Using 5-Nitroimidazole Derivatives against Neglected Tropical Protozoan Diseases: Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. 5-Nitroimidazole Derivatives with Antimalarial Activity
3.1.1. Quinoline-Based 5-Nitroimidazole Derivatives
3.1.2. 5-Nitroimidazole-2-carbaldehyde Derivatives
3.1.3. Bicyclic Nitroimidazole Drugs: Nitroimidazopyridazines
3.1.4. 2-Pyrazoline Spacer Derivatives
3.1.5. Metronidazole-Hybridized Derivatives
3.2. 5-Nitroimidazole Derivatives with Anti-Leishmanial Activity
3.2.1. Fexinidazole Derivatives
3.2.2. 2-(1-Methyl-5-nitro-1H-imidazol-2-yl)-1,3,4-thiadiazole Derivatives
3.2.3. Metronidazole Derivatives
3.2.4. Quinoline–Metronidazole Derivatives
3.2.5. Nitroimidazolyl–Benzofuranone Hybrids
Bicyclic Nitroimidazole Drugs: 3-Nitroimidazo[1,2-a]Pyridine Derivatives
Bicyclic Nitroimidazole Drugs: Nitroimidazopyridazines
3.3. 5-Nitroimidazole Derivatives against American Trypanosomiasis
3.3.1. Fexinidazole
3.3.2. Megazol
3.3.3. Metronidazole Derivatives
3.3.4. MK-436
3.3.5. Bicyclic Nitroimidazole Drugs: Nitroimidazopyridazines
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lauwaet, T.; Miyamoto, Y.; Ihara, S.; Le, C.; Kalisiak, J.; Korthals, K.A.; Ghassemian, M.; Smith, D.K.; Sharpless, K.B.; Fokin, V.V.; et al. Click chemistry-facilitated comprehensive identification of proteins adducted by antimicrobial 5-nitroimidazoles for discovery of alternative drug targets against giardiasis. PLoS Negl. Trop. Dis. 2020, 14, e0008224. [Google Scholar] [CrossRef]
- Martín-Escolano, R.; Pérez-Cordón, G.; Arán, V.J.; Marín, C.; Sánchez-Moreno, M.; Rosales, M.J. 5-Nitroindazole derivatives as potential therapeutic alternatives against Acanthamoeba castellanii. Acta Trop. 2022, 232, 106538. [Google Scholar] [CrossRef]
- Borba, J.V.V.B.; Silva, A.C.; Lima, M.N.N.; Mendonca, S.S.; Furnham, N.; Costa, F.T.M.; Andrade, C.H. Chemogenomics and bioinformatics approaches for prioritizing kinases as drug targets for neglected tropical diseases. In Advances in Protein Chemistry and Structural Biology, 1st ed.; Rossen, D., Ed.; Elsevier: San Diego, CA, USA, 2021; Volume 124, pp. 187–223. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 29, 372. [Google Scholar] [CrossRef]
- Pinheiro, L.C.S.; Feitosa, L.M.; Silveira, F.F.D.; Boechat, N. Current Antimalarial Therapies and Advances in the Development of Semi-Synthetic Artemisinin Derivatives. Acad. Bras. Cienc. 2018, 90, 1251–1271. [Google Scholar] [CrossRef]
- Feng, L.S.; Xu, Z.; Chang, L.; Li, C.; Yan, X.F.; Gao, C.; Ding, C.; Zhao, F.; Shi, F.; Wu, X. Hybrid molecules with potential in vitro antiplasmodial and in vivo antimalarial activity against drug-resistant Plasmodium falciparum. Med. Res. Rev. 2020, 40, 931–971. [Google Scholar] [CrossRef]
- Boitel, E.; Desoubeaux, G. Antiparasitic treatments in pregnant women: Update and recommendations. Med. Mal. Infect. 2020, 50, 3–15. [Google Scholar] [CrossRef]
- Álvarez-Bardón, M.; Pérez-Pertejo, Y.; Ordóñez, C.; Sepúlveda-Crespo, D.; Carballeira, N.M.; Tekwani, B.L.; Murugesan, S.; Martinez-Valladares, M.; García-Estrada, C.; Reguera, R.M.; et al. Screening Marine Natural Products for New Drug Leads against Trypanosomatids and Malaria. Mar. Drugs 2020, 18, 187. [Google Scholar] [CrossRef]
- Pedra-Rezende, Y.; Macedo, I.S.; Midlej, V.; Mariante, R.M.; Menna-Barreto, R.F.S. Different drugs, same end: Ultrastructural hallmarks of autophagy in pathogenic protozoa. Front. Microbiol. 2022, 29, 856686. [Google Scholar] [CrossRef]
- Glennon, E.K.K.; Dankwa, S.; Smith, J.D.; Kaushansky, A. Opportunities for Host-targeted Therapies for Malaria. Trends Parasitol. 2018, 34, 843–860. [Google Scholar] [CrossRef]
- Navidpour, L.; Chibale, K.; Esmaeili, S.; Ghiaee, A.; Hadj-Esfandiari, N.; Irani, M.; Ahmadi Koulaei, S.; Yassa, N. Antimalarial Activities of (Z)-2-(Nitroheteroarylmethylene)-3(2H)-Benzofuranone Derivatives: In Vitro and In Vivo Assessment and β-Hematin Formation Inhibition Activity. Antimicrob. Agents Chemother. 2021, 65, e0268320. [Google Scholar] [CrossRef]
- Figueroa-Romero, A.; Pons-Duran, C.; Gonzalez, R. Drugs for intermittent preventive treatment of malaria in pregnancy: Current knowledge and way forward. Trop. Med. Infect. Dis. 2022, 7, 152. [Google Scholar] [CrossRef] [PubMed]
- Ochora, D.O.; Mogire, R.M.; Masai, R.J.; Yeda, R.A.; Mwakio, E.W.; Amwoma, J.G.; Wakoli, D.M.; Yenesew, A.; Akala, H.M. Ex vivo and In vitro antiplasmodial activities of approved drugs predicted to have antimalarial activities using chemogenomics and drug repositioning approach. Heliyon 2023, 9, e18863. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.K.; Anand, U.; Siddiqui, W.A.; Tripathi, R. Drug Development Strategies for Malaria: With the Hope for New Antimalarial Drug Discovery—An Update. Adv. Med. 2023, 2023, 5060665. [Google Scholar] [CrossRef] [PubMed]
- Chugh, A.; Kumar, A.; Verma, A.; Kumar, S.; Kumar, P. A review of antimalarial activity of two or three nitrogen atoms containing heterocyclic compounds. Med. Chem. Res. 2020, 29, 1723–1750. [Google Scholar] [CrossRef]
- Tukulula, M.; Sharma, R.K.; Meurillon, M.; Mahajan, A.; Naran, K.; Warner, D.; Huang, J.; Mekonnen, B.; Chibale, K. Synthesis and antiplasmodial and antimycobacterial evaluation of new nitroimidazole and nitroimidazooxazine derivatives. ACS Med. Chem. Lett. 2013, 4, 128–131. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Müller, J.; Kunz, S.; Siderius, M.; Maes, L.; Caljon, G.; Müller, N.; Hemphill, A.; Sterk, G.J.; Leurs, R. 3-nitroimidazo[1,2-b]pyridazine as a novel scaffold for antiparasitics with sub-nanomolar anti-Giardia lamblia activity. Int. J. Parasitol. Drugs Drug Resist. 2022, 19, 47–55. [Google Scholar] [CrossRef]
- Lohidakshan, K.; Rajan, M.; Ganesh, A.; Paul, M.; Jerin, J. Pass and Swiss ADME collaborated in silico docking approach to the synthesis of certain pyrazoline spacer compounds for dihydrofolate reductase inhibition and antimalarial activity. Bangladesh J. Pharmacol. 2018, 13, 23. [Google Scholar] [CrossRef]
- Beteck, R.M.; Isaacs, M.; Legoabe, L.J.; Hoppe, H.C.; Tam, C.C.; Kim, J.H.; Petzer, J.P.; Cheng, L.W.; Quiambao, Q.; Land, K.M.; et al. Synthesis and in vitro antiprotozoal evaluation of novel metronidazole-Schiff base hybrids. Arch. Pharm. 2023, 356, e2200409. [Google Scholar] [CrossRef]
- Briones Nieva, C.A.; Cid, A.G.; Romero, A.I.; García-Bustos, M.F.; Villegas, M.; Bermúdez, J.M. An appraisal of the scientific current situation and new perspectives in the treatment of cutaneous leishmaniasis. Acta Trop. 2021, 221, 105988. [Google Scholar] [CrossRef]
- Varikuti, S.; Jha, B.K.; Volpedo, G.; Ryan, N.M.; Halsey, G.; Hamza, O.M.; McGwire, B.S.; Satoskar, A.R. Host-Directed Drug Therapies for Neglected Tropical Diseases Caused by Protozoan Parasites. Front. Microbiol. 2018, 9, 2655. [Google Scholar] [CrossRef]
- Pacheco-Fernandez, T.; Markle, H.; Verma, C.; Huston, R.; Gannavaram, S.; Nakhasi, H.L.; Satoskar, A.R. Field-Deployable Treatments For Leishmaniasis: Intrinsic Challenges, Recent Developments and Next Steps. Res. Rep. Trop. Med. 2023, 14, 61–85. [Google Scholar] [CrossRef] [PubMed]
- Capela, R.; Moreira, R.; Lopes, F. An overview of drug resistance in protozoal diseases. Int. J. Mol. Sci. 2019, 20, 5748. [Google Scholar] [CrossRef]
- García-Estrada, C.; Pérez-Pertejo, Y.; Domínguez-Asenjo, B.; Holanda, V.N.; Murugesan, S.; Martínez-Valladares, M.; Balaña-Fouce, R.; Reguera, R.M. Further investigations of nitroheterocyclic compounds as potential antikinetoplastid drug candidates. Biomolecules 2023, 13, 637. [Google Scholar] [CrossRef]
- Sundar, S.; Chakravarty, J.; Meena, L.P. Leishmaniasis: Treatment, drug resistance and emerging therapies. Expert Opin. Orphan Drugs 2019, 7, 1–10. [Google Scholar] [CrossRef]
- Bernhard, S.; Kaiser, M.; Burri, C.; Mäser, P. Fexinidazole for Human African Trypanosomiasis, the Fruit of a Successful Public-Private Partnership. Diseases 2022, 10, 90. [Google Scholar] [CrossRef]
- Deeks, E.D. Fexinidazole: First global approval. Drugs 2019, 79, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Wyllie, S.; Patterson, S.; Stojanovski, L.; Simeons, F.R.; Norval, S.; Kime, R.; Read, K.D.; Fairlamb, A.H. The anti-trypanosome drug fexinidazole shows potential for treating visceral leishmaniasis. Sci. Transl. Med. 2012, 4, 119re1. [Google Scholar] [CrossRef]
- Imran, M.; Khan, S.A.; Alshammari, M.K.; Alqahtani, A.M.; Alanazi, T.A.; Kamal, M.; Jawaid, T.; Ghoneim, M.M.; Alshehri, S.; Shakeel, F. Discovery, Development, Inventions and Patent Review of Fexinidazole: The First All-Oral Therapy for Human African Trypanosomiasis. Pharmaceuticals 2022, 15, 128. [Google Scholar] [CrossRef]
- Foroumadi, A.; Emami, S.; Pournourmohammadi, S.; Kharazmi, A.; Shafiee, A. Synthesis and in vitro leishmanicidal activity of 2-(1-methyl-5-nitro-1H-imidazol-2-yl)-5-substituted-1,3,4-thiadiazole derivatives. Eur. J. Med. Chem. 2005, 40, 1346–1350. [Google Scholar] [CrossRef]
- Rodríguez, M.; Gutiérrez, J.; Domínguez, J.; Peixoto, P.A.; Fernández, A.; Rodríguez, N.; Deffieux, D.; Rojas, L.; Quideau, S.; Pouységu, L.; et al. Synthesis and leishmanicidal evaluation of sulfanyl- and sulfonyl-tethered functionalized benzoate derivatives featuring a nitroimidazole moiety. Arch. Pharm. 2020, 353, e2000002. [Google Scholar] [CrossRef]
- Blanco, Z.; Mijares, M.R.; Ramírez, H.; Fernandez-Moreira, E.; Oviedo, H.J.; Rodríguez, N.M.; Charris, J.E. In vitro evaluation and in vivo efficacy of nitroimidazole-sulfanyl ethyl derivatives against Leishmania (V.) braziliensis and Leishmania (L.) mexicana. Parasitol. Res. 2021, 120, 3307–3317. [Google Scholar] [CrossRef] [PubMed]
- Rice, A.M.; Long, Y.; King, S.B. Nitroaromatic antibiotics as nitrogen oxide sources. Biomolecules 2021, 11, 267. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, A.; Chandrakar, P.; Gupta, S.; Parmar, N.; Singh, S.K.; Rashid, M.; Kushwaha, P.; Wahajuddin, M.; Sashidhara, K.V.; Kar, S. Synthesis, Biological Evaluation, Structure-Activity Relationship, and Mechanism of Action Studies of Quinoline-Metronidazole Derivatives Against Experimental Visceral Leishmaniasis. J. Med. Chem. 2019, 62, 5655–5671. [Google Scholar] [CrossRef]
- Navidpour, L.; Lima, M.L.; Milne, R.; Wyllie, S.; Hadj-Esfandiari, N.; Choudhary, M.I.; Khan, S.; Yousuf, S. Antileishmanial Activities of (Z)-2-(Nitroimidazolylmethylene)-3(2H)-Benzofuranones: Synthesis, In Vitro Assessment, and Bioactivation by NTR 1 and 2. Antimicrob. Agents Chemother. 2022, 66, e0058322. [Google Scholar] [CrossRef]
- Castera-Ducros, C.; Paloque, L.; Verhaeghe, P.; Casanova, M.; Cantelli, C.; Hutter, S.; Tanguy, F.; Laget, M.; Remusat, V.; Cohen, A.; et al. Targeting the human parasite Leishmania donovani: Discovery of a new promising anti-infectious pharmacophore in 3-nitroimidazo[1,2-a]pyridine series. Bioorg. Med. Chem. 2013, 21, 7155–7164. [Google Scholar] [CrossRef]
- Fersing, C.; Boudot, C.; Pedron, J.; Hutter, S.; Primas, N.; Castera-Ducros, C.; Bourgeade-Delmas, S.; Sournia-Saquet, A.; Moreau, A.; Cohen, A.; et al. 8-Aryl-6-chloro-3-nitro-2-(phenylsulfonylmethyl)imidazo[1,2-a]pyridines as potent antitrypanosomatid molecules bioactivated by type 1 nitroreductases. Eur. J. Med. Chem. 2018, 157, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Fersing, C.; Basmaciyan, L.; Boudot, C.; Pedron, J.; Hutter, S.; Cohen, A.; Castera-Ducros, C.; Primas, N.; Laget, M.; Casanova, M.; et al. Nongenotoxic 3-Nitroimidazo[1,2-a]pyridines Are NTR1 Substrates That Display Potent In Vitro Antileishmanial Activity. ACS Med. Chem. Lett. 2019, 10, 34–39. [Google Scholar] [CrossRef]
- Fersing, C.; Boudot, C.; Castera-Ducros, C.; Pinault, E.; Hutter, S.; Paoli-Lombardo, R.; Primas, N.; Pedron, J.; Seguy, L.; Bourgeade-Delmas, S.; et al. 8-Alkynyl-3-nitroimidazopyridines display potent antitrypanosomal activity against both T. b. brucei and cruzi. Eur. J. Med. Chem. 2020, 202, 112558. [Google Scholar] [CrossRef] [PubMed]
- Reséndiz-Mora, A.; Barrera-Aveleida, G.; Sotelo-Rodríguez, A.; Galarce-Sosa, I.; Nevárez-Lechuga, I.; Santiago-Hernández, J.C.; Nogueda-Torres, B.; Meza-Toledo, S.; Gómez-Manzo, S.; Wong-Baeza, I.; et al. Effect of B-NIPOx in Experimental Trypanosoma cruzi Infection in Mice. Int. J. Mol. Sci. 2022, 24, 333. [Google Scholar] [CrossRef] [PubMed]
- García-Huertas, P.; Cardona-Castro, N. Advances in the treatment of Chagas disease: Promising new drugs, plants and targets. Biomed. Pharmacother. 2021, 142, 112020. [Google Scholar] [CrossRef] [PubMed]
- Martín-Escolano, R.; Rosales, M.J.; Marín, C. Biological characteristics of the Trypanosoma cruzi Arequipa strain make it a good model for Chagas disease drug discovery. Acta Trop. 2022, 236, 106679. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Molina, J.A.; Crespillo-Andújar, C.; Bosch-Nicolau, P.; Molina, I. Trypanocidal treatment of Chagas disease. Enferm. Infecc. Microbiol. Clin. 2021, 39, 458–470. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, J.M.C.; Pedra-Rezende, Y.; Pereira, L.D.; de Melo, T.G.; Barbosa, H.S.; Lannes-Vieira, J.; de Castro, S.L.; Daliry, A.; Salomão, K. Benznidazole and amiodarone combined treatment attenuates cytoskeletal damage in Trypanosoma cruzi-infected cardiac cells. Front. Cell Infect. Microbiol. 2022, 12, 975931. [Google Scholar] [CrossRef] [PubMed]
- Kratz, J.M. Drug discovery for chagas disease: A viewpoint. Acta Trop. 2019, 198, 105107. [Google Scholar] [CrossRef]
- Vannier-Santos, M.A.; Suarez-Fontes, A.M.; Almeida-Silva, J.; Lifsitch Viçosa, A.; Chavez Perez, S.A.; Hasslocher-Moreno, A.M.; Parreiras Estolano da Silveira, G.; Fernandes Portela, L.; Magalhães Saraiva, R. Translational research on chagas disease: Focusing on drug combination and repositioning. In Chagas Disease—From Cellular and Molecular Aspects of Trypanosoma cruzi-Host Interactions to the Clinical Intervention, 1st ed.; Menna-Barreto, R., Ed.; IntechOpen: London, UK, 2022; pp. 1–35. [Google Scholar] [CrossRef]
- Pereira, P.M.L.; Fernandes, B.T.; Dos Santos, V.R.; Cabral, W.R.C.; Lovo-Martins, M.I.; Alonso, L.; Lancheros, C.A.C.; de Paula, J.C.; Camargo, P.G.; Suzukawa, H.T.; et al. Antiprotozoal Activity of Benzoylthiourea Derivatives against Trypanosoma cruzi: Insights into Mechanism of Action. Pathogens 2023, 12, 1012. [Google Scholar] [CrossRef]
- Francisco, A.F.; Jayawardhana, S.; Olmo, F.; Lewis, M.D.; Wilkinson, S.R.; Taylor, M.C.; Kelly, J.M. Challenges in Chagas disease drug development. Molecules 2020, 25, 2799. [Google Scholar] [CrossRef]
- Kawaguchi, W.H.; Cerqueira, L.B.; Fachi, M.M.; Campos, M.L.; Reason, I.J.M.; Pontarolo, R. Efficacy and safety of chagas disease drug therapy and treatment perspectives. In Chagas Disease—Basic Investigations and Challenges, 1st ed.; Nissapatorn, V., Oz, H.S., Eds.; InTech: London, UK, 2018; pp. 121–151. [Google Scholar] [CrossRef]
- Kratz, J.M.; Garcia Bournissen, F.; Forsyth, C.J.; Sosa-Estani, S. Clinical and pharmacological profile of benznidazole for treatment of Chagas disease. Expert. Rev. Clin. Pharmacol. 2018, 11, 943–957. [Google Scholar] [CrossRef]
- Barnadas-Carceller, B.; Martinez-Peinado, N.; Gómez, L.C.; Ros-Lucas, A.; Gabaldón-Figueira, J.C.; Diaz-Mochon, J.J.; Gascon, J.; Molina, I.J.; Pineda de Las Infantas y Villatoro, M.J.; Alonso-Padilla, J. Identification of compounds with activity against Trypanosoma cruzi within a collection of synthetic nucleoside analogs. Front. Cell Infect. Microbiol. 2022, 12, 1067461. [Google Scholar] [CrossRef]
- López-López, E.; Barrientos-Salcedo, C.; Prieto-Martínez, F.D.; Medina-Franco, J.L. In silico tools to study molecular targets of neglected diseases: Inhibition of TcSir2rp3, an epigenetic enzyme of Trypanosoma cruzi. In Advances in Protein Chemistry and Structural Biology, 1st ed.; Karabencheva-Christova, T., Christov, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 122, pp. 203–229. [Google Scholar] [CrossRef]
- Mazzeti, A.L.; Capelari-Oliveira, P.; Bahia, M.T.; Mosqueira, V.C.F. Review on Experimental Treatment Strategies Against Trypanosoma cruzi. J. Exp. Pharmacol. 2021, 13, 409–432. [Google Scholar] [CrossRef]
- Zuma, A.A.; de Souza, W. Fexinidazole interferes with the growth and structural organization of Trypanosoma cruzi. Sci. Rep. 2022, 12, 20388. [Google Scholar] [CrossRef]
- Oral Fexinidazole Dosing Regimens for the Treatment of Adults with Chronic Indeterminate Chagas Disease (FEXI12), CTG Labs—NCBI. Available online: https://clinicaltrials.gov/study/NCT03587766 (accessed on 30 September 2023).
- Ribeiro, V.; Dias, N.; Paiva, T.; Hagström-Bex, L.; Nitz, N.; Pratesi, R.; Hecht, M. Current trends in the pharmacological management of Chagas disease. Int. J. Parasitol. Drugs Drug Resist. 2020, 12, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Bahia, M.T.; Nascimento, A.F.; Mazzeti, A.L.; Marques, L.F.; Gonçalves, K.R.; Mota, L.W.; Diniz, L.D.E.F.; Caldas, I.S.; Talvani, A.; Shackleford, D.M.; et al. Antitrypanosomal activity of fexinidazole metabolites, potential new drug candidates for Chagas disease. Antimicrob. Agents Chemother. 2014, 58, 4362–4370. [Google Scholar] [CrossRef]
- da Silva Santos-Júnior, P.F.; Rocha Silva, L.; Quintans-Júnior, L.J.; Ferreira da Silva-Júnior, E. Nitro compounds against trypanosomatidae parasites: Heroes or villains? Bioorg. Med. Chem. Lett. 2022, 75, 128930. [Google Scholar] [CrossRef]
- Maya, J.D.; Bollo, S.; Nuñez-Vergara, L.J.; Squella, J.A.; Repetto, Y.; Morello, A.; Périé, J.; Chauvière, G. Trypanosoma cruzi: Effect and mode of action of nitroimidazole and nitrofuran derivatives. Biochem. Pharmacol. 2003, 65, 999–1006. [Google Scholar] [CrossRef]
- Pelozo, M.F.; Lima, G.F.S.; Cordeiro, C.F.; Silva, L.S.; Caldas, I.S.; Carvalho, D.T.; Lavorato, S.N.; Hawkes, J.A.; Franco, L.L. Synthesis of New Hybrid Derivatives from Metronidazole and Eugenol Analogues as Trypanocidal Agents. J. Pharm. Pharm. Sci. 2021, 24, 421–434. [Google Scholar] [CrossRef]
- Gupta, R.; Sharma, S.; Singh, R.; Vishwakarma, R.A.; Mignani, S.; Singh, P.P. Functionalized Nitroimidazole Scaffold Construction and Their Pharmaceutical Applications: A 1950–2021 Comprehensive Overview. Pharmaceuticals 2022, 15, 561. [Google Scholar] [CrossRef] [PubMed]
- Schmid, A.; Schmid, H. Pharmaco-toxicological mode of action of antimicrobial 5-nitroimidazole derivatives. J. Vet. Med. A Physiol. Pathol. Clin. Med. 1999, 46, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Graves, K.J.; Novak, J.; Secor, W.E.; Kissinger, P.J.; Schwebke, J.R.; Muzny, C.A. A systematic review of the literature on mechanisms of 5-nitroimidazole resistance in Trichomonas vaginalis. Parasitology 2020, 147, 1383–1391. [Google Scholar] [CrossRef]
- Pasupuleti, V.; Escobedo, A.A.; Deshpande, A.; Thota, P.; Roman, Y.; Hernandez, A.V. Efficacy of 5-nitroimidazoles for the treatment of giardiasis: A systematic review of randomized controlled trials. PLoS Negl. Trop. Dis. 2014, 8, e2733. [Google Scholar] [CrossRef]
- Aspatwar, A.; Parvathaneni, N.K.; Barker, H.; Anduran, E.; Supuran, C.T.; Dubois, L.; Lambin, P.; Parkkila, S.; Winum, J.Y. Design, synthesis, in vitro inhibition and toxicological evaluation of human carbonic anhydrases I, II and IX inhibitors in 5-nitroimidazole series. J. Enzym. Inhib. Med. Chem. 2020, 35, 109–117. [Google Scholar] [CrossRef]
- Peerzada, M.N.; Khan, P.; Khan, N.S.; Avecilla, F.; Siddiqui, S.M.; Hassan, M.I.; Azam, A. Design and Development of Small-Molecule Arylaldoxime/5-Nitroimidazole Hybrids as Potent Inhibitors of MARK4: A Promising Approach for Target-Based Cancer Therapy. ACS Omega 2020, 5, 22759–22771. [Google Scholar] [CrossRef]
- López-López, E.; Cerda-García-Rojas, C.M.; Medina-Franco, J.L. Tubulin Inhibitors: A Chemoinformatic Analysis Using Cell-Based Data. Molecules 2021, 26, 2483. [Google Scholar] [CrossRef] [PubMed]
- Zou, M.; Duan, Y.; Wang, P.; Gao, R.; Chen, X.; Ou, Y.; Liang, M.; Wang, Z.; Yuan, Y.; Wang, L.; et al. DYT-40, a novel synthetic 2-styryl-5-nitroimidazole derivative, blocks malignant glioblastoma growth and invasion by inhibiting AEG-1 and NF-κB signaling pathways. Sci. Rep. 2016, 6, 27331. [Google Scholar] [CrossRef] [PubMed]
- López-López, E.; Naveja, J.J.; Medina-Franco, J.L. DataWarrior: An evaluation of the open-source drug discovery tool. Expert. Opin. Drug Discov. 2019, 14, 335–341. [Google Scholar] [CrossRef]
- Bajorath, J.; Chávez-Hernández, A.L.; Duran-Frigola, M.; Fernández-de Gortari, E.; Gasteiger, J.; López-López, E.; Maggiora, G.M.; Medina-Franco, J.L.; Méndez-Lucio, O.; Mestres, J.; et al. Chemoinformatics and artificial intelligence colloquium: Progress and challenges in developing bioactive compounds. J. Cheminform. 2022, 14, 82. [Google Scholar] [CrossRef]
- Campos-Fernández, L.; Ortiz-Muñiz, R.; Cortés-Barberena, E.; Mares-Sámano, S.; Garduño-Juárez, R.; Soriano-Correa, C. Imidazole and nitroimidazole derivatives as NADH-fumarate reductase inhibitors: Density functional theory studies, homology modeling, and molecular docking. J. Comput. Chem. 2022, 43, 1573–1595. [Google Scholar] [CrossRef]
- The Carcinogenic Potency Project (CPDB). Available online: https://files.toxplanet.com/cpdb/index.html (accessed on 18 December 2023).
- Eke, I.G.; Eze, I.O.; Ezeudu, T.A.; Eze, U.U.; Anaga, A.O.; Onyeyili, P.A. Anti-trypanosomal activity of secnidazole in vitro and in vivo. Trop. J. Pharm. Res. 2017, 16, 535. [Google Scholar] [CrossRef]
- Oliveira, A.A.; Oliveira, A.P.A.; Franco, L.L.; Ferencs, M.O.; Ferreira, J.F.G.; Bachi, S.M.P.S.; Speziali, N.L.; Farias, L.M.; Magalhães, P.P.; Beraldo, H. 5-Nitroimidazole-derived Schiff bases and their copper(II) complexes exhibit potent antimicrobial activity against pathogenic anaerobic bacteria. Biometals 2018, 31, 571–584. [Google Scholar] [CrossRef]
- Sander, T.; Freyss, J.; von Korff, M.; Rufener, C. DataWarrior: An open-source program for chemistry aware data visualization and analysis. J. Chem. Inf. Model. 2015, 55, 460–473. [Google Scholar] [CrossRef]
- Enanga, B.; Ndong, J.M.; Boudra, H.; Debrauwer, L.; Dubreuil, G.; Bouteille, B.; Chauvière, G.; Labat, C.; Dumas, M.; Périé, J.; et al. Pharmacokinetics, metabolism and excretion of megazol in a Trypanosoma brucei gambiense primate model of human African trypanosomiasis. Preliminary study. Arzneimittelforschung 2000, 50, 158–162. [Google Scholar]
- Galasse Rando, D.G.; de Oliveira Costa, H.G.; Fernanda Heitor, T.; de Moraes, J.; Amorim Pavani, T.F. Employing “red flags” to fight the most neglected diseases: Nitroaromatic as still suitable tools to treat human and veterinary parasitosis. Curr. Top. Med. Chem. 2023, 23, 816–832. [Google Scholar] [CrossRef] [PubMed]
- Leitsch, D.; Burgess, A.G.; Dunn, L.A.; Krauer, K.G.; Tan, K.; Duchêne, M.; Upcroft, P.; Eckmann, L.; Upcroft, J.A. Pyruvate:ferredoxin oxidoreductase and thioredoxin reductase are involved in 5-nitroimidazole activation while flavin metabolism is linked to 5-nitroimidazole resistance in Giardia lamblia. J. Antimicrob. Chemother. 2011, 66, 1756–1765. [Google Scholar] [CrossRef] [PubMed]
- Sokolova, A.Y.; Wyllie, S.; Patterson, S.; Oza, S.L.; Read, K.D.; Fairlamb, A.H. Cross-resistance to nitro drugs and implications for treatment of human African trypanosomiasis. Antimicrob. Agents Chemother. 2010, 54, 2893–2900. [Google Scholar] [CrossRef] [PubMed]
- López-López, E.; Bajorath, J.; Medina-Franco, J.L. Informatics for chemistry, biology, and biomedical sciences. J. Chem. Inf. Model. 2021, 61, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Chen, A.; Chen, W.; Lai, J.; Pei, Y.; Wen, J.; Yang, C.; Luo, J.; Zhang, J.; Lei, C.; et al. Fabrication of Biodegradable and Biocompatible Functional Polymers for Anti-Infection and Augmenting Wound Repair. Pharmaceuticals 2022, 15, 120. [Google Scholar] [CrossRef]
- Jose, A.; Vijayan, V.; Sahadevan, R.; Porel, M.; Sadhukhan, S. Selective luminescent detection of 5-nitroimidazole antibiotics through self-aggregates of a single non-aromatic amino acid, L-lysine. Microchem. J. 2023, 197, 109802. [Google Scholar] [CrossRef]
- de Ilurdoz, M.S.; Sadhwani, J.J.; Reboso, J.V. Antibiotic removal processes from water & wastewater for the protection of the aquatic environment—A review. J. Water Proc. Eng. 2022, 45, 102474. [Google Scholar] [CrossRef]
Compound | R | IC50 (μM) against P. falciparum | |
---|---|---|---|
Strain 3D7 | Strain K1 | ||
3a | H | >57.37 | 1.26 ± 0.85 |
3b | 5-Cl | >65.43 | >65.43 |
3c | 5-Br | >57.12 | >57.12 |
3d | 5-CH3 | >70.11 | 1.07 ± 0.99 |
3e | 5-OCH3 | >66.39 | >66.39 |
3f | 5-I | >50.36 | 0.23 ± 0.19 |
3g | 5-NO2 | 8.57 ± 3.73 | 7.33 ± 6.45 |
3h | 6-Cl | 5.19 ± 3.24 | <6.54 × 10−4 |
3i | 6-OH | 24.40 ± 20.99 | >69.63 |
3j | 7-Cl | 25.26 ± 3.11 | 5.56 × 10−3 ± 5.00 × 10−3 |
3k | 7-CH3 | 23.47 ± 4.01 | 6.31 × 10−3 ± 3.34 × 10−3 |
3l | 7-OCH3 | 32.22 ± 6.96 | 31.03 ± 7.29 |
3m | 6,7-(OCH3)2 | >60.38 | >60.38 |
3n | 4,6-(OH)2 | >65.96 | 29.10 ± 7.94 |
4 | - | >74.29 | >74.29 |
5 | - | >70.61 | >70.61 |
CQ | 3.13 × 10−6 ± 1.76 × 10−6 | 2.06 × 10−4 ± 1.95 × 10−4 |
Compound | R | Y | NR2R3 | IC50 (μM) P. falciparum |
---|---|---|---|---|
6 | MeO | - | 6.30 ± 0.40 | |
7 | Cyclopentyloxy | - | 3.00 ± 1.90 | |
8 | - | 1.60 ± 0.70 | ||
9 | - | 0.70 ± 0.50 | ||
10 | - | 2.10 ± 0.80 | ||
11 | - | 1.10 ± 0.50 | ||
12 | - | 2.30 ± 1.40 | ||
13 | MeO | - | 33.80 ± 37.00 | |
14 | Cl | - | 7.20 ± 0.40 | |
15 | - | - | >64.00 | |
16 | - | - | >64.00 | |
17 | - | - | >64.00 | |
18 | - | - | >64.00 | |
19 | - | - | >64.00 | |
20 | - | - | >64.00 | |
21 | - | - | >64.00 | |
22 | - | - | 23.40 ± 7.20 | |
23 | - | - | >64.00 | |
24 | - | - | >64.00 | |
CQ | - | - | - | 0.10 ± 0.03 |
Compound | Structure | % Dead Parasites |
---|---|---|
25 | 25% | |
26 | 37% | |
27 | 38% | |
28 | 29% |
Compound | R | IC50 (μM) against P. falciparum Strain 3D7 |
---|---|---|
29 | - | >20 |
30 | 0.70 | |
31 | >20 | |
32 | 9.60 | |
33 | >20 | |
34 | >20 | |
35 | >20 | |
36 | >20 | |
37 | >20 | |
38 | >20 | |
39 | >20 | |
40 | 1.20 | |
41 | >20 | |
42 | >20 | |
43 | >20 | |
44 | >20 | |
45 | >20 | |
46 | 3.30 | |
47 | >20 | |
48 | 1.03 | |
49 | >20 | |
50 | >20 | |
CQ | 0.01 |
Compound | EC50 (µM) against L. donovani (Strain LdBOB) In Vitro | ED50 (µM) against L. donovani (Strain LV9) In Vivo | |||
---|---|---|---|---|---|
Promastigote | Axenic Amastigote | Amastigote (in Macrophages) | DE50 (mg/kg) | DE90 (mg/kg) | |
51 | 5.6 ± 0.2 | 2.8 ± 0.1 | >50 | 12 | 57 |
52 | 3.1 ± 0.1 | 4.5 ± 0.3 | 5.3 ± 0.1 | - | - |
53 | 4.8 ± 0.1 | 1.6 ± 0.1 | 5.3 ± 0.2 | - | - |
Miltefosine | 6.1 ± 0.3 | 4.4 ± 0.2 | 3.3 ± 0.3 | 4 | 27 |
Compound | R | IC50 (µM) against L. major | IC50 (μM) against L. donovani | |
---|---|---|---|---|
Promastigote | Axenic Amastigote | Amastigote (in Macrophages) | ||
54a | CH2 | 0.44 ± 0.14 | 0.476 | 4.76 |
54b | O | 0.42 ± 0.11 | 0.445 | - |
54c | NH | 0.19 ± 0.08 | 3.23 | - |
54d | NCH3 | 1.38 ± 0.27 | - | - |
54e | NPh | 1.63 ± 0.14 | - | - |
54f | NCOCH3 | 1.77 ± 0.32 | - | - |
54g | NCOPh | 0.48 ± 0.09 | 0.188 | 0.225 |
Miltefosina | - | 0.359 | 1.84 |
Compound | R | LC50 (mM) | |
---|---|---|---|
L. braziliensis | L. mexicana | ||
56 | - | 0.950 ± 0.032 | 2.250 ± 0.054 |
57a | 2-OCH3 | 0.417 ± 0.021 | >1 |
57b | 4-OCH3 | 0.009 ± 0.002 | 0.215 ± 0.034 |
57c | 2,3-OCH3 | 0.432 ± 0.018 | 0.734 ± 0.032 |
57d | 2,4-OCH3 | 0.009 ± 0.003 | 0.229 ± 0.05 |
57e | 2,5-OCH3 | 0.032 ± 0.024 | 0.706 ± 0.021 |
57f | 2,4,5-OCH3 | 0.908 ± 0.081 | 0.632 ± 0.355 |
57g | 3,4,5-OCH3 | 0.464 ± 0.003 | 0.352 ± 0.089 |
57h | 3-NO2–4-OCH3 | 0.253 ± 0.031 | 0.168 ± 0.035 |
57i | 3,5-CH3 | 0.585 ± 0.015 | 0.456 ± 0.017 |
57j | 4-C(CH3)3 | 0.129 ± 0.017 | 0.188 ± 0.016 |
57k | 2-NO2–5-CH3 | 0.442 ± 0.012 | 0.479 ± 0.002 |
57l | 4-CF3 | 0.356 ± 0.003 | 0.098 ± 0.005 |
58a | - | 0.013 ± 0.001 | 0.011 ± 0.002 |
58b | -OH | 0.004 ± 0.002 | 0.001 ± 0.001 |
59a | 2,4-OCH3 | 0.411 ± 0.042 | 0.420 ± 0.004 |
59b | 2,5-OCH3 | >1 | >1 |
59c | 2,4,5-OCH3 | 0.981 ± 0.049 | 0.037 ± 0.004 |
59d | 3,4,5-OCH3 | 0.023 ± 0.019 | >1 |
59e | 3-NO2–4-OCH3 | 0.134 ± 0.006 | 0.343 ± 0.075 |
59f | 3,5-CH3 | 0.120 ± 0.029 | 0.977 ± 0.180 |
59g | 4-C(CH3)3 | 0.664 ± 0.019 | 0.497 ± 0.011 |
59h | 2-NO2–5-CH3 | 0.303 ± 0.012 | 0.904 ± 0.045 |
59i | 4-CF3 | 0.464 ± 0.076 | 0.176 ± 0.025 |
Compound | IC50 (μg/mL) against Amastigotes | |
---|---|---|
L. braziliensis | L. mexicana | |
55c | 75 | 66 |
60 | 47 | 40 |
61 | 26 | 22 |
62 | 21 | 18 |
Compound | R1 | R2 | % Inhibition of L. donovani In Vitro | |||
---|---|---|---|---|---|---|
Promastigotes | Amastigotes | |||||
25 μM | 50 μM | 25 μM | 50 μM | |||
55a | 41.3 ± 3.8 | 62.2 ± 5.2 | 31.2 ± 3.5 | 68.1 ± 5.8 | ||
63a | H | Ph | 43.0 ± 5.9 | 63.0 ± 7.2 | 31.2 ± 5.0 | 66.4 ± 7.5 |
63b | H | CH3 | 77.8 ± 8.2 | 94.7 ± 2.1 | 75.2 ± 7.9 | 93.2 ± 3.8 |
63c | 6-Cl | Ph | 41.2 ± 6.0 | 58.2 ± 7.1 | 38.2 ± 6.1 | 59.2 ± 9.9 |
63d | 6-Br | Ph | 30.2 ± 4.1 | 60.8 ± 8.8 | 29.5 ± 6.3 | 65.3 ± 7.2 |
63e | 6-NO2 | Ph | NSI | NSI | NSI | 10.4 ± 2.0 |
63f | 7,8-diCl | Ph | 12.3 ± 4.6 | 26.0 ± 3.9 | NSI | NSI |
63g | 7-F,8-Cl | Ph | NSI | NSI | NSI | 12.1 ± 3.3 |
63h | H | Ph | 78.2 ± 9.1 | 93.2 ± 4.4 | 45.3 ± 5.2 | 67.7 ± 8.2 |
63i | H | CH3 | 85.8 ± 6.4 | 94.4 ± 1.2 | 83.2 ± 7.3 | 93.8 ± 2.5 |
63j | 6-Cl | Ph | 45.3 ± 5.0 | 65.8 ± 7.2 | 34.2 ± 5.2 | 64.4 ± 7.0 |
63k | 6-Br | Ph | 41.3 ± 5.2 | 63.9 ± 7.3 | 33.8 ± 4.8 | 60.3 ± 7.2 |
63l | 7,8-diCL | Ph | 38.2 ± 5.1 | 61.7 ± 7.7 | 12.1 ± 3.0 | 27.2 ± 4.5 |
63m | 7-F,8-Cl | Ph | 34.4 ± 5.1 | 59.1 ± 6.4 | 23.4 ± 4.3 | 63.6 ± 7.2 |
Ql | 42.4 ± 3.1 | 80.2 ± 5.2 | 64.5 ± 3.8 | 83.6 ± 4.3 | ||
Ms | 97.2 ± 0.7 | 99.5 ± 0.2 | 98.3 ± 0.7 | 99.2 ± 0.3 |
Compound | R1 | R2 | % Inhibition of L. donovani In Vivo | |||
---|---|---|---|---|---|---|
Liver | Spleen | |||||
25 mg/kg | 50 mg/kg | 25 mg/kg | 50 mg/kg | |||
55a | - | - | NSI | 40.8 | NSI | 36.6 |
63b | H | CH3 | NSI | >50 | NSI | >50 |
63i | H | CH3 | >62 | >80.3 | >62 | >82.3 |
Ql | NSI | 58.2 | NSI | 55.2 | ||
Ms | >98 | Ud | >98 | Ud |
Compound | R1 | IC50 (µM) | Infection Rate IC50 (μM) | |
---|---|---|---|---|
L. major Promastigotes | L. donovani Axenic Amastigotes | L. donovani Intracellular Amastigotes | ||
64a | H | 1.29 ± 1.10 | 0.063 ± 0.007 | >4.06 |
64b | 5-Cl | 63.33 ± 0.50 | - | - |
64c | 5-Br | 46.20 ± 0.53 | - | - |
64d | 5-CH3 | 11.86 ± 0.04 | 0.284 ± 0.017 | >11.58 |
64e | 5-OCH3 | 7.44 ± 0.10 | 0.435 ± 0.269 | >10.96 |
64f | 5-I | 66.33 ± 0.92 | - | - |
64g | 5-NO2 | 42.79 ± 0.57 | - | - |
64h | 6-Cl | 21.13 ± 0.28 | - | - |
64i | 6-CH3 | 53.68 ± 0.18 | - | - |
64j | 6-OCH3 | 39.51 ± 0.01 | - | - |
64k | 6-OH | 66.0 ± 1.10 | - | - |
64l | 7-Cl | 26.94 ± 1.22 | - | - |
64m | 7-CH3 | 30.00 ± 0.35 | - | - |
64n | 7-OCH3 | 1.18 ± 0.90 | 0.016 ± 0.002 | >3.65 |
64o | 6,7-(OCH3)2 | 38.95 ± 0.23 | - | - |
65 | H | 84.48 ± 0.04 | - | - |
Compound | R1 | R2 | R3 | IC50 (μM) |
---|---|---|---|---|
L. donovani Promastigotes | ||||
66a | -H | -H | -H | >50 |
66b | -H | -H | -CH3 | >50 |
66c | -H | -H | Cl-CH2- | 15.1 (±1.2) |
66d | -H | -H | C6H5-SO2-CH2- | >50 |
66e | -I | -H | C6H5-SO2-CH2- | 12.6 (±0.8) |
66f | -I | -H | 4-CH3-C6H4-SO2-CH2- | 39.2 (±0.4) |
66g | -I | -H | 4-Cl-C6H4-SO2-CH2- | 29.1 (±1.0) |
66h | -Cl | -H | C6H5-SO2-CH2- | 18.2 (±0.6) |
66i | -Cl | -H | 4-CH3-C6H4-SO2-CH2- | >50 |
66j | -Cl | -H | 4-Cl-C6H4-SO2-CH2- | 23.0 (±0.8) |
66k | -Br | -H | Cl-CH2- | 9.6 (±0.8) |
66l | -Br | -H | C6H5-SO2-CH2- | 14.0 (±0.8) |
66m | -Br | -H | 4-CH3-C6H4-SO2-CH2 | 44.1 (±2.8) |
66n | -Br | -H | 4-Cl-C6H4-SO2-CH2- | 45.4 (±3.6) |
66o | -Br | -H | 4-Br-C6H4-SO2-CH2- | 24.3 (±1.1) |
66p | -Br | -H | 4-I-C6H4-SO2-CH2- | >50 |
66q | -Br | -H | 4-F-C6H4-SO2-CH2- | >50 |
66r | -Br | -H | 4-CF3-C6H4-SO2-CH2- | >50 |
66s | -Br | -H | 4-OCH3-C6H4-SO2-CH2- | >50 |
66t | -Br | -H | CH3-SO2-CH2- | >50 |
66u | -Br | -H | 4-C6H5-C6H4-SO2-CH2- | >50 |
66v | -Br | -H | C6H5-S-CH2- | >50 |
66w | 2-CH3-C6H4- | -H | C6H5-SO2-CH2- | >50 |
66x | 3,4,5-tri-OCH3-C6H2- | -H | C6H5-SO2-CH2- | >50 |
66y | -Br | -Br | C6H5-SO2-CH2- | 1.8 (±0.8) |
Miltefosine | 3.1 (±0.06) | |||
Amphotericin B | 0.06 (±0.02) |
Compound | R | LC50 (mM) |
---|---|---|
L. infantum Axenic Amastigotes | ||
66y | - | 4.4 ± 0.8 |
67a | Ph- | 1.6 ± 0.6 |
67b | 4-((C2H5)2N)-Ph- | 2.5 ± 0.5 |
67c | 4-CHO-Ph- | 3.8 ± 0.3 |
67d | 4-OH-Ph- | 3.0 ± 0.8 |
67e | 4-CH2OH-Ph- | 1.5 ± 0.4 |
67f | 3-CH2OH-Ph- | 1.4 ± 0.2 |
67g | 2-CH2OH-Ph- | >10 |
67h | 4-F-Ph- | 1.3 ± 0.2 |
67i | 3-F-Ph- | 1.7 ± 0.5 |
67j | 3-CF3-Ph- | 1.1 ± 0.3 |
67k | 2-CF3-Ph- | 1.6 ± 0.4 |
67l | Pyridin-3-yl- | 2.0 ± 0.6 |
67m | Pyridin-4-yl- | 3.0 ± 0.8 |
Miltefosine | 0.08 ± 0.02 | |
Amphotericin B | 0.06 ± 0.001 |
Compound | IC50 (µM) | ||
---|---|---|---|
L. donovani Promastigotes | L. infantum Axenic Amastigotes | L. infantum Intramacrophage Amastigotes | |
1.8 ± 0.8 | 4.4 ± 0.08 | 5.5 ± 0.2 | |
1.3 ± 0.2 | 1.4 ± 0.2 | >10 | |
1.2 ± 0.4 | 3.0 ± 0.8 | 2.3 ± 0.6 | |
Miltefosine | 3.1 ± 0.2 | 0.8 ± 0.2 | 4.3 ± 1.7 |
Amphotericin B | 0.07 ± 0.01 | 0.06 ± 0.001 | 0.4 ± 0.01 |
Compound | R1 | IC50 (μM) |
---|---|---|
Promastigotes of L. donovani | ||
68a | C6H5- | 1.7 ± 0.1 |
68b | 4-Br-C6H4- | 1.0 ± 0.3 |
68c | 2-Cl-C6H4- | 1.4 ± 0.3 |
68d | 3-Cl-C6H4- | 0.7 ± 0.1 |
68e | 4-Cl-C6H4- | 1.0 ± 0.3 |
68f | 2-F-C6H4 | 1.2 ± 0.3 |
68g | 3-F-C6H4- | 1.2 ± 0.2 |
68h | 4-F-C6H4- | 1.2 ± 0.3 |
68i | 2-CH3O-C6H4- | 2.3 ± 0.2 |
68j | 3-CH3O-C6H4- | 2.3 ± 0.4 |
68k | 4-CH3O-C6H4- | 1.5 ± 0.3 |
68l | 2-CF3-C6H4- | 1.5 ± 0.3 |
68m | 3-CF3-C6H4- | 1.3 ± 0.2 |
68n | 4-CF3-C6H4- | 2.1 ± 0.3 |
68o | 2-CH3-C6H4- | 1.7 ± 0.3 |
68p | 3-CH3-C6H4- | 1.4 ± 0.2 |
68q | 4-CH3-C6H4- | 1.4 ± 0.2 |
68r | 4-iprop-C6H4- | 1.6 ± 0.1 |
68s | 4-(CH2COOH)-C6H4- | 65.6 ± 1.3 |
68t | 2,3-di-Cl-C6H3- | 2.0 ± 0.1 |
68u | 2,4-di-Cl-C6H3- | 1.7 ± 0.1 |
68v | 2,5-di-Cl-C6H3- | 1.3 ± 0.1 |
Miltefosine | 3.1 ± 0.2 | |
Pentamine | 6.0 ± 0.8 | |
Amphotericin B | 0.07 ± 0.01 |
Compound | IC50 (μM) | |||
---|---|---|---|---|
L. Donovan Intramacrophage Amastigotes | L. infantum Axenic Amastigotes | L. major Promastigotes | L. major Intramacrophage Amastigotes | |
68b | 3.5 ± 0.3 | 9.0 ± 1.4 | 1.3 ± 0.2 | 5 |
68e | 1.3 ± 0.1 | 1.7 ± 0.3 | 1.3 ± 0.2 | 2.1 ± 0.1 |
Miltefosine | 4.3 ± 1.7 | 0.06 ± 0.001 | - | - |
Amphotericin B | 0.4 ± 0.01 | 0.8 ± 0.2 | 0.6 ± 0.08 | 0.2 ± 0.07 |
Compound | R | IC50 (mM) |
---|---|---|
L. infantum Axenic Amastigotes | ||
70a | 1.3 ± 0.1 | |
70b | 1.6 ± 0.1 | |
70c | 1.0 ± 0.2 | |
70d | 3.9 ± 0.1 | |
70e | 7.4 ± 0.5 | |
70f | 4.7 ± 0.2 | |
70g | 3.0 ± 0.4 | |
70h | 1.6 ± 0.7 | |
70i | 1.7 ± 0.2 | |
70j | 1.0 ± 0.4 | |
70k | >62.5 | |
Miltefosine | 3.1 ± 0.2 | |
Amphotericin B | 0.07 ± 0.01 |
Compound | IC50 (μM) against L. infantum |
---|---|
6 | 27.4 ± 25.3 |
7 | 25.9 ± 24.4 |
8 | 32.5 ± 0.0 |
9 | 32.5 ± 0.0 |
10 | 8.1 ± 0.0 |
11 | 30.6 ± 2.3 |
12 | 11.8 ± 7.5 |
13 | 26.4 ± 8.6 |
14 | 28.9 ± 31.0 |
15–20 | >64.0 |
21 | 35.3 ± 4.0 |
22 | >64.0 |
23 | 11.7 ± 1.4 |
24 | 46.9 ± 5.5 |
Miltefosine | 10.3 ± 1.3 |
Compound | IC50 (µM) | ||
---|---|---|---|
Tulahuen | LQ | Brener | |
3.75 | 4.24 | 2.90 | |
38.11 ± 0.10 | 67.30 ± 2.90 | 32.27 ± 2.70 | |
7.46 ± 0.30 | 10.29 ± 0.10 | 7.44 ± 0.70 | |
34.16 ± 2.90 | - | 31.16 ± 0.50 |
Compound | IC50 (µM) | |
---|---|---|
Epimastigotes | Tripomastigotes | |
55a | 191 ± 8 | 178 ± 20 |
602 ± 23 | 601 ± 1 | |
115 ± 24 | 110 ± 5 | |
52 ± 14 | 10 ± 1 | |
33 ± 3 | 17 ± 2 | |
BNZ | 29 ± 5 | 7 ± 1 |
Compound | IC50 (μM) against T. cruzi |
---|---|
6 | 5.9 ± 4.5 |
7 | 2.2 ± 0.0 |
8 | >64.0 |
9 | 31.8 ± 12.1 |
10 | 2.1 ± 0.0 |
11 | 11.2 ± 7.9 |
12 | 2.1 ± 0.1 |
13 | 50.9 ± 4.7 |
14 | 5.4 ± 4.1 |
15 | >64.0 |
16 | >64.0 |
17 | 32.3 ± 1.1 |
18 | 33.5 ± 1.1 |
19 | 39.9 ± 3.7 |
20 | >64.0 |
21 | >64.0 |
22 | 8.6 ± 0.2 |
23 | 18.9 ± 13.9 |
24 | 29.7 ± 5.7 |
Miltefosine | 2.5 ± 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vichi-Ramírez, M.M.; López-López, E.; Soriano-Correa, C.; Barrientos-Salcedo, C. Using 5-Nitroimidazole Derivatives against Neglected Tropical Protozoan Diseases: Systematic Review. Future Pharmacol. 2024, 4, 222-255. https://doi.org/10.3390/futurepharmacol4010015
Vichi-Ramírez MM, López-López E, Soriano-Correa C, Barrientos-Salcedo C. Using 5-Nitroimidazole Derivatives against Neglected Tropical Protozoan Diseases: Systematic Review. Future Pharmacology. 2024; 4(1):222-255. https://doi.org/10.3390/futurepharmacol4010015
Chicago/Turabian StyleVichi-Ramírez, Micheel M., Edgar López-López, Catalina Soriano-Correa, and Carolina Barrientos-Salcedo. 2024. "Using 5-Nitroimidazole Derivatives against Neglected Tropical Protozoan Diseases: Systematic Review" Future Pharmacology 4, no. 1: 222-255. https://doi.org/10.3390/futurepharmacol4010015
APA StyleVichi-Ramírez, M. M., López-López, E., Soriano-Correa, C., & Barrientos-Salcedo, C. (2024). Using 5-Nitroimidazole Derivatives against Neglected Tropical Protozoan Diseases: Systematic Review. Future Pharmacology, 4(1), 222-255. https://doi.org/10.3390/futurepharmacol4010015