Spontaneous Imbibition and an Interface-Electrostatics-Based Model of the Transition Zone Thickness of Hydrocarbon Reservoirs and Their Theoretical Interpretations
Abstract
:1. Introduction
2. Study Background: The Transition Zone in Hydrocarbon Reservoirs
3. Theoretical Foundations
Model Derivation from Free Energy Concepts
4. Discussions
4.1. Experimental Accessibility of Model Parameters
4.2. Applicability
4.3. Implication of Model for Different Lithology
5. Summary and Conclusions
- Electrostatic theory based on the analytical solution to the Poisson Boltzmann equation provide a sound theoretical foundation for exploiting the spontaneous imbibition mechanism for determination of the oil-water transition zone,
- The model Equation obtained in this research work contains parameters that are experimentally accessible,
- The research work fills the knowledge gap related to the application of electrostatic theory to the thickness of the oil-water transition zone,
- Our model provides a solid foundation for the experimental determination of the transition zone thickness in an integrated manner like how the fundamental Darcy equation has laid down the foundation for permeability determination using Hassler core holder,
- Our model provides a generalized theoretical approach to predicting the transition zone thickness in line with observations using well established formation evaluation methods in the petroleum industry.
6. Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rose, A.W.; Wright, R.J. Geochemical exploration models for sedimentary uranium deposits. J. Geochem. Explor. 1980, 13, 153–179. [Google Scholar] [CrossRef]
- Yeend, W.; Shawe, D.R. Gold in Placer Deposits; Department of the Interior, U.S. Geological Survey Bulletin 1857-G: Dallas, TX, USA, 1989. [Google Scholar]
- Moore, G.W. Origin and Chemical Composition of Evaporite Deposits; United States Geological Survey: Washington, DC, USA, 1960. [Google Scholar]
- Civan, F. Chapter 2—Description and characterization of oil and gas reservoirs for formation damage potential. In Reservoir Formation Damage (Fourth Edition): Fundamentals, Modeling, Assessment, and Mitigation; GPP: Valbonne, France, 2023; pp. 15–36. [Google Scholar]
- Aminzadeh, F.; Dasgupta, S.N. Chapter 2—Fundamentals of Petroleum Geology. In Developments in Petroleum Science: Chapter 2—Fundamentals of Petroleum Geology; Elsevier: Amsterdam, The Netherlands, 2013; Volume 60, pp. 15–36. [Google Scholar]
- Ziemelis, K. Hydrocarbon reservoirs. Nat. Insight 2003, 426, 317. [Google Scholar] [CrossRef]
- Lim, J.-S.; Kim, J. Reservoir Porosity and Permeability Estimation from Well Logs Using Fuzzy Logic and Neural Networks. In Proceedings of the SPE Asia Pacific Oil and Gas Conference and Exhibition, Perth, Australia, 18–20 October 2004; SPE: Perth, Australia, 2004; pp. 1–9. [Google Scholar]
- Volkova, I.; Gura, D.; Aksenov, I. Abiogenic and Biogenic Petroleum Origin: A Common Theory for Geological Surveys. Asian J. Water Environ. Pollut. 2021, 18, 59–65. [Google Scholar] [CrossRef]
- Alafnan, S. Petrophysics of Kerogens Based on Realistic Structures. ACS Omega 2021, 6, 9549–9558. [Google Scholar] [CrossRef]
- Alafnan, S.; Alafnan, S.; Solling, T.; Alafnan, S.; Solling, T.; Mahmoud, M. Effect of Kerogen Thermal Maturity on Methane Adsorption Capacity: A Molecular Modeling Approach. Molecules 2020, 25, 3764. [Google Scholar] [CrossRef]
- Mahlstedt, N. Thermogenic Formation of Hydrocarbons in Sedimentary Basins. In Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–30. [Google Scholar]
- Biddle, K.T.; Wielchowsky, C.C. Hydrocarbon Traps: The Petroleum System—From Source to Trap; American Association of Petroleum Geologists: Tulsa, OK, USA, 1994; Volume 60. [Google Scholar]
- Biddle, K.T.; Wielchowsky, C.C. Hydrocarbon Trap: Chapter 13: Part III. Proocesse. AAPG Special Volume. 1994; pp. 219–235. Available online: https://archives.datapages.com/data/specpubs/methodo2/data/a077/a077/0001/0200/0219.htm (accessed on 2 February 2024).
- Wendebourg, J.; Biteau, J.-J.; Grosjean, Y. Hydrodynamics and hydrocarbon trapping: Concepts, pitfalls and insights from case studies. Mar. Pet. Geol. 2018, 96, 190–201. [Google Scholar] [CrossRef]
- Thara, Y.Y. Development of a Physical Hydrodynamic Hydrocarbon-Trap Model. In Proceedings of the SPE Annual Technical Conference and Exhibition, Dallas, TX, USA, 24–26 September 2018; SPE: Dallas, TX, USA, 2018; pp. 1–10. [Google Scholar]
- Su, Y.-L.; Fu, J.-G.; Li, L.; Wang, W.-D.; Zafar, A.; Zhang, M.; Ouyang, W.-P. A new model for predicting irreducible water saturation in tight gas reservoirs. Pet. Sci. 2020, 17, 1087–1100. [Google Scholar] [CrossRef]
- Wheaton, R. Chapter 2—Basic Rock and Fluid Properties. In Fundamentals of Applied Reservoir Engineering: Appraisal; GPP: Sophia-Antipolis, France, 2016. [Google Scholar]
- Baker, R.O.; Yarranton, H.W.; Jensen, J.L. 8—Special Core Analysis—Rock–Fluid Interactions. In Practical Reservoir Engineering and Characterization; Elsevier: Amsterdam, The Netherlands, 2015; pp. 239–295. [Google Scholar]
- Widarsono, B. Irreducible water saturation and its governing factors: Characteristics of some sandstones in western indonesia. Limitgas Sci. Publ. 2011, 34, 19–34. [Google Scholar] [CrossRef]
- Abiola, O.; Obasuyi, F.O. Transition zones analysis using empirical capillary pressure model from well logs and 3D seismic data on ‘Stephs’ field, onshore, Niger Delta, Nigeria. J. Pet. Explor. Prod. Technol. 2020, 10, 1227–1242. [Google Scholar] [CrossRef]
- Bera, A.; Belhaj, H. A comprehensive review on characterization and modeling of thick capillary transition zones in carbonate reservoirs. J. Unconv. Oil Gas Resour. 2016, 16, 76–89. [Google Scholar] [CrossRef]
- Fu, D.; Belhaj, H.; Bera, A. Modeling and simulation of transition zones in tight carbonate reservoirs by incorporation of improved rock typing and hysteresis models. J. Pet. Explor. Prod. Technol. 2018, 8, 1051–1068. [Google Scholar] [CrossRef]
- Kirkham, A.; Juma, M.B. Fluid Saturation Predictions in a “Transition Zone” Carbonate Reservoir, Abu Dhabi. GeoArabia 1996, 1, 551–556. [Google Scholar] [CrossRef]
- Akba, M.N.; Permadi, P. Estimation of Fluid-Fluid Contact and the Transition Zone: A Case Study of Low Contrast Resistivity Zone. In Proceedings of the International Petroleum Technology Conference, Bangkok, Thailand, 14–16 November 2016. [Google Scholar]
- Shen, R.; Zhang, X.; Ke, Y.; Xiong, W.; Guo, H.; Liu, G.; Zhou, H.; Yang, H. An integrated pore size distribution measurement method of small angle neutron scattering and mercury intrusion capillary pressure. Sci. Rep. 2021, 11, 17458. [Google Scholar] [CrossRef] [PubMed]
- Knight, R.J. Effects of pore structure and wettability on the electrical resistivity of partially saturated rocks—A network study. Geophysics 1997, 62, 1045–1346. [Google Scholar]
- Guo, J.; Ling, Z.; Xu, X.; Zhao, Y.; Yang, C.; Wei, B.; Zhang, Z.; Zhang, C.; Tang, X.; Chen, T.; et al. Saturation Determination and Fluid Identification in Carbonate Rocks Based on Well Logging Data: A Middle Eastern Case Study. Processe 2023, 11, 1282. [Google Scholar] [CrossRef]
- Fanchi, J.; Christiansen, R.; Heymans, M. Estimating Oil Reserves of Fields with Oil/Water Transition Zones. SPE Res. Eval. Eng. 2002, 5, 311–316. [Google Scholar] [CrossRef]
- Rahman, I.A.; Padavettan, V. Synthesis of Silica Nanoparticles by Sol-Gel: Size-Dependent Properties, Surface Modification, and Applications in Silica-Polymer Nanocomposites—A Review. J. Nanomater. 2012, 2012, 132424. [Google Scholar] [CrossRef]
- Ikpeka, P.M.; Ugwu, J.O.; Pillai, G.G.; Russell, P. Efectiveness of electrokinetic enhanced oil recovery (EK EOR): A systematic review. J. Eng. Appl. Sci. 2022, 69, 60. [Google Scholar] [CrossRef]
- Ringe, S.; Oberhofer, H.; Hille, C.; Matera, S.; Reuter, K. Function-Space-Based Solution Scheme for the Size-Modified Poisson–Boltzmann Equation in Full-Potential DFT. Chem. Theory Comput. 2016, 12, 4052–4066. [Google Scholar] [CrossRef]
- Borukhov, I.; Andelman, D.; Orland, H. Steric Effects in Electrolytes: A Modified Poisson-Boltzmann Equation. Phys. Rev. Lett. 1997, 79, 435–438. [Google Scholar] [CrossRef]
- Bossa, G.V.; May, S. Debye-Hückel Free Energy of an Electric Double Layer with Discrete Charges Located at a Dielectric Interface. Membranes 2021, 11, 129. [Google Scholar] [CrossRef]
- Kleijn, W.; Bruner, L. Derivation of the Poisson—Boltzmann equation by minimization of the helmholtz free energy using a variational principle. J. Colloid Interface Sci. 1983, 96, 20–27. [Google Scholar] [CrossRef]
- Bohinc, K.; Shrestha, A.; May, S. The Poisson-Helmholtz-Boltzmann model. Eur. Phys. J. E Soft Matter 2011, 34, 108. [Google Scholar] [CrossRef]
- Alinejad, A.; Dehghanpour, H. Evaluating porous media wettability from changes in Helmholtz free energy using spontaneous imbibition profiles. Adv. Water Resour. 2021, 157, 104038. [Google Scholar] [CrossRef]
- Rokkam, R.G.; Fox, R.O.; Muhle, M.E. Computational fluid dynamics and electrostatic modeling of polymerization fluidized-bed reactors. Powder Technol. 2010, 203, 109–124. [Google Scholar] [CrossRef]
- López-Vizcaíno, R.; Cabrera, V.; Sprocati, R.; Muniruzzaman, M.; Rolle, M.; Navarro, V.; Yustres, Á. A modeling approach for electrokinetic transport in double-porosity media. Electrochim. Acta 2022, 431, 141139. [Google Scholar] [CrossRef]
- Chowdhury, F.; Ray, M.; Sowinski, A.; Mehrani, P.; Passalacqua, A. A review on modeling approaches for the electrostatic charging of particles. Powder Technol. 2021, 2021, 104–118. [Google Scholar] [CrossRef]
- Masalmeh, S.K.; Shiekah, I.A.; Jing, X.D. Improved Characterization and Modeling of Capillary Transition Zones in Carbonate Reservoirs. SPE Res. Eval. Eng. 2007, 10, 191–204. [Google Scholar] [CrossRef]
- Schmid, K.; Alyafei, N.; Geiger, S.; Blunt, M. Analytical solutions for spontaneous imbibition: Fractional-flow theory and experimental analysis. SPE J. 2016, 21, 2308–2316. [Google Scholar] [CrossRef]
- Meng, Q.; Liu, H.; Wang, J. A critical review on fundamental mechanisms of spontaneous imbibition and the impact of boundary condition, fluid viscosity and wettability. Adv. Geo-Energy Res. 2017, 1, 1–17. [Google Scholar] [CrossRef]
- Jackson, M.D.; Valvatne, P.H.; Blunt, M.J. Prediction of Wettability Variation within an Oil/Water Transition Zone and Its Impact on Production. SPE J. 2005, 10, 185–195. [Google Scholar] [CrossRef]
- Buiting, J. Upscaling Saturation-Height Technology for Arab Carbonates for Improved Transition-Zone Characterization. SPE Res. Eval. Eng. 2011, 14, 11–24. [Google Scholar] [CrossRef]
- Buckley, J.S.; Takamura, K.; Morrow, N.R. Influence of Electrical Surface Charges on the Wetting Properties of Crude Oils. SPE Res. Eng. 1989, 4, 332–340. [Google Scholar] [CrossRef]
- Nasralla, R.A.; Nasr-El-Din, H.A. Double-Layer Expansion: Is It a Primary Mechanism of Improved Oil Recovery by Low-Salinity Waterflooding? SPE Res. Eval. Eng. 2014, 17, 49–59. [Google Scholar] [CrossRef]
- Anthony Quinn, R.S. Influence of the Electrical Double Layer in Electrowetting. Phys. Chem. B 2003, 107, 1163–1169. [Google Scholar] [CrossRef]
- Horiuchi, H.; Nikolov, A.; Wasan, D. Calculation of the surface potential and surface charge density by measurement of the three-phase contact angle. J. Colloid Interface Sci. 2012, 385, 218–224. [Google Scholar] [CrossRef]
- Ismail, M.F.; Islam, M.A.; Khorshidi, B.; Sadrzadeh, M. Prediction of surface charge properties on the basis of contact angle titration models. Mater. Chem. Phys. 2021, 258, 123933. [Google Scholar] [CrossRef]
- Chatelier, R.C.; Hodges, A.M.; Drummond, C.J.; Chan, D.Y.; Griesser, H.J. Determination of the Intrinsic Acid-Base DissociationConstant and Site Density of Ionizable Surface Groups by Capillary Rise Measurements. Langmuir 1997, 13, 3043–3046. [Google Scholar] [CrossRef]
- Zhu, X.; Tang, F.; Suzuki, T.S.; Sakka, Y. Role of the Initial Degree of Ionization of Polyethylenimine in the Dispersion of Silicon Carbide Nanoparticles. J. Am. Ceram. Soc. 2003, 86, 189–191. [Google Scholar] [CrossRef]
- Onizhuk, M.O.; Panteleimonov, A.V.; Kholin, Y.V.; Ivanov, V.V. Dissociation constants of silanol groups of silic acids: Quantum chemical estimations. J. Struct. Chem. 2018, 59, 261–271. [Google Scholar] [CrossRef]
- Rice, C.L.; Whitehead, R. Electrokinetic Flow in a Narrow Cylindrical Capillary. J. Phys. Chem. Am. Chem. 1965, 69, 4017–4024. [Google Scholar] [CrossRef]
- Keh, H.J.; Tseng, H.C. Transient Electrokinetic Flow in Fine Capillaries. J. Colloid Interface Sci. 2001, 242, 450–459. [Google Scholar] [CrossRef]
- Kesler, V.; Murmann, B.; Soh, H.T. Going beyond the Debye Length: Overcoming Charge Screening Limitations in Next-Generation Bioelectronic Sensors. ACS Nano 2020, 14, 16194–16201. [Google Scholar] [CrossRef]
- Kim, D.-S. Mesurement of point of zero charge of bentonite by solubilization technique and its dependence of surface potential on pH. Environ. Eng. Res. 2003, 4, 222–227. [Google Scholar] [CrossRef]
- Amadu, M.; Miadonye, A. Applicability of the linearized Poisson–Boltzmann theory to contact angle problems and application to the carbon dioxide–brine–solid systems. Sci. Rep. 2022, 12, 5710. [Google Scholar] [CrossRef]
- Bowden, J.; Posner, A.; Quirk, J. Ionic adsorption on variable charge mineral surfaces. Teoretical-charge development and, titration curves. Aust. J. Soil. Res. 1997, 15, 21–136. [Google Scholar]
- Luo, H.; Jougnot, D.; Jost, A.; Teng, J.; Thanh, L.D. A Capillary Bundle Model for the Electrical Conductivity of Saturated Frozen Porous Media. J. Geophys. Res. Sokid Earth 2023, 128, e2022JB025254. [Google Scholar] [CrossRef]
- Garrouch, A.A. A Modified Leverett J-Function for the Dune and Yates Carbonate Fields: A Case Study Carbonate Fields. Energy Fuels 1999, 13, 1021–1029. [Google Scholar] [CrossRef]
- Wijnhorst, R.; de Goede, T.; Bonn, D.; Shchidzadeh, N. Surfactant effects on the dynamics of capillary rise and finger formation in square capillaries. Langmuir 2020, 36, 13784–13792. [Google Scholar] [CrossRef]
- Extrand, C.; Moon, S. Experimental measurement of forces and energies associated with capillary rise in a vertical tube. J. Colloid. Interface Sci. 2013, 407, 488–492. [Google Scholar] [CrossRef]
- Andersen, P.Ø.; Salomonsen, L.; Sleveland, D.S. Characteristic Forced and Spontaneous Imbibition Behavior in Strongly Water-Wet Sandstones Based on Experiments and Simulation. Energies 2022, 15, 3531. [Google Scholar] [CrossRef]
- Qin, C.-Z.; Wang, X.; Hefny, M.; Zhao, J.; Chen, S.; Guo, B. Wetting Dynamics of Spontaneous Imbibition in Porous Media: From Pore Scale to Darcy Scale. Geophys. Res. Lett. 2022, 49, e2021GL097269. [Google Scholar] [CrossRef]
- Mattax, C.C.; Kyte, J.R. Imbibition oil recovery from fractured, water-drive reservoir. Soc. Pet. Eng. J. 1962, 2, 177–184. [Google Scholar] [CrossRef]
- Mason, G.; Morrow, N.R. Developments in spontaneous imbibition and possibilities for future work. J. Pet. Sci. Eng. 2013, 110, 268–293. [Google Scholar] [CrossRef]
- Fawad, M.; Mondol, N.H. Monitoring geological storage of CO2: A new approach. Sci. Rep. 2022, 11, 5942. [Google Scholar] [CrossRef]
- Zhang, Y.; Jackson, C.; Krevor, S. An Estimate of the Amount of Geological CO2 Storage over the Period of 1996–2020. Environ. Sci. Technol. Lett. 2022, 9, 693–698. [Google Scholar] [CrossRef]
- Diao, Y.; Zhu, G.; Cao, H.; Zhang, C.; Li, X.; Jin, X. Mesoscale Assessment of CO2 Storage Potential and Geological Suitability for Target Area Selection in the Sichuan Basin. Geofluids 2017, 2017, 9587872. [Google Scholar] [CrossRef]
- Jaafar, M.; Nasir, A.M.; Hamid, M. Measurement of Isoelectric Point of Sandstone and Carbonate Rock for Monitoring Water Encroachment. J. Appl. Sci. 2014, 14, 3349–3353. [Google Scholar] [CrossRef]
- Dang, Y.T.; Dang, M.-H.D.; Mai, N.X.; Nguyen, L.H. Room temperature synthesis of biocompatible nano Zn-MOF for the rapid and selective adsorption of curcumin. J. Sci. Adv. Mater. Devices 2020, 5, 560–565. [Google Scholar] [CrossRef]
- Raiteri, R.; Margesin, B.; Grattarola, M. An atomic force microscope estimation of the point of zero charge of silicon insulators. Sens. Actuators B Chem. 1998, 46, 126–132. [Google Scholar] [CrossRef]
- Zuyi, T.; Taiwei, C. Points of Zero Charge and Potentiometric Titrations. Adsorpt. Sci. Technol. 2003, 21, 607–616. [Google Scholar] [CrossRef]
- Revil, A.; Kessouri, P.; Torres-Verdín, C. Electrical conductivity, induced polarization, and permeability of the Fontainebleau sandstone. Geophysics 2014, 79, 303–318. [Google Scholar] [CrossRef]
- Amadu, M.; Miadonye, A. Determination of the Point of Zero Charge pH of Borosilicate Glass Surface Using Capillary Imbibition Metho. Int. J. Chem. 2017, 9, 67–84. [Google Scholar] [CrossRef]
- Kumal, R.R.; Karam, T.E.; Haber, L.H. Determination of the Surface Charge Density of Colloidal Gold Nanoparticles Using Second Harmonic Generation. J. Phys. Chem. C 2015, 119, 16200–16207. [Google Scholar] [CrossRef]
- Camposa, A.F.; Medeirosa, W.C.; Aquinoa, R.; Depeyrotb, J. Surface Charge Density Determination in Water Based Magnetic Colloids: A Comparative Study. Mater. Res. 2017, 20, 1729–1734. [Google Scholar] [CrossRef]
- Cardenas, J.F. Surface charge of silica determined using X-ray photoelectron spectroscopy. Colloids Surf. A Physicochem. Eng. Asp. 2005, 252, 213–219. [Google Scholar] [CrossRef]
- Brown, M.A.; Abbas, Z.; Kleibert, A.; Green, R.G.; Goel, A.; May, S.; Squires, T.M. Determination of Surface Potential and Electrical Double-Layer Structure at the Aqueous Electrolyte-Nanoparticle. Phys. Rev. 2016, 6, 011007–011012. [Google Scholar] [CrossRef]
- Brown, M.A.; Jordan, I.; Redondo, A.B.; Kleibert, A.; Wörner, H.J.; van Bokhoven, J.A. In Situ Photoelectron Spectroscopy at the Liquid/Nanoparticle Interface. Surf. Sci. 2013, 610, 1–6. [Google Scholar] [CrossRef]
- SCAL. Special Core Analysis. 2021. Available online: http://www.scalinc.com/specialcoreanalysis.html (accessed on 10 October 2023).
- Schrader, A.M.; Monroe, J.I.; Sheil, R.; Dobbs, H.A.; Keller, T.J.; Li, Y.; Jain, S.; Shell, M.S.; Israelachvili, J.N.; Han, S. Surface chemical heterogeneity modulates silica surface hydration. Proc. Natl. Acad. Sci. USA 2018, 115, 2890–2895. [Google Scholar] [CrossRef]
- Zhuravlev, L. Catalysis in Institutes of Higher Education; Balandin, A.A., Kobozev, N.I., Eds.; Part II; Moscow State University Press: Moscow, Russia, 1962; Volume 1, p. 52. [Google Scholar]
- Spearing, M.C.; Abdou, M.; Azagbaesuweli, G.; Kalam, M.Z. Transition Zone Behaviour: The Measurement of Bounding and Scanning Relative Permeability and Capillary Pressure Curves at Reservoir Conditions for a Giant Carbonate Reservoir. In Proceedings of the Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, United Arab Emirates, 10–13 November 2014; SPE: Abu Dhabi, United Arab Emirates, 2014. [Google Scholar]
- Man, J.; Wang, G.; Chen, Q.; Yao, Y. Investigating the role of vadose zone breathing in vapor intrusion from contaminated groundwater. J. Hazard. Mater. 2021, 416, 126272. [Google Scholar] [CrossRef]
- Pinilla, A.; Asuaje, M.; Pantoja, C.; Ramirez, L.; Gomez, J.; Ratkovich, N. CFD study of the water production in mature heavy oil fields with horizontal wells. PLoS ONE 2021, 16, e0258870. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, J.M.; Stephens, M.J.; Chang, W.; Warden, J.G. Mapping aquifer salinity gradients and effects of oil field produced water disposal using geophysical logs: Elk Hills, Buena Vista and Coles Levee Oil Fields, San Joaquin Valley, California. PLoS ONE 2022, 17, e0263477. [Google Scholar] [CrossRef] [PubMed]
- Grünberg, M.D.; von Grünberg, H.-H. Osmotic pressure of charged colloidal suspensions: A unified approach to linearized Poisson-Boltzmann theory. Phys. Rev. E 2002, 66, 011401. [Google Scholar]
- Hallez, Y.; Diatta, J.; Meireles, M. Quantitative Assessment of the Accuracy of the Poisson-Boltzmann Cell Model for Salty Suspensions. Langmuir 2014, 30, 6721–6729. [Google Scholar] [CrossRef] [PubMed]
- Abdulkarim, M.A.; Muxworthy, A.R.; Fraser, A. High temperature susceptibility measurements: A potential tool for the identification of oil-water transition zone in petroleum reservoirs. Front. Erath Sci. 2022, 10, 973385. [Google Scholar] [CrossRef]
- Larsen, J.K.; Fabricius, I.L. Interpretation of Water Saturation above the Transitional Zone in Chalk Reservoirs. SPE Res. Eval. Eng. 2004, 2, 155–163. [Google Scholar] [CrossRef]
- Faÿ-Gomord, O.; Verbiest, M.; Lasseur, E.; Caline, B.; Allanic, C.; Descamps, F.; Vandycke, S.; Swennen, R. Geological and mechanical study of argillaceous North Sea chalk: Implications for the characterisation of fractured reservoirs. Mar. Pet. Geol. 2018, 92, 962–978. [Google Scholar] [CrossRef]
- Iglauer, S.; Muggeridge, A. The Impact of Tides on the Capillary Transition Zone. Transp. Porous Media 2013, 97, 87–103. [Google Scholar] [CrossRef]
- Serne, R.J.; Arthur, R.C.; Krupka, K.M. Review of Geochemical Processes and Codes for Assessment of Radionuclide Migration Potential at Commercial LLW Sites; Pacific Northwest Laboratory: College Park, MA, USA, 1990. [Google Scholar]
- Davis, J.A.; Kent, D. Surface Complexation Modeling in Aqueous Geochemistry. Rev. Mineral. Geochem. 1990, 23, 177–244. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amadu, M.; Miadonye, A. Spontaneous Imbibition and an Interface-Electrostatics-Based Model of the Transition Zone Thickness of Hydrocarbon Reservoirs and Their Theoretical Interpretations. AppliedMath 2024, 4, 517-528. https://doi.org/10.3390/appliedmath4020027
Amadu M, Miadonye A. Spontaneous Imbibition and an Interface-Electrostatics-Based Model of the Transition Zone Thickness of Hydrocarbon Reservoirs and Their Theoretical Interpretations. AppliedMath. 2024; 4(2):517-528. https://doi.org/10.3390/appliedmath4020027
Chicago/Turabian StyleAmadu, Mumuni, and Adango Miadonye. 2024. "Spontaneous Imbibition and an Interface-Electrostatics-Based Model of the Transition Zone Thickness of Hydrocarbon Reservoirs and Their Theoretical Interpretations" AppliedMath 4, no. 2: 517-528. https://doi.org/10.3390/appliedmath4020027
APA StyleAmadu, M., & Miadonye, A. (2024). Spontaneous Imbibition and an Interface-Electrostatics-Based Model of the Transition Zone Thickness of Hydrocarbon Reservoirs and Their Theoretical Interpretations. AppliedMath, 4(2), 517-528. https://doi.org/10.3390/appliedmath4020027