) →
H0(D,OD(7)) of D. Since S is minimal, no line contains 5 points of S and no conic contains
8 points of S. Since S is minimal, Zred = S [13], Lemma 2.11, and if S ⊈ C (respectively, S ⊈
D), then the restriction map ρC (respectively, ρD) gives h1(C, IZ∩C,C(7)) = 0 (respectively,
h1(D, IZ∩D,D(7)) = 0). Thus, the long cohomology exact sequence of (12) (respectively,
(13)) gives h1(IResC(Z)(4)) > 0 (respectively, h1(IResD(Z)(5)) > 0). Since h1(OP2(4)) = 0
(respectively, h1(OP4(5)) = 0), ρC (respectively, ρD) is surjective. We have h0(OC(7)) =
h0(OP2(7))− h0(OP2(3)) = (9

2)− (6
2) = 21.

(a) Assume x = 9. We take C ∈ |IS(3)|. First, assume Z ⊈ C, and hence, h1(IResC(Z)(4)) >
0. Since S ⊂ C and every connected component of Z has degree ≤ 2, we have ResC(Z) ⊆ S.
Hence, h1(IS(4)) > 0. By [30], Lemma 34, there is a line L such that #(L ∩ S) ≥ 6, contra-
dicting the minimality of S.

Now assume Z ⊂ C. Since h1(OP2(4)) = 0, the long cohomology exact sequence of C
gives h1(C, IZ,C(7)) > 0. First assume that C irreducible. Since C has arithmetic genus 1,
h1(C,F ) = 0 for each rank 1 torsion free sheaf F of degree > 0. Since deg(IZ,C(4)) ≥ 3,
we get a contradiction. Now assume that C is reducible. Since #(S ∩ D) ≤ 6 for any
reduced conic D, C has no multiple component. Write Y = L ∪ D, with D a reduced
conic. Since #(S ∩ L1) ≤ 4 for all lines L1 and #(S ∩ D1) ≤ 6 for any reduced conic D1,
we have #(S ∩ D ∩ L) ≤ 1. First, assume S ∩ D ∩ L = ∅. We get 3 ≤ #(S ∩ L) ≤ 4,
#(S ∩ D) = 9 − #(S ∩ L) and deg(ResL(Z)) ≤ 2#(S ∩ D). The residual exact sequence of D
gives h1(IResL(Z)(6)) > 0. Since deg(ResL(Z)) ≤ 12, ref. [30], Lemma 34 gives the existence
of a line R such that deg(R ∩ ResL(Z)) ≥ 8. Since S ∩ D ∩ L = ∅ and Z ⊂ C, we get that R
is a component of D (the theorem of Bezout), #(S ∩ R) = 4 and all connected components
of Z with reductions contained in R are contained in Z. Thus, deg(ResR(Z)) ≤ 10. The
residual exact sequence of R gives h1(IResR(Z)(6)) > 0, and hence, there is a line M such
that deg(M ∩ ResR(Z)) ≥ 8. We get #(S ∩ M) = 4, and hence, the conic R ∪ M contains at
least 7 points of S, which is a contradiction.

Now assume #(S ∩ D ∩ L) = 1. We get #(S ∩ L) = 4 and #(S ∩ D) = 6. The residual
exact sequence of L gives h1(IResL(Z)(6)) > 0 with deg(ResL(Z)) ≤ 11. Thus, there is a line
J such that deg(J ∩ ResL(Z)) ≥ 8. Hence, #(S ∩ J) ≥ 4 and #(S ∩ L ∩ J) ≤ 1. The reduced
conic J ∪ R contains at least 7 points of S, which is a contradiction.

(b) Assume x = 10. Take a cubic curve C such that #(S ∩ C) ≥ 9.
(b1) Assume Z ⊈ C, and hence, h1(IResC(Z)(4)) > 0 with deg(ResC(Z)) ≤ 11. Either

there is a line L such that deg(L ∩ ResC(Z)) ≥ 6 or there is a reduced conic D such that
deg(D ∩ ResD(Z)) ≥ 10.

(b1.1) Assume the existence of the line L. We get h1(IResL(Z)(6)) > 0. Since deg(ResL(Z)) ≤
14, either there is a line R such that deg(R ∩ ResL(Z)) ≥ 8 or there is a conic T such that
deg(T ∩ ResL(Z)) = 14. The conic T does not exist because it would contain at least
7 points of S. The line R does not exist because the reducible conic L ∪ R would contain at
least 7 points of S.

(b1.2) Now assume the existence of the conic D. We have h1(IResD(Z)(5)) > 0 with
deg(ResD(Z)) ≤ 10. Thus, there is a line J such that deg(J ∩ ResD(Z)) ≥ 7, and hence,
#(J ∩ S) ≥ 4. The theorem of Bezout gives J ⊂ C. Since deg(J ∩ ResD(Z)) ≥ 7, we get
C = J ∪ D. We use the proof of step (b1.1) with J instead of L.



AppliedMath 2024, 4 538

(b2) Now assume Z ⊂ C. First, assume that C is irreducible. Since C has arithmetic
genus 1, h1(C,F ) = 0 for every rank 1 torsion free sheaf F on C. Since IZ,C(7) is a rank 1
torsion free sheaf on C with positive degree, we get a contradiction.

Now assume that C is reduced. Since #(S ∩ L) ≤ 4 for all lines L and #(S ∩ D) ≤ 6 for
any reduced conic D, we have C = L∪ D, with L a line and D a reduced conic; #(L∩ S) = 4,
#(L ∩ D) = 6 and S ∩ L ∩ D) = ∅. Since S ∩ L ∩ D) = ∅ and Z ⊂ C, deg(ResL(Z)) ≤ 12.
We conclude as in step (b1).

(c) The case x = 11 is described in [12], Prop. 8.
(d) Assume x = 12. We have T(2, 7; 12)′ ̸= ∅ ([12], Th. 2). Since h0(C,OC(7)) = 21,

no minimal S is contained in a plane cubic.

Proposition 5. We have T(2, 8; x)′ ̸= ∅ if and only if x ∈ {9, 12, 13, 15}.

Proof. By Remark 6, we have 9 ≤ x ≤ 15. We have T(2, 8; 15)′ ̸= ∅ by [12], Cor. 1. The
case x = 12 is described in [12], Prop. 7. The case x = 13 is described in [12], Prop. 13.
Thus, to conclude, we only need to prove that T(2, 8; x)′ = ∅ for all x ∈ {10, 11, 14}. Fix
x ∈ {10, 11, 14}. Assume, by contradiction, T(2, 8; x)′ ̸= ∅. Fix S ∈ T(2, 8; x)′ and let Z be a
critical scheme of S. Set z := deg(Z). We have x ≤ z ≤ 2z. Since S is minimal, #(S ∩ L) ≤ 4
for all lines L and #(S ∩ D) ≤ 8 for all reduced conics D. Recall that dim |OP2(3)| = 9
and dim |OP2(4)| = 14. Fix A ⊂ S such that #A = 9. Since dim |OP2(3)| = 9, there is
|IA(3)| ̸= ∅ containing A. Among the plane cubics containing A, we take one, C, such that
w := deg(C ∩ Z) is maximal. Consider the residual exact sequence of C:

0 → IResC(Z)(5) → IZ(8) → IZ∩C,C(8) → 0 (14)

Since h1(OP2(5)) = 0, the restriction map H0(IZ∩C(8)) → H0(C, IZ∩C,C(8)) is surjective
(Remark 1). Thus, h1(IZ∩C(8)) = 0 if and only if h1(C.IZ∩C,C(8)) = 0. Since Z is critical,
the long cohomology exact sequence of (14) gives h1(IResC(Z)(5)) > 0 if Z ⊈ C. We have
deg(ResC(Z)) = z − w ≤ 2x − 9.

Observation 1. Assume C is integral. Since C has arithmetic genus 1, we have h1(C,F ) = 0 for
every positive degree rank 1 torsion free sheaf. If Z ⊂ C, we have deg(IZ,C(8)) = 24 − z > 0
for x ∈ {10, 11}. Thus, if Z ⊂ C and x ∈ {10, 11}, C is not integral. Since any reduced conic
contains at most 6 points of S, C has no multiple component.

(a) Assume x = 10.
(a1) Assume Z ⊈ C, and hence, h1(IResC(Z)(5)) > 0 with deg(ResC(Z)) ≤ 11. By [30],

Lemma 34 there is a line L such that #(Z ∩ L) ≥ 7. Thus, #(L ∩ S) ≥ 4. The minimality of S
gives #(S ∩ L) = 4. Consider the residual exact sequence of L:

0 → IResL(Z)(7) → IZ(8) → IZ∩L,L(8) → 0 (15)

Since S ⊈ L, Z ⊈ L, and hence, h1(IResL(Z)(7)) > 0. We have deg(ResL(Z)) ≤ 11 − 7 = 4,
and hence, h1(IResL(Z)(7)) = 0 ([30], Lemma 34), which is a contradiction.

(a2) Assume Z ⊂ C. Hence, S ⊂ C ([13], Lemma 2.11). By Observation 1 C is reducible
and without multiple components. Thus, C = D ∪ L, with L a line and D a reduced conic.
Since #(S ∩ L) ≤ 4 and #(S ∩ D) ≤ 6, we get #(S ∩ L) = 4, #(S ∩ D) = 6 and S ∩ D ∩ L = ∅.
Since this is true for any decomposition of C as the union of a line and a reduced conic,
D is a smooth conic. Since S ∩ L ∩ D = ∅, ResL(Z) = Z ∩ D. Thus, deg(ResL(Z)) ≤ 12.
By [30], Lemma 34 and the long cohomology exact sequence of (15) give the existence of a
line R ⊂ P2 such that deg(R ∩ ResL(Z)) ≥ 9. Since ResL(Z) ⊂ D, the theorem of Bezout
gives that R is an irreducible component of D, which is a contradiction.

(b) Assume x = 11.
(b1) Assume Z ⊈ C, and hence, h1(IResC(Z)(5)) > 0 with deg(ResC(Z)) ≤ 13. Since

5 · 3 > 13, ref. [21], Remarques at p. 116 gives that either there is a line L such that
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deg(L ∩ResC(Z)) ≥ 7 or there is a reduced conic D such that deg(D ∩ResC(Z)) ≥ 12. The
existence of the line L is excluded as in step (a1). Assume the existence of the reduced conic
D. Consider the residual exact sequence of D:

0 → IResD(Z)(6) → IZ(8) → IZ∩D,D(8) → 0 (16)

Since #(S∩D) ≤ 6, ResD(Z) ̸= ∅, and hence, h1(IResD(Z)(6)) > 0. We have deg(ResD(Z)) ≤
22 − 12 = 10. By [30], Lemma 34, there is a line R such that deg(R ∩ ResD(Z)) ≥ 8. We
conclude as in step (a1).

(b2) Assume Z ⊂ C. Hence, S ⊂ C ([13], Lemma 2.11). By Observation 1, C is reducible
and without multiple components. Thus, C = D ∪ L, with L a line and D a reduced conic.
Since #(S ∩ L) ≤ 4 and #(S ∩ D) ≤ 6, we get x ≤ 10, which is a contradiction.

(c) Assume x = 14, and hence, 14 ≤ z ≤ 28.
(c1) Assume z ≥ 25 and s ≤ 5. Take d := 8 and a = 5. We have s ≤ (d + 3)/2 and

d > a − 3 + z/a. Thus, [14], Lemma 2.9 gives a contradiction.
(c2) Assume z ≥ 25 and s = 6. Since n5 ≥ 6, n0 = 10 and n0, . . . , n5 is connected,

we have ∑5
i=0 ni ≥ 10 + 9 + 8 + 7 + 6 + 6 = 46. Thus, (1) gives z ≥ 46 − 15, which is a

contradiction.
(c3) Assume z ≥ 25 and s > 6. Since dim |OP2(7)| = 28, we get s = 7 and z = 28. Since

n6 ≥ 7, n0 = 10 and n0, . . . , n6 is connected, we get ∑6
i=0 ni ≥ 10 + 9 + 8 + 7 + 7 + 7 + 7 =

55, and hence, (1) gives z ≥ 55 − 21, which is a contradiction.
(c4) Assume z ≤ 24. Take T ∈ |OP2(5)| such that w := deg(T ∩ Z) is maximal.
Assume for the moment Z ⊈ T, and hence, h1(IResT(Z)(3)) > 0. Since dim |OP2(5)| = 20,

we have w ≥ min{20, z}, and hence, deg(ResT(Z)) ≤ 4, contradicting [30], Lemma 34.
Thus, Z ⊂ T. The restriction map H0(OP2(8)) → H0(T,OT(8)) gives the inequality

h1(T, IZ,T(8)) > 0. First, assume that T is integral. By the adjunction formula, the curve T
has arithmetic genus 6, and hence, h1(T,F ) = 0 for every rank 1 torsion free sheaf F on
T such that deg(F ) > 10. We have deg(IZ,T(8)) = 40 − z > 10, which is a contradiction.
Hence, T is reducible. Since S is minimal, #(S ∩ L) ≤ 4 for all lines L, #(S ∩ D) ≤ 6 for
any reduced conic D; #(S ∩ C) ≤ 12 for every cubic curve. Thus, T = L ∪ C, with L a line
and C an integral curve. Set α := #(S ∩ L ∩ C), β := #(S ∩ L) and γ := #(S ∩ C). We have
14 = β + γ − α, deg(ResL(Z)) ≤ 2γ − α and deg(ResC(Z)) ≤ β − α. If β = 4, we use the
residual exact sequence of L. If β ≤ 3, we use the residual exact sequence of C.

Question 3. Is T(2, 9; 18)′ = ∅? Is T(2, 9; ρ − 1)′ = ∅ for all large d?

We proved that T(2, d; ρ − 1)′ ̸= ∅ for d = 5, 6, 7.

6. Generalized Terracini Loci

Definition 1. Fix a positive integer d and a zero-dimensional scheme W ⊂ P2 such that h1(IW(d)) >
0. A zero-dimensional scheme Z ⊂ P2 is said to be a critical scheme of W in degree d if Z ⊆ W,
h1(IZ(d)) > 0 and h1(IZ′(d)) = 0 for all Z′ ⊊ Z.

Definition 1 is a key definition because if Z is as in Definition 1 and A is any zero-
dimensional scheme containing Z, then h1(IA(d)) > 0, and hence the zero-dimensional
schemes W such that h1(IW(d)) > 0 are, roughly speaking, built from its critical schemes.
The next result, Theorem 8, says that each W such that h1(IW(d)) > 0 has a critical scheme.
There are schemes W with several critical schemes (for instance the scheme 2S in [13], Th.
1.4 for odd values of d).

Theorem 8. Fix a positive integer d and a zero-dimensional scheme W ⊂ P2 such that h1(IW(d)) > 0.
(a) W has at least one critical subscheme in degree d.
(b) Let Z be any critical subscheme of Z in degree d. Then h1(IZ(d)) = 1, τ(Z) = d and the

numerical character of Z is connected.
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Proof. Let E be the set of all A ⊆ W such that h1(IA(d)) ̸= 0. Since W ∈ E, E ̸= ∅. Take
Z ∈ E with minimal degree such that h1(IZ(d)) > 0. The assumption on the minimality of
deg(Z) implies h1(IZ′(d)) = 0 for all Z′ ⊊ Z. Thus, Z is critical for W in degree d.

Let Z ⊆ W be any critical scheme of W in degree d. Since Z has subschemes of
degree deg(Z)− 1 and h1(IA(d))− h1(IB(d)) ≤ deg(B)−deg(A) for all zero-dimensional
schemes A ⊂ B, we have h1(IZ(d)) = 1, and hence, h1(IZ(t)) = 0 for all t > d. Set
s := s(Z) and z := deg(Z). Let n0, . . . , ns−1 be the numerical character of Z. Assume that
n0, . . . , ns−1 is not connected and let t be the first integer < s such that nt ≤ nt−1 − 2. By [21],
Cor. 3.2 there is a degree t curve T such that the scheme T ∩ Z has numerical character
n0, . . . , nt−1 (which is connected). Since n0 = d + 2, h1(IZ∩T(d)) > 0. The minimality of Z
gives Z = T ∩ Z. By the definition of s(Z), we get s = t, which is a contradiction.

In the next example, we give a list of possible connected components of zero-dimensional
schemes A ⊂ P2 that may be connected components of zero-dimensional schemes to which
the easy Theorem 8 may be applied. It is important to notice that for interesting schemes W,
the connected components may be completely different and with different degrees.

Example 2. For any positive integer m and any p ∈ P2, let mp denote the closed subscheme of P2

with (Ip)m as its ideal sheaf. We have (mp)red = {p}, deg(mp) = (m+2
2 ) and mp ⊂ (m + 1)p.

We have 1p = {p}. By the Terracini Lemma ([1], Cor. 1.11), the double point 2p is the scheme used
to define the Terracini loci. It is easy to check that 2p is a flat limit of sets of cardinality 3 and that
3p is flat limit of 2p and a family of sets of cardinality 3. The scheme 4p is a flat limit of a family of
union of 5 disjoint double points ([31], part 1 of Prop. 22). Degree 5 subschemes of 3p containing 2p
were used to compute secant varieties of tangential varieties of P2 [32]. General unions of schemes
4p (or its higher dimensional generalization) and double points are used to compute the dimension
of the secant varieties of many varieties.

Set Z(2; 0) = ∅. For each positive integer x and any p ∈ P2, let Z(x; p) denote the set
of all curvilinear schemes Z ⊂ P2 such that deg(Z) = x and Zred = {p}. Note that we require
that every Z ∈ Z(x; p) to be curvilinear. The curvilinearity assumption is automatic for
x = 1, 2, but it is a restriction for x > 2. The set Z(x; p) has a natural structure of a smooth
and connected quasi-projective variety of dimension x − 1 [33–36]. Since each A ∈ Z(x; p)
is connected and curvilinear, for each integer 0 ≤ y ≤ x, there is a unique A ∈ Z(y; p) such
that A ⊆ Z. Set Z(x) := ∪p∈P2Z(x; p). The set Z(x) is a connected and smooth quasi-
projective manifold of dimension x + 1. For any positive integer x and all e1, . . . , ex ∈ N, let
Z(x; e1, . . . , ex) denote the set of all (A, Z1, . . . , Zx) such that A = (p1, . . . , px) ∈ S(P2, x)
and Zi ∈ Z(ei; pi). For any (A, Z1, . . . , Zx) ∈ Z(x; e1, . . . , ex), set u(A, Z1, . . . , Zx) :=
Z1 ∪ · · · ∪ Zx ⊂ P2. The scheme u(A, Z1, . . . , Zx) is a degree e1 + · · · + ex curvilinear
scheme with exactly x connected components. Let u(Z ; x; e1, . . . , ex) denote the set of
all u(A, Z1, . . . , Zx) for some (A, Z1, . . . , Zx) ∈ Z(x; e1, . . . , ex). For all positive integers
d, x, e1, . . . , ex, let T(d; x; e1, . . . , ex) denote the set of all Z ∈ u(A, Z1, . . . , Zx) such that
h1(IZ(d)) > 0 and h0(IZ(d)) > 0. Take Z ∈ T (d; x; e1, . . . , ex). We say that Z is minimal
if h1(IW(d)) = 0 for all W ⊊ Z. Let T (d; x; e1, . . . , ex) (respectively, T (d; x; e1, . . . , ex)′)
denote the set of all Z ∈ T (d; x; e1, . . . , ex)′ (respectively, Z ∈ T (d; x; e1, . . . , ex)′) such that
⟨Z⟩ = P2.

Remark 10. Take Z ∈ T (d; x; e1, . . . , ex)′. Since h1(IZ(d)) > 0 and h1(IE(d)) = 0 for all
E ⊊ Z, we have h1(IZ(d)) = 1. Thus, h1(IZ(t)) = 0 for all t > d, and hence, τ(Z) = d.

Remark 11. Obviously, T (1; x; e1, . . . , ex) = ∅ for all positive integers x, e1, . . . , ex, while
T (1; x; e1, . . . , ex) ̸= ∅ if and only if e1 + · · ·+ ex ≥ 3.

As a particular case of Theorem 8, we get the following result.

Corollary 1. Take any Z ∈ T (d; x; e1, . . . , ex)′. Then the numerical character of Z is connected.
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Proposition 6. Fix an integer d ≥ 2. If T (d; x; e1, . . . .ex)′ ̸= ∅, then x ≥ 3 and e1 + · · ·+ ex ≤
(d+2

2 ).

Proof. We saw that x ≥ 3 (Remark 10). Fix Z ∈ T (d; x; e1, . . . .ex), assume deg(Z) > (d+2
2 ),

and take Z′ ⊂ Z such that deg(Z′) = deg(Z)− 1. Since h0(IZ(d)) > 0, h0(IZ′(d)) > 0.
Since deg(Z′) ≥ (d+2

2 ), we get h1(IZ′(d)) > 0. Thus, Z′ is not minimal.

Proposition 7. Fix positive integers x, e1, . . . , ex and d ≥ 2.
(i) We have T (d; x; e1, . . . , ex) ̸= ∅ if and only if e1 + · · ·+ ex ≥ d + 2.
(ii) Assume e1 ≥ · · · ≥ ex > 0. We have T (d; x; e1, . . . , ex) ̸= ∅ if and only if x ≥ 3 and

either e1 + · · ·+ ex ≥ 2d + 2 or e1 + · · ·+ ex−1 ≥ d + 2.

Proof. For the existence part of (i), take a closed subscheme of a line with degree e + 1 +
· · ·+ ex ≥ d + 2. Take Z ∈ T(d; x; e1, . . . , ex). By [30], Lemma 34, we have deg(Z) ≥ d + 2
and deg(Z) > d + 2 if Z is not contained in a line, concluding the proof of part (ii).

Now we consider part (ii). Obviously, we need x ≥ 3. Take a smooth conic C. If
e1 + · · ·+ ex ≥ 2d + 2 for the existence part, it is sufficient to take Z ⊂ C with x connected
components of degree e1, . . . , ex. Now assume e1 + · · ·+ ex ≤ 2d + 1. By [30], Lemma 34,
there is a line L such that deg(L ∩ Z) ≥ d + 2. Since ⟨Zreg⟩ = P2 and ex ≤ ei for all i, we
have e1 + · · ·+ ex−1 ≥ d + 2. For the existence part, we take Z1 ⊂ L with x − 1 connected
components of degree e1 + · · · = ex−1 and add a degree ex curvilinear scheme for which
the reduction is a point of P2 \ L.

Proposition 8. Fix integers d ≥ t ≥ 2. Set z := t(d + 3 − t).
(i) We have T (d; z; 1, . . . , 1)′ ̸= ∅.
(ii) Assume d ≥ t2 and z ≤ d2/4. All Z ∈ T (d; x; e1 . . . , ex)′ with e1 + · · · + ex = z

are the complete intersection of a curve of degree t and a curve of degree d + 3 − t. We have
T (d; x; e1, . . . , ex)′ = ∅ for all positive integers x and e1, . . . , ex such that e1 + · · ·+ ex < z.

Proof. To prove part (1), we take as Z a complete intersection of a general curve of degree t
and a general curve of degree d+ 3− t (Remark 3). We only use that t ≥ 2 and d+ 3− t ≥ 2,
so that ⟨Z⟩ = P2.

Now assume d ≥ t2 and z ≤ d2/4. By Theorem 1, the numerical character n0, . . . , ns−1
of any element of T(d; x; e1, . . . , ex)′, e1 + · · ·+ ex ≤ z is connected. Claim 1 of the proof of
Theorem 2 gives s ≤ (d + 3)/2. Apply Lemma 1.

7. Queries about the Maximal Non-Empty Terracini Loci

We fix an integer n ≥ 2 and an integer d ≥ 5. Set ρ := ⌈(n+d
n )/(n + 1)⌉. Recall that

T(n, d; x)′ = ∅ for all x > ρ.

Question 4. Is T(n, d; ρ)′ ̸= ∅?

From now on, we fix n ≥ 3 and d ≥ 5. For any positive integer x and any A ∈ S(Pn, x),
let BA denote the scheme-theoretic base locus of I2A(d). Obviously, BA ⊇ 2A Call DA the
schematic closure in Pn of the restriction of BA to the open subset Pn \ A of Pn. We always
assume x < ⌊(n+d

n )/(n + 1)⌋ and that A is general in S(Pn, x). With these assumptions,
h1(I2A(d)) = 0 [4–6], and hence, h0(IA(d)) = (n+d

n )− (n + 1)x ≥ n + 1 with equality if
and only if (n+d

n )/(n+ 1) ∈ Z, i.e., if and only if ρ = (n+d
n )/(n+ 1) and x = ρ− 1. By [37], a

general Y ∈ |I2A(d)| is smooth outside A and has ordinary double points at the points of A.
This implies that BA does not contain the scheme 2p for some p ∈ Pn \ A, but unfortunately,
as far as we know, it does not imply DA = ∅ (the base locus question is quite open even in
dimension 1 for singular curves [38–40]), even when h0(I2A(d)) ≥ n + 2.

Question 5. Is DA = ∅ if h0(I2A(d)) ≥ n + 2? For which values of x is DA = ∅?
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For low values of x, it easy to check that DA = ∅, but our methods are too crude to
tackle large integers x.

Remark 12. Take x ≥ n + 1 and a general A ∈ S(Pn, x). Assume DA ̸= ∅ and take p ∈ Pn \ A
in the support of A. We have h1(I2A∪2p(d)) > 0. Hence, h0(I2A∪2p(d)) > 0 if h0(I2A(d)) ≥ n+

1, i.e., if x ≤ −1 + (n+d
n )/(n + 1). Thus, A ∪ {p} ∈ T(n, d; x + 1). Now assume h0(I2A(d)) =

n + 1, i.e., ρ = (n+d
n )/(n + 1) and x = ρ − 1. In this case, we expect that DA ̸= ∅, that DA is

scheme-theoretically a finite set, and that A ∪ {p} ∈ T(n, d; x + 1)′ for all p ∈ DA.

8. Methods

There are no experimental data and no part of a proof is completed numerically. All
results are given with full proofs.

9. Conclusions

We study properties of the minimal Terracini loci, i.e., families of certain zero-dimensional
schemes, in the projective plane. Among the new results here are: a maximality theorem
and the existence of arbitrarily large gaps or non-gaps for the integers x for which the
minimal Terracini locus in degree d is non-empty. We study similar theorems for the critical
schemes of the minimal Terracini sets.

We consider more general zero-dimensional schemes and give five open questions.
Most of these question concern the extension of this paper to higher-dimensional projec-
tive space.

A different (and much more general) kind of extension would be to toric varieties.
Even just for smooth toric surfaces, an extension should come with very nice examples and,
for low cardinality sets, a full classification list. F. Galuppi, P. Santarsiero, D.A. Torrance
and E. Teixeira Turatti studied in several (non-toric) cases the first non-empty Terracini
locus [17]. In particular, they gave a full classification for all smooth Del Pezzo surfaces. All
elements of the first non-empty Terracini set are minimal. In those cases (and in particular
for Del Pezzo surfaces and for the Hirzebruch surfaces), two natural questions arise:

1. Are non-minimal Terracini loci non-empty for all numbers x ≫ 0?
2. What is the computation of the cardinality of the second non-empty Terracini locus?

For (1), there should be finitely many classes of exceptional cases, i.e., of pairs (variety,
embedding) in which all Terracini loci are empty and “almost all” the other pairs should
have non-minimal Terracini sets for all x ≫ 0. These statements are known in the case of
Veronese embeddings [13].

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All proofs are contained in the body of the paper. Data sharing not
applicable to this article as no datasets were generated or analyzed during the current study.

Acknowledgments: The author is a member of Gruppo Nazionale per le Strutture Algebriche,
Geometriche e le loro Applicazioni of Istituto Nazionale di Alta Matematica (Rome).

Conflicts of Interest: The author declares no conflicts of interest.

References
1. Ådlandsvik, B. Joins and higher secant varieties. Math. Scand. 1987, 61, 213–222. [CrossRef]
2. Abo, H.; Ottaviani, G.; Peterson, C. Induction for secant varieties of Segre varieties. Trans. Amer. Math. Soc. 2009, 361, 767–792.

[CrossRef]
3. Landsberg, J.M. Tensors: Geometry and Applications; Graduate Studies in Mathematics; American Mathematical Soc.: Providence,

RI, USA, 2012; Volume 128.

http://doi.org/10.7146/math.scand.a-12200
http://dx.doi.org/10.1090/S0002-9947-08-04725-9


AppliedMath 2024, 4 543

4. Alexander, J.; Hirschowitz, A. Un lemme d’Horace différentiel: Application aux singularité hyperquartiques de P5. J. Alg. Geom.
1, 411–426.

5. Alexander, J.; Hirschowitz, A. La méthode d’Horace éclaté: Application à l’interpolation en degré quatre. Invent. Math. 1992, 107,
585–602. [CrossRef]

6. Alexander, J.; Hirschowitz, A. Polynomial interpolation in several variables. J. Alg. Geom. 1995, 4, 201–222.
7. Abo, H. On non-defectivity of certain Segre-Veronese varieties. J. Symb. Comput. 2010, 45, 1254–1269. [CrossRef]
8. Abo, H.; Brambilla, M.C. Secant varieties of Segre-Veronese varieties Pm × Pn embedded by O(1, 2). Exp. Math. 2009, 18, 369–384.

Available online: http://projecteuclid.org/euclid.em/1259158472 (accessed on 3 February 2024). [CrossRef]
9. Abo, H.; Brambilla, M.C. New examples of defective secant varieties of Segre-Veronese varieties. Collect. Math. 2012, 63, 287–297.

[CrossRef]
10. Abo, H.; Brambilla, M.C. On the dimensions of secant varieties of Segre-Veronese varieties. Ann. Mat. Pura Appl. 2013, 192, 61–92.

[CrossRef]
11. Vannieuwenhoven, N. A condition number for the tensor rank decomposition. Linear Algebra Appl. 2017, 353, 35–86. [CrossRef]
12. Ballico, E. Terracini loci: Dimension and description of its components. Mathematics 2023, 11, 4702. [CrossRef]
13. Ballico, E.; Brambilla, M.C. On minimally Terracini finite sets of points in projective spaces. arXiv 2023, arXiv:2306.07161.
14. Ballico, E.; Brambilla, M.C. Minimal Terracini loci in the plane: Gaps and non-gaps. arXiv 2024, arXiv:2024.17930.
15. Galgano, V. Identifiability and singular locus of secant varieties to spinor varieties. arXiv 2023, arXiv:2302.05295.
16. Galgano, V.; Staffolani, R. Identifiability and singular locus of secant varieties to Grassmannians. arXiv 2022, arXiv:2212.05811.
17. Galuppi, F.; Santarsiero, P.; Torrance, D.A.; Teixeira Turatti, E. Geometry of first nonempty Terracini loci. arXiv 2023,

arXiv:2311.09067.
18. Chiantini, C.; Gesmundo, F. Decompositions and Terracini loci of cubic forms of low rank. arXiv 2023, arXiv:2302.03715.
19. Ballico, E.; Bernardi, A.; Santarsiero, P. Terracini loci for 3 points on a Segre variety. Asian J. Math. 2023, 27, 375–404. [CrossRef]
20. Ellia, P. Arithmetically Cohen-Macaulay space curves reloaded. arXiv 2011, arXiv:111.5722.
21. Ellia, P.; Peskine, C. Groupes de points de P2: Caractère et position uniforme. In Algebraic Geometry; Lecture Notes in Mathematics;

Springer: Berlin, Germany, 1990; Volume 1417, pp. 111–116.
22. Hartshorne, R. Algebraic Geometry; Springer: Berlin/Heidelberg, Germany, 1977.
23. Harris, J. On the Severi problem. Invent. Math. 1986, 84, 445–461. [CrossRef]
24. Treger, R. Plane curves with nodes. Canadian J. Math. 1989, 41, 193–212. [CrossRef]
25. Chiantini, L.; Ciliberto, C. Weakly defective varieties. Trans. Amer. Math. Soc. 2002, 454, 151–178. [CrossRef]
26. Arbarello, E.; Cornalba, M. A few remarks about the variety of irreducible plane curves of given degree and genus. Ann. Sci.

École Norm. Sup. 1983, 16, 467–488. [CrossRef]
27. Arbarello, E.; Cornalba, M. On a notable property of the morphisms of a curve with general moduli into a projective space. Rend.

Sem. Mat. Univ. Politec. Torino 1980, 38, 87–99.
28. Hirschowitz, A. La méthode d’Horace pour l’interpolation à plusieurs variables. Horace’s method for interpolation of several

variables. Manuscripta Math. 1985, 50, 337–388. [CrossRef]
29. Ciliberto, C.; Miranda, R. Interpolation on curvilinear schemes. J. Algebra 1998, 203, 677–678. [CrossRef]
30. Bernardi, A; Gimigliano, A.; Idà, M. Computing symmetric rank for symmetric tensors. J. Symbolic. Comput. 2011, 46, 34–55.

[CrossRef]
31. Galuppi, F. Collisions of fat points and applications to interpolation theory. J. Algebra 2019, 534, 100–128. [CrossRef]
32. Bernardi, A.; Catalisano, M.V.; Gimigliano, A.; Idà, M. Osculating varieties of Veronese varieties and their higher secant varieties.

Canad. J. Math. 2007, 59, 488–502. [CrossRef]
33. Bertin, J. The punctual Hilbert scheme: An introduction. In Geometric Methods in Representation Theory; France, Paris, 2012;

pp. 1–102.
34. Briançon, J. Description de HilbnC{x, y}. Invent. Math. 1977, 41, 45–89. [CrossRef]
35. Briançon, J.; Iarrobino, A. Dimension of the punctual Hilbert scheme. J. Algebra 1978, 55, 536–544. [CrossRef]
36. Granger, M. Géométrie des Schémas de Hilbert Ponctuels; Gauthier-Villars: Paris, France, 1983; pp. 1–84.
37. Chiantini, L.; Ottaviani, G.; Vannieuwenhoven, N. On generic identifiability of symmetric tensors of subgeneric rank. Trans. Amer.

Math. Soc. 2017, 369, 4021–4042. [CrossRef]
38. Bolognesi, M.; Pirola, G. Osculating spaces and diophantine equations (with an Appendix by P. Corvaja, P. and U. Zannier). Math.

Nachr. 2011, 284, 960–972. [CrossRef]
39. Kaji, H. On the tangentially degenerate curves. J. London Math. Soc. 1986, 33, 430–440. [CrossRef]
40. Kaji, H. On the tangentially degenerate curves. II. Bull. Braz. Math. Soc. New Ser. 2014, 45, 745–752. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/BF01231903
http://dx.doi.org/10.1016/j.jsc.2010.06.008
http://projecteuclid.org/euclid.em/1259158472
http://dx.doi.org/10.1080/10586458.2009.10129051
http://dx.doi.org/10.1007/s13348-011-0039-7
http://dx.doi.org/10.1007/s10231-011-0212-3
http://dx.doi.org/10.1016/j.laa.2017.08.014
http://dx.doi.org/10.3390/math11224702
http://dx.doi.org/10.4310/AJM.2023.v27.n3.a3
http://dx.doi.org/10.1007/BF01388741
http://dx.doi.org/10.4153/CJM-1989-010-x
http://dx.doi.org/10.1090/S0002-9947-01-02810-0
http://dx.doi.org/10.24033/asens.1456
http://dx.doi.org/10.1007/BF01168836
http://dx.doi.org/10.1006/jabr.1997.7241
http://dx.doi.org/10.1016/j.jsc.2010.08.001
http://dx.doi.org/10.1016/j.jalgebra.2019.06.008
http://dx.doi.org/10.4153/CJM-2007-021-6
http://dx.doi.org/10.1007/BF01390164
http://dx.doi.org/10.1016/0021-8693(78)90236-3
http://dx.doi.org/10.1090/tran/6762
http://dx.doi.org/10.1002/mana.200810159
http://dx.doi.org/10.1112/jlms/s2-33.3.430
http://dx.doi.org/10.1007/s00574-014-0072-8

	Introduction
	Preliminaries
	Proofs of Theorems 1–3
	Gaps for the Critical Schemes
	Classification for d8
	Generalized Terracini Loci
	Queries about the Maximal Non-Empty Terracini Loci
	Methods
	Conclusions
	References

