Ginger-Derived Compounds Alleviate Oxidative Stress and Genotoxicity in Trypanosoma evansi Infection: An Integrated In Vivo and In Silico Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Extract Preparation and Phytochemical Profiling
2.2. Acute Toxicity Assay
2.3. Isolation and Propagation of T. evansi
2.4. Experimental Animals and Study Design
2.5. Ligand Preparation
2.6. Protein Sequence Retrieval and Homology Modeling Proteins
2.7. Protein Preparation, Site Map Analysis, Receptor Grid Generation, Ligand Docking, and Free Energy Calculation
2.8. ADMET Analysis
2.9. Molecular Dynamic Simulations
2.10. Statistical Analysis
3. Results
3.1. Phytochemical Profiling
3.2. Acute Toxicity Assay
3.3. Effect of Treatment on Survival of Infected Mice
3.4. Comparison of Parasitemia
3.5. Impact of Treatment of Body Weight
3.6. Hematobiochemical Changes
3.7. Oxidative Stress and Genotoxicity in Brain Tissue
3.8. Ligand Docking and Free Binding Energy Calculations
3.9. ADMET Analysis
3.10. Molecular Dynamics Simulation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MZ | Methanolic extract of Zingiber officinale |
T. evansi | Trypanosoma evansi |
TC | Treated Control |
UC | Untreated Control |
GC-MS | Gas Chromatography–Mass Spectrometry |
HPLC | High-Performance Liquid Chromatography |
PSG | Phosphate Saline Glucose |
DPI | Days Post-Infection |
CAT | Catalase |
MDA | Malondialdehyde |
SOD | Superoxide Dismutase |
ALT | Alanine Transaminase |
AST | Aspartate Transaminase |
Hb | Hemoglobin |
RBC | Red Blood Cells |
TLC | Total Leukocyte Count |
Hct | Hematocrit |
MCV | Mean Corpuscular Volume |
MCH | Mean Corpuscular Hemoglobin |
MCHC | Mean Corpuscular Hemoglobin Concentration |
A/G Ratio | Albumin/Globulin Ratio |
GDI | Genetic Damage Index |
MD | Molecular Dynamics |
XP | Extra Precision (Docking Mode) |
vdW | Van der Waals |
ADMET | Absorption, Distribution, Metabolism, Excretion, and Toxicity |
QPlog Po/w | Octanol/Water Partition Coefficient (LogP) |
QPlog S | Predicted Aqueous Solubility |
QPlog HERG | Predicted HERG Channel Blockage |
QPlog BB | Predicted Blood-Brain Barrier Permeability |
QPlog Kp | Predicted Skin Permeability |
SASA | Solvent Accessible Surface Area |
FISA | Hydrophilic Interaction Surface Area |
PSA | Polar Surface Area |
SWISS-MODEL | Swiss Automated Homology Modeling Server |
RMSD | Root Mean Square Deviation |
PI3K | Phosphatidylinositol-3-Kinase |
NF-κB | Nuclear Factor kappa-light-chain-enhancer of activated B cells |
TNF-α | Tumor Necrosis Factor Alpha |
iNOS | Inducible Nitric Oxide Synthase |
AKR1B10 | Aldo-Keto Reductase Family 1 Member B10 |
MRP E | Multidrug Resistance Protein E |
TbAT1 | Trypanosoma brucei Adenosine Transporter 1 |
References
- Baker, R.E.; Mahmud, A.S.; Miller, I.F.; Rajeev, M.; Rasambainarivo, F.; Rice, B.L.; Takahashi, S.; Tatem, A.J.; Wagner, C.E.; Wang, L.-F. Infectious disease in an era of global change. Nat. Rev. Microbiol. 2022, 20, 193–205. [Google Scholar] [CrossRef]
- Iqbal, M.S.; Akbar, H.; Sarfraz-ur-Rahman, S.I.; Nabi, H.; Hussain, N.; MI, R. Optimization of “loop mediated isothermal amplification” lamp technique for the molecular diagnosis of surra in domestic animals. Vet. Sci. One Health J. 2022, 1, 1–15. [Google Scholar]
- Aregawi, W.G.; Agga, G.E.; Abdi, R.D.; Büscher, P. Systematic review and meta-analysis on the global distribution, host range, and prevalence of Trypanosoma evansi. Parasites Vectors 2019, 12, 1–25. [Google Scholar] [CrossRef]
- Sengupta, P.P.; Jacob, S.S.; Chandu, A.G.S.; Das, S. Silent Trypanosoma evansi infection in humans from India revealed by serological and molecular surveys, and characterized by variable surface glycoprotein gene sequences. Acta Trop. 2022, 229, 106369. [Google Scholar] [CrossRef]
- Jain, P.; Goyal, V.; Agrawal, R. An atypical Trypanosoma lewisi infection in a 22-day-old neonate from India: An emergent zoonosis. Indian. J. Pathol. Microbiol. 2023, 66, 199–201. [Google Scholar] [CrossRef]
- Diall, O.; Desquesnes, M.; Faye, B.; Dia, M.L.; Jacquiet, P.; Sazmand, A.; Otranto, D.; Touratier, L. Development of a control strategy towards elimination of Trypanosoma evansi infection (surra) in camels in Africa. Acta Trop. 2022, 234, 106583. [Google Scholar] [CrossRef]
- Kasozi, K.I.; MacLeod, E.T.; Ntulume, I.; Welburn, S.C. An update on African trypanocide pharmaceutics and resistance. Front. Vet. Sci. 2022, 9, 828111. [Google Scholar] [CrossRef]
- Mdachi, R.E.; Ogolla, K.O.; Auma, J.E.; Wamwiri, F.N.; Kurgat, R.K.; Wanjala, K.B.; Mugunieri, L.G.; Alusi, P.M.; Chemuliti, J.K.; Mukiria, P.W. Variation of sensitivity of Trypanosoma evansi isolates from Isiolo and Marsabit counties of Kenya to locally available trypanocidal drugs. PLoS ONE 2023, 18, e0281180. [Google Scholar] [CrossRef] [PubMed]
- Kayser, O.; Masihi, K.N.; Kiderlen, A.F. Natural products and synthetic compounds as immunomodulators. Expert. Rev. Anti-Infect. Ther. 2003, 1, 319–335. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef]
- Nandi, S.; Rahman, M.Z.; Siraj, S.; Ahmed, S.; Ahsan, M.A.; Sultana, N.; Bhuiyan, M.N.H.; Rahim, M.M.; Saleh-e-In, M.M.; Roy, S.K. Quality composition and biological significance of the Bangladeshi and China ginger (Zingiber officinale Rosc.). J. Microbiol. Biotechnol. Food Sci. 2013, 2, 2283–2290. [Google Scholar]
- Mahboubi, M. Zingiber officinale Rosc. essential oil, a review on its composition and bioactivity. Clin. Phytoscience 2019, 5, 1–12. [Google Scholar] [CrossRef]
- Sanderson, L.; Bartlett, A.; Whitfield, P. In vitro and in vivo studies on the bioactivity of a ginger (Zingiber officinale) extract towards adult schistosomes and their egg production. J. Helminthol. 2002, 76, 241–247. [Google Scholar] [CrossRef]
- Moazeni, M.; Nazer, A. In vitro lethal effect of Zingiber officinale R. on protoscolices of hydatid cyst from sheep liver. Microbiol. Res. 2011, 2, e25. [Google Scholar] [CrossRef]
- Merawin, L.; Arifah, A.; Sani, R.; Somchit, M.; Zuraini, A.; Ganabadi, S.; Zakaria, Z. Screening of microfilaricidal effects of plant extracts against Dirofilaria immitis. Res. Vet. Sci. 2010, 88, 142–147. [Google Scholar] [CrossRef]
- El-Melegy, M.; El-Saify, G.; Hassab-El-Nabi, S. Evaluation of therapeutic effect of ginger compared to flubendazole on experimental trichinelosis in mice. Egyp J. Med. Sci. 2006, 27, 25–48. [Google Scholar]
- Montazeri, M.; Sharif, M.; Sarvi, S.; Mehrzadi, S.; Ahmadpour, E.; Daryani, A. A systematic review of in vitro and in vivo activities of anti-Toxoplasma drugs and compounds (2006–2016). Front. Microbiol. 2017, 8, 228484. [Google Scholar] [CrossRef] [PubMed]
- Kobo, P.; Erin, P.; Suleiman, M.; Aliyu, H.; Tauheed, M.; Muftau, S.; Mamman, M. Antitrypanosomal effect of methanolic extract of Zingiber officinale (ginger) on Trypanosoma brucei brucei-infected Wistar mice. Vet. World 2014, 7, 770–775. [Google Scholar] [CrossRef]
- Padhy, I.; Mahapatra, A.; Banerjee, B.; Sharma, T. Computational approaches in drug discovery from phytochemicals. In Phytochemistry, Computational Tools and Databases in Drug Discovery; Elsevier: Amsterdam, The Netherlands, 2023; pp. 57–88. [Google Scholar]
- Sharif, M.F.; Bennett, M.T. The effect of different methods and solvents on the extraction of polyphenols in ginger (Zingiber officinale). J. Teknol. 2016, 78, 49–54. [Google Scholar] [CrossRef]
- El-Kady, A.M.; Al-Megrin, W.A.I.; Abdel-Rahman, I.A.; Sayed, E.; Alshehri, E.A.; Wakid, M.H.; Baakdah, F.M.; Mohamed, K.; Elshazly, H.; Alobaid, H.M. Ginger is a potential therapeutic for chronic toxoplasmosis. Pathogens 2022, 11, 798. [Google Scholar] [CrossRef]
- Khan, S.; Arshad, S.; Masood, I.; Arif, A.; Abbas, S.; Qureshi, A.W.; Parveen, A.; Seemab Ameen, Z. GC–MS Analysis of Persicaria bistorta: Uncovering the Molecular Basis of Its Traditional Medicinal Use. Appl. Biochem. Biotechnol. 2024, 196, 2270–2288. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, W.; Tipu, M.Y.; Khan, M.u.R.; Akbar, H.; Anjum, A.A.; Omer, M.O. Molecular characterization, oxidative stress-mediated genotoxicity, and hemato-biochemical changes in domestic water buffaloes naturally infected with Trypanosoma evansi under field conditions. Pathogens 2025, 14, 66. [Google Scholar] [CrossRef]
- Baldissera, M.D.; Souza, C.F.; Riéffel, R.C.; Velho, M.C.; Ramos, A.P.; Nascimento, K.; Sagrillo, M.R.; Ourique, A.F.; da Silva, A.S.; Stefani, L.M. Protective effect of nerolidol-loaded in nanospheres against cerebral damage caused by Trypanosoma evansi. N-S Arch. Pharmacol. 2018, 391, 753–759. [Google Scholar] [CrossRef]
- Herbert, W.; Lumsden, W. Trypanosoma brucei: A rapid “matching” method for estimating the host’s parasitemia. Exp. Parasitol. 1976, 40, 427–431. [Google Scholar] [CrossRef]
- Committee for the Update of the Guide for the Care and Use of Labotayory Animals; Institute for Laboratory Animals Research; Division on Earth and Life Studies; National Research Council. Guide for the Care and Use of Laboratory Animals, 8th ed.; The National Academies Press: Washington, DC, USA, 2010. [Google Scholar]
- Singh, T.B.; Mukhopadhayay, S.K.; Sar, T.K.; Ganguly, S. Acetamiprid induces toxicity in mice under experimental conditions with prominent effect on the hematobiochemical parameters. J. Drug Metab. Toxicol. 2012, 3, 134. [Google Scholar] [CrossRef]
- Monzem, S.; Gohin, S.; Yagüe Ballester, R.; Lopes de Souza, R.; Meeson, R.; Pitsillides, A.A. An examination of two different approaches for the study of femoral neck fracture: Towards a more relevant rodent model. Proc. Inst. Mech. Eng. Part. H J. Eng. Med. 2022, 236, 199–207. [Google Scholar] [CrossRef]
- Nishikimi, M.; Rao, N.A.; Yagi, K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophys. Res. Commu. 1972, 46, 849–854. [Google Scholar] [CrossRef]
- Bakar, E.; Ulucam, E.; Cerkezkayabekir, A. Protective effects of proanthocyanidin and vitamin E against toxic effects of formaldehyde in kidney tissue. Biotec. Histochem. 2015, 90, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Ranjith, H.V.; Sagar, D.; Kalia, V.K.; Dahuja, A.; Subramanian, S. Differential Activities of Antioxidant Enzymes, Superoxide Dismutase, Peroxidase, and Catalase vis-à-vis Phosphine Resistance in Field Populations of Lesser Grain Borer (Rhyzopertha dominica) from India. Antioxidants. 2023, 12, 270. [Google Scholar] [CrossRef]
- Beers, R.F.; Sizer, I.W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 1952, 195, 133–140. [Google Scholar] [CrossRef]
- Tice, R.R.; Agurell, E.; Anderson, D.; Burlinson, B.; Hartmann, A.; Kobayashi, H.; Miyamae, Y.; Rojas, E.; Ryu, J.C.; Sasaki, Y. Single cell gel/comet assay: Guidelines for in vitro and in vivo genetic toxicology testing. Environ. Mol. Mutagen. 2000, 35, 206–221. [Google Scholar] [CrossRef]
- Ahmad, W.; Sattar, A.; Ahmad, M.; Aziz, M.W.; Iqbal, A.; Tipu, M.Y.; Mushtaq, R.M.Z.; Rasool, N.; Ahmed, H.S.; Ahmad, M. Unveiling Oxidative Stress-Induced Genotoxicity and Its Alleviation through Selenium and Vitamin E Therapy in Naturally Infected Cattle with Lumpy Skin Disease. Vet. Sci. 2023, 10, 643. [Google Scholar] [CrossRef]
- Ramachandran, G. Molecular structure of collagen. Int. Rev. Connect. Tissue Res. 1963, 1, 127–182. [Google Scholar]
- Dym, O.; Eisenberg, D.; Yeates, T. ERRAT. Int. Tables Crystallogr. 2012, 21, 678–679. [Google Scholar]
- Garg, V.K.; Avashthi, H.; Tiwari, A.; Jain, P.A.; Ramkete, P.W.; Kayastha, A.M.; Singh, V.K. MFPPI–multi FASTA ProtParam interface. Bioinformation 2016, 12, 74. [Google Scholar] [CrossRef] [PubMed]
- Hatami, S.; Sirous, H.; Mahnam, K.; Najafipour, A.; Fassihi, A. Preparing a database of corrected protein structures important in cell signaling pathways. Res. Pharm. Sci. 2023, 18, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Suri, C.; Joshi, H.C.; Naik, P.K. Molecular modeling reveals binding interface of γ-tubulin with GCP4 and interactions with noscapinoids. Proteins: Struct. Funct. Bioinform. 2015, 83, 827–843. [Google Scholar] [CrossRef]
- Dolghih, E.; Bryant, C.; Renslo, A.R.; Jacobson, M.P. Predicting binding to p-glycoprotein by flexible receptor docking. PLoS Comput. Biol. 2011, 7, e1002083. [Google Scholar] [CrossRef]
- Singh, A.K.; Bilal, M.; Iqbal, H.M.; Raj, A. In silico analytical toolset for predictive degradation and toxicity of hazardous pollutants in water sources. Chemosphere 2022, 292, 133250. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Sun, H.; Xi, L.; Li, J.; Yang, Y.; Liu, H.; Yao, X. Molecular modeling study of checkpoint kinase 1 inhibitors by multiple docking strategies and prime/MM–GBSA calculation. J. Comput. Chem. 2011, 32, 2800–2809. [Google Scholar] [CrossRef]
- Ioakimidis, L.; Thoukydidis, L.; Mirza, A.; Naeem, S.; Reynisson, J. Benchmarking the reliability of QikProp. Correlation between experimental and predicted values. QSAR Comb. Sci. 2008, 27, 445–456. [Google Scholar] [CrossRef]
- Setzer, W.N.; Ogungbe, I.V. In-silico investigation of antitrypanosomal phytochemicals from Nigerian medicinal plants. PLoS Neglected Trop. Dis. 2012, 6, e1727. [Google Scholar] [CrossRef]
- Mergia, E.; Shibeshi, W.; Terefe, G.; Teklehaymanot, T. Antitrypanosomal activity of Verbascum sinaiticum Benth.(Scrophulariaceae) against Trypanosoma congolense isolates. BMC Complement. Altern. Med. 2016, 16, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ogbadoyi, E.O.; Abdulganiy, A.O.; Adama, T.Z.; Okogun, J.I. In vivo trypanocidal activity of Annona senegalensis Pers. leaf extract against Trypanosoma brucei brucei. J. Ethnopharmacol. 2007, 112, 85–89. [Google Scholar] [CrossRef]
- Morais, M.C.d.; Souza, J.V.d.; da Silva Maia Bezerra Filho, C.; Dolabella, S.S.; Sousa, D.P.d. Trypanocidal essential oils: A review. Molecules 2020, 25, 4568. [Google Scholar] [CrossRef]
- Makhouri, F.R.; Ghasemi, J.B. Combating diseases with computational strategies used for drug design and discovery. Curr. Top. Med. Chem. 2018, 18, 2743–2773. [Google Scholar] [CrossRef]
- Lopes Pereira, P.M.; Carreira de Paula, J. Antiprotozoal Activity of Benzoylthiourea Derivatives against Trypanosoma cruzi: Insights into Mechanism of Action. Pathogens 2023, 2, 1012. [Google Scholar] [CrossRef]
- Sodhi, K.K.; Shree, P.; Mishra, L.C.; Mishra, G.; Kumar, M.; Singh, D.K. Promising Compounds of Plant Origin and Their Synthetic Analogs Against Trypanosomes. In Natural Product Based Drug Discovery Against Human Parasites: Opportunities and Challenges; Springer: Berlin/Heidelberg, Germany, 2023; pp. 411–429. [Google Scholar]
- Sepúlveda-Boza, S.; Cassels, B.K. Plant metabolites active against Trypanosoma cruzi. Planta Médica 1996, 62, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Jolad, S.D.; Lantz, R.C.; Chen, G.J.; Bates, R.B.; Timmermann, B.N. Commercially processed dry ginger (Zingiber officinale): Composition and effects on LPS-stimulated PGE2 production. Phytochemistry 2005, 66, 1614–1635. [Google Scholar] [CrossRef]
- Nigam, N.; George, J.; Shukla, Y. Ginger (6-gingerol). In Molecular Targets and Therapeutic Uses of Spices: Modern Uses for Ancient Medicine; World Scientific: New Jersey, NJ, USA, 2009; pp. 225–256. [Google Scholar]
- Kubra, I.R.; Rao, L.J.M. An impression on current developments in the technology, chemistry, and biological activities of ginger (Zingiber officinale Roscoe). Crit. Rev. Food Sci. Nutr. 2012, 52, 651–688. [Google Scholar] [CrossRef]
- Stan, D.; Enciu, A.-M.; Mateescu, A.L.; Ion, A.C.; Brezeanu, A.C.; Stan, D.; Tanase, C. Natural compounds with antimicrobial and antiviral effect and nanocarriers used for their transportation. Front. Pharmacol. 2021, 12, 723233. [Google Scholar] [CrossRef]
- Sp, N.; Kang, D.Y.; Lee, J.-M.; Bae, S.W.; Jang, K.-J. Potential antitumor effects of 6-gingerol in p53-dependent mitochondrial apoptosis and inhibition of tumor sphere formation in breast cancer cells. Int. J. Mol. Sci. 2021, 22, 4660. [Google Scholar] [CrossRef]
- Yücel, Ç.; Karatoprak, G.Ş.; Açıkara, Ö.B.; Akkol, E.K.; Barak, T.H.; Sobarzo-Sánchez, E.; Aschner, M.; Shirooie, S. Immunomodulatory and anti-inflammatory therapeutic potential of gingerols and their nanoformulations. Front. Pharmacol. 2022, 13, 902551. [Google Scholar] [CrossRef]
- Geng, J.; Chen, C.; Pan, D.; Wang, Q. Exploring the therapeutic effects of Zingiberis Rhizoma Preparatum (Pao-Jiang) against DSS-induced ulcerative colitis in mice by metabolomics-guided analysis. J. Holist. Integr. Pharm. 2023, 4, 272–280. [Google Scholar] [CrossRef]
- Al-Ishaq, R.K.; Liskova, A.; Kubatka, P.; Büsselberg, D. Enzymatic metabolism of flavonoids by gut microbiota and its impact on gastrointestinal cancer. Cancers 2021, 13, 3934. [Google Scholar] [CrossRef]
- Braune, A.; Engst, W.; Elsinghorst, P.W.; Furtmann, N.; Bajorath, J.; Gütschow, M.; Blaut, M. Chalcone isomerase from Eubacterium ramulus catalyzes the ring contraction of flavanonols. J. Bacteriol. 2016, 198, 2965–2974. [Google Scholar] [CrossRef]
- Zolkepli, H.; Widodo, R.T.; Mahmood, S.; Salim, N.; Awang, K.; Ahmad, N.; Othman, R. A review on the delivery of plant-based antidiabetic agents using nanocarriers: Current status and their role in combatting hyperglycaemia. Polymers 2022, 14, 2991. [Google Scholar] [CrossRef]
- Pays, E.; Radwanska, M.; Magez, S. The pathogenesis of African trypanosomiasis. Annu. Rev. Pathol. 2023, 18, 19–45. [Google Scholar] [CrossRef] [PubMed]
- Macaluso, G.; Grippi, F.; Di Bella, S.; Blanda, V.; Gucciardi, F.; Torina, A.; Guercio, A.; Cannella, V. A Review on the Immunological Response against Trypanosoma cruzi. Pathogens 2023, 12, 282. [Google Scholar] [CrossRef] [PubMed]
- Subedi, L.; Gaire, B.P.; Kim, S.-Y.; Parveen, A. Nitric oxide as a target for phytochemicals in anti-neuroinflammatory prevention therapy. Int. J. Mol. Sci. 2021, 22, 4771. [Google Scholar] [CrossRef] [PubMed]
- Cumming, E.; Peters, C. Immune response to infection. Anaesth. Intensive Care. 2024, 25, 439–443. [Google Scholar] [CrossRef]
- Pradniwat, P. Natural Products as Antioxidant Adjunct Therapy for Blood Parasitic Infections. In Botanicals and Natural Bioactives: Prevention and Treatment of Diseases; Bentham Science Publishers: Sharjah, United Arab Emirates, 2024; pp. 71–109. [Google Scholar]
- Ashraf, M.V.; Khan, S.; Misri, S.; Gaira, K.S.; Rawat, S.; Rawat, B.; Khan, M.H.; Shah, A.A.; Asgher, M.; Ahmad, S. High-altitude medicinal plants as promising source of phytochemical antioxidants to combat lifestyle-associated oxidative stress-induced disorders. Pharmaceuticals 2024, 17, 975. [Google Scholar] [CrossRef] [PubMed]
- Santos, P.H.S.; Suzuki, C.K.; Lannes, S.C.d.S. Effects of Adding Micronutrient Mixtures to a Model Dark Chocolate System and Partially Replacing the Fat Phase with a Structuring Oleogel. Foods 2025, 14, 430. [Google Scholar] [CrossRef] [PubMed]
- Tumilaar, S.G.; Hardianto, A.; Dohi, H.; Kurnia, D. A comprehensive review of free radicals, oxidative stress, and antioxidants: Overview, clinical applications, global perspectives, future directions, and mechanisms of antioxidant activity of flavonoid compounds. J. Chem. 2024, 2024, 5594386. [Google Scholar] [CrossRef]
- Banwo, O.G.; Popoola, D.O.; Achem, J.; Jeremiah, O.T. Evaluation of hematobiochemical and oxidative stress parameters in natural bovine Trypanosoma brucei infection. Veterinaria 2024, 73, 138–149. [Google Scholar] [CrossRef]
- Fritzen, A.; de Vitt, M.G.; Deolindo, G.L.; Signor, M.H.; Correa, N.G.; Ribeiro, B.G.; Marques, J.; das Neves, G.B.; Miletti, L.C.; da Silva, A.S. Outbreak of Trypanosoma vivax in Dairy Cows: Hematologic, Immunological and Antioxidant Responses Before and After Treatment with Isometamidium Chloride. Pathogens 2025, 14, 143. [Google Scholar] [CrossRef]
- Baldissera, M.D.; Souza, C.F.; Grando, T.H.; Moreira, K.L.; Schafer, A.S.; Cossetin, L.F.; da Silva, A.P.; da Veiga, M.L.; da Rocha, M.I.U.; Stefani, L.M. Nerolidol-loaded nanospheres prevent behavioral impairment via ameliorating Na+, K+-ATPase and AChE activities as well as reducing oxidative stress in the brain of Trypanosoma evansi-infected mice. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2017, 390, 139–148. [Google Scholar] [CrossRef]
- Kristensson, K.; Mhlanga, J.; Bentivoglio, M. Parasites and the brain: Neuroinvasion, immunopathogenesis and neuronal dysfunctions. In Protective and Pathological Immune Responses in the CNS; Springer: Berlin/Heidelberg, Germany, 2002; pp. 227–257. [Google Scholar]
- Matin, M.; Joshi, T.; Wang, D.; Tzvetkov, N.T.; Matin, F.B.; Wierzbicka, A.; Jóźwik, A.; Horbańczuk, J.O.; Atanasov, A.G. Effects of Ginger (Zingiber officinale) on the Hallmarks of Aging. Biomolecules 2024, 14, 940. [Google Scholar] [CrossRef]
- Ayustaningwarno, F.; Anjani, G.; Ayu, A.M.; Fogliano, V. A critical review of Ginger’s (Zingiber officinale) antioxidant, anti-inflammatory, and immunomodulatory activities. Front. Nutr. 2024, 11, 1364836. [Google Scholar] [CrossRef]
- Vicidomini, C.; Palumbo, R.; Moccia, M.; Roviello, G.N. Oxidative Processes and Xenobiotic Metabolism in Plants: Mechanisms of Defense and Potential Therapeutic Implications. J. Xenobiotics. 2024, 14, 1541–1569. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, J.; Zhao, K.; Chen, B.; Sun, Z. Natural products modulating MAPK for CRC treatment: A promising strategy. Front. Pharmacol. 2025, 16, 1514486. [Google Scholar] [CrossRef]
- Qin, L.; Jiang, X.; Wei, Y.; Xie, J.; Yang, L. Effects of ginger root extract on cognitive impairment and the Nrf2/GPX4/SLC7A11 signaling pathway in aluminum-exposed rats. Metab. Brain Dis. 2025, 40, 1–14. [Google Scholar] [CrossRef]
- Bahri, F.; Mansoori, M.; Vafaei, S.; Fooladi, S.; Mir, Y.; Mehrabani, M.; Hozhabri, Y.; Nematollahi, M.H.; Iravani, S. A comprehensive review on ginger-derived exosome-like nanoparticles as feasible therapeutic nano-agents against diseases. Mater. Adv. 2024, 5, 1846–1867. [Google Scholar] [CrossRef]
- Famurewa, A.C.; Akhigbe, R.E.; George, M.Y.; Adekunle, Y.A.; Oyedokun, P.A.; Akhigbe, T.M.; Fatokun, A.A. Mechanisms of ferroptotic and non-ferroptotic organ toxicity of chemotherapy: Protective and therapeutic effects of ginger, 6-gingerol and zingerone in preclinical studies. Naunyn Schmiedebergs Arch. Pharmacol. 2024, 398, 4747–4778. [Google Scholar] [CrossRef]
- Khoshnazar, S.M.; Mohagheghi, M.; Rahimi, S.; Dabiri, S.; Shahrokhi, N.; Shafieipour, S. Geraniol modulates inflammatory and antioxidant pathways to mitigate intestinal ischemia–reperfusion injury in male rats. Naunyn Schmiedebergs Arch. Pharmacol. 2025, 398, 8713–8727. [Google Scholar] [CrossRef]
- Hofer, A. Targeting the nucleotide metabolism of Trypanosoma brucei and other trypanosomatids. FEMS Microbiol. Rev. 2023, 47, fuad020. [Google Scholar] [CrossRef]
- Delespaux, V.; Geysen, D.; Majiwa, P.A.; Geerts, S. Identification of a genetic marker for isometamidium chloride resistance in Trypanosoma congolense. Int. J. Parasitol. 2005, 35, 235–243. [Google Scholar] [CrossRef]
- Gupta, S.; Vohra, S.; Sethi, K.; Gupta, S.; Bera, B.C.; Kumar, S.; Kumar, R. In vitro anti-trypanosomal effect of ivermectin on Trypanosoma evansi by targeting multiple metabolic pathways. Trop. Anim. Health Prod. 2022, 54, 240. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.M.; Bakkalbasi, E.; Söll, D.; Miller, C.A. Drugging tRNA aminoacylation. RNA Biol. 2018, 15, 667–677. [Google Scholar] [CrossRef] [PubMed]
- Ibba, M.; Söll, D. Aminoacyl-tRNA synthesis. Annu. Rev. Biochem. 2000, 69, 617–650. [Google Scholar] [CrossRef] [PubMed]
- Kelly, P.; Hadi-Nezhad, F.; Liu, D.Y.; Lawrence, T.J.; Linington, R.G.; Ibba, M.; Ardell, D.H. Targeting tRNA-synthetase interactions towards novel therapeutic discovery against eukaryotic pathogens. PLoS Neglected Trop. Dis. 2020, 14, e0007983. [Google Scholar] [CrossRef]
- Kim, S.; Yoon, I.; Son, J.; Park, J.; Kim, K.; Lee, J.-H.; Park, S.-Y.; Kang, B.S.; Han, J.M.; Hwang, K.Y. Leucine-sensing mechanism of leucyl-tRNA synthetase 1 for mTORC1 activation. Cell Rep. 2021, 35, 109031. [Google Scholar] [CrossRef]
- Pham, J.S.; Dawson, K.L.; Jackson, K.E.; Lim, E.E.; Pasaje, C.F.A.; Turner, K.E.; Ralph, S.A. Aminoacyl-tRNA synthetases as drug targets in eukaryotic parasites. Int. J. Parasitol. Drugs Drug Resist. 2014, 4, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Nuryady, M.M.; Widayanti, R.; Nurcahyo, R.W.; Fadjrinatha, B. Characterization and phylogenetic analysis of multidrug-resistant protein-encoding genes in Trypanosoma evansi isolated from buffaloes in Ngawi district, Indonesia. Vet. World 2019, 12, 1573. [Google Scholar] [CrossRef] [PubMed]
- Nuryady, M.M.; Nurcahyo, R.W.; Hindun, I.; Fatmawati, D. Multidrug resistance protein structure of Trypanosoma evansi isolated from buffaloes in Ngawi District, Indonesia: A bioinformatics analysis. Vet. World 2021, 14, 33. [Google Scholar] [CrossRef]
- Ardelli, B.F. Transport proteins of the ABC systems superfamily and their role in drug action and resistance in nematodes. Parasitol. Int. 2013, 62, 639–646. [Google Scholar] [CrossRef]
- Campos, M.C.; Phelan, J.; Francisco, A.F.; Taylor, M.C.; Lewis, M.D.; Pain, A.; Clark, T.G.; Kelly, J.M. Genome-wide mutagenesis and multi-drug resistance in American trypanosomes induced by the front-line drug benznidazole. Sci. Rep. 2017, 7, 14407. [Google Scholar] [CrossRef]
- Da Costa, K.M.; Valente, R.d.C.; Fonseca, L.M.d.; Freire-de-Lima, L.; Previato, J.O.; Mendonça-Previato, L. The history of the abc proteins in human trypanosomiasis pathogens. Pathogens 2022, 11, 988. [Google Scholar] [CrossRef]
Peak | IUPAC Name | Common Name | Retention Time (min) | Area % | PubChem CID |
---|---|---|---|---|---|
1 | 1-methyl-4-(6-methylhept-5-en-2-yl)benzene | alpha-Curcumin | 10.118 | 7.71 | 92139 |
2 | 2-methyl-5-(6-methylhept-5-en-2-yl)cyclohexa-1,3-diene | l-Zingiberene | 10.235 | 10.31 | 521253 |
3 | (4S)-1-methyl-4-(6-methylhepta-1,5-dien-2-yl)cyclohexene | beta-Bisabolene | 10.337 | 4.52 | 10104370 |
4 | 3-(6-methylhept-5-en-2-yl)-6-methylidenecyclohexene | Sesquiphellandrene | 10.492 | 5.3 | 519764 |
5 | 4-(4-hydroxy-3-methoxyphenyl)butan-2-one | Zingiberone | 11.476 | 2.19 | 31211 |
6 | 1-cyclopropylethyl N-phenylcarbamate | 1-Cyclopropylethyl phenylcarbamate | 11.878 | 2.46 | 263797 |
7 | 2,3,4,6-tetrahydro-1,6-benzoxazocin-5-one | 2H-1,6-Benzoxazocin-5(6H)-one,3,4-dihydro | 12.717 | 2.25 | 550286 |
8 | hexadecanoic acid | Palmitic acid | 13.717 | 2.92 | 985 |
9 | 1-(3-methoxy-4-propan-2-yloxyphenyl)propan-2-one | Propan-2-one,1-(4-isopropoxy-3-methoxyphenyl)- | 14.707 | 1.57 | 586436 |
10 | 2-[bis(2-hydroxyethyl)amino]ethanol;(9Z,12Z)-octadeca-9,12-dienoic acid | Linoleic acid | 14.851 | 0.7 | 5280450 |
11 | (E)-1-(4-Hydroxy-3-methoxyphenyl)dec-3-en-5-one | 6-Isoshogaol | 15.413 | 1.75 | 11694761 |
12 | 1-(4-Hydroxy-3-methoxyphenyl)oct-4-en-3-one | 1-(4-Hydroxy-3-methoxyphenyl)oct-4-en-3-one | 15.91 | 17.53 | 71357126 |
13 | N-[(4-hydroxy-3-methoxyphenyl)methyl]-8-methylnonanamide | Dihydrocapsaicin | 16.119 | 7.54 | 107982 |
14 | [[C-(4-chlorophenyl)-N-ethylcarbonimidoyl]amino] benzoate | O-Benzoyl-4-chloro-N-ethylbenzamidoxime | 16.927 | 3.03 | 586265 |
15 | 1-(4-Hydroxy-3-methoxyphenyl)dodec-4-en-3-one | 8-Shogaol | 17.023 | 6.67 | 6442560 |
16 | [(5S)-1-(4-hydroxy-3-methoxyphenyl)-3-oxodecan-5-yl] acetate | 6-Gingerol monoacetate | 17.216 | 3.61 | 91715794 |
17 | (E)-1-(4-Hydroxy-3-methoxyphenyl)tetradec-3-en-5-one | 10-Isoshogaol | 17.702 | 2.71 | 53379231 |
18 | 1-(4-Hydroxy-3-methoxyphenyl)tetradec-4-en-3-one | - | 18.13 | 9.42 | 181491 |
19 | N-[(4-hydroxy-3-methoxyphenyl)methyl]-9-methyldecanamide | Homodihydrocapsaicin-I | 18.285 | 3.55 | 3084336 |
20 | 1-(4-Hydroxy-3-methoxyphenyl)tetradecane-3,5-dione | 10-Gingerdione | 18.328 | 4.27 | 14440539 |
Parameter | Untreated Control | Treated Control | MZ 200 | MZ 400 | MZ 800 |
---|---|---|---|---|---|
Hb (gm/dL) | 9.18 ± 0.0666 b | 10.9 ± 0.507 a | 9.11 ± 0.0321 b | 9.39 ± 0.0825 b | 10.1 ± 0.0371 ab |
RBCs (×106 µL) | 7.23 ± 0.0346 c | 8.06 ± 0.0636 a | 7.27 ± 0.0536 c | 7.34 ± 0.0644 c | 7.81 ± 0.0173 b |
TLC (×103 µL) | 8.05 ± 0.319 a | 4.74 ± 0.169 c | 6.05 ± 0.147 b | 5.18 ± 0.0318 c | 5.23 ± 0.0667 bc |
Hct (%) | 32.6 ± 0.583 | 33.1 ± 0.468 | 32.5 ± 0.426 | 32.8 ± 0.436 | 32.4 ± 0.434 |
MCV (fl) | 45.1 ± 0.637 a | 41 ± 0.535 b | 44.7 ± 0.382 a | 44.7 ± 0.224 a | 41.4 ± 0.483 b |
MCH (pg) | 12.7 ± 0.149 | 13.5 ± 0.643 | 12.5 ± 0.122 | 12.8 ± 0.0617 | 13 ± 0.0713 |
MCHC (g/dL) | 28.2 ± 0.682 bc | 32.9 ± 1.15 a | 28 ± 0.455 c | 28.6 ± 0.179 bc | 31.3 ± 0.465 ab |
Platelets (×103 µL) | 348 ± 10.4 | 382 ± 2.56 | 341 ± 34.2 | 382 ± 28.2 | 394 ± 2.02 |
Neutrophil (%) | 25 ± 2.11 | 21.5 ± 0.582 | 24.5 ± 2.23 | 22.4 ± 0.726 | 23.7 ± 0.287 |
Lymphocyte (%) | 69.7 ± 2.36 | 73.9 ± 0.214 | 70.8 ± 2.36 | 73.4 ± 1.23 | 71.3 ± 0.415 |
Monocyte (%) | 3.68 ± 0.354 | 3.11 ± 0.479 | 3.31 ± 0.663 | 2.89 ± 0.496 | 3.28 ± 0.49 |
Eosinophil (%) | 1.64 ± 0.157 | 1.54 ± 0.223 | 1.45 ± 0.144 | 1.31 ± 0.11 | 1.71 ± 0.151 |
Bilirubin (mg/dL) | 0.31 ± 0.05 | 0.293 ± 0.0433 | 0.32 ± 0.0416 | 0.333 ± 0.0524 | 0.337 ± 0.0448 |
ALT (mg/dL) | 133 ± 1.59 a | 53.5 ± 1.84 e | 107 ± 1.99 b | 89.9 ± 0.361 c | 65.7 ± 2.4 d |
AST (mg/dL) | 278 ± 2.02 a | 133 ± 1.82 c | 152 ± 1.68 b | 135 ± 1.34 c | 107 ± 0.936 d |
Total Proteins (u/L) | 5.32 ± 0.0874 e | 8.61 ± 0.111 a | 6.03 ± 0.0984 d | 6.88 ± 0.231 c | 7.89 ± 0.102 b |
Albumin (u/L) | 2.32 ± 0.0285 d | 3.42 ± 0.0557 a | 2.86 ± 0.0208 c | 3.16 ± 0.0203 b | 3.3 ± 0.024 ab |
Globulin (u/L) | 3 ± 0.1 d | 5.2 ± 0.0677 a | 3.17 ± 0.115 cd | 3.72 ± 0.212 c | 4.59 ± 0.0929 b |
A/G Ratio | 0.777 ± 0.0296 ac | 0.66 ± 0.01 c | 0.903 ± 0.0393 a | 0.857 ± 0.0433 ab | 0.72 ± 0.0115 bc |
Group | TC | UC | MZ 200 | MZ 400 | MZ 800 |
---|---|---|---|---|---|
CAT (U/L) | 16.6 ± 0.685 a | 9.39 ± 0.505 c | 9.14 ± 0.125 c | 9.43 ± 0.005 c | 13.1 ± 0.12 b |
MDA (µmol/L) | 0.56 ± 0.15 d | 2.87 ± 0.13 a | 2.88 ± 0.01 a | 1.92 ± 0.065 b | 1.31 ± 0.1 c |
SOD (U/mg) | 16.8 ± 0.15 a | 6 ± 0.27 de | 7.46 ± 0.425 d | 9.14 ± 0.465 c | 12.6 ± 0.26 b |
Class 0 | 69.39% (59.68–77.64) | 17% (10.89–25.55) | 23% (15.84–32.15) | 27.72% (19.93–37.15) | 39.36% (30.09–49.47) |
Class 1 | 19.39% (12.78–28.31) | 33% (24.56–42.69) | 32% (23.67–41.66) | 31.68% (23.42–41.29) | 36.17% (27.18–46.25) |
Class 2 | 8.16% (4.19–15.29) | 37% (28.18–46.78) | 34% (25.46–43.72) | 32.67% (24.31–42.31) | 18.09% (11.61–27.07) |
Class 3 | 3.06% (0.83–8.62) | 10% (5.52–17.44) | 8% (4.11–15) | 4.95% (2.13–11.07) | 4.26% (1.67–10.44) |
Class 4 | 0% (0–3.77) | 3% (0.82–8.45) | 3% (0.82–8.45) | 2.97% (0.81–8.37) | 2.13% (0.38–7.43) |
Tail Length (µm) | 6.41 ± 0.683 c | 15 ± 1.16 a | 13.7 ± 1.12 ab | 13.1 ± 1.12 ab | 9.89 ± 1.02 bc |
GDI | 0.306 ± 0.0204 e | 0.83 ± 0.01 ac | 0.771 ± 0.0254 bc | 0.723 ± 0.0225 cd | 0.606 ± 0.0319 d |
Ligand Pubchem CID | Protein | Glide Emodel | XP GScore | MMGBSA dG Bind(NS) | MMGBSA dG Bind(NS) Coulomb | MMGBSA dG Bind(NS) Lipo | MMGBSA dG Bind(NS) vdW |
---|---|---|---|---|---|---|---|
11694761 | TbAT1 | −47.0134 | −9.18309 | −68.7548 | −12.6236 | −28.2462 | −47.669 |
91715794 | TbAT1 | −55.8875 | −8.55159 | −70.2583 | −3.75554 | −29.4483 | −54.2456 |
14440539 | TbAT1 | −40.6711 | −8.60008 | −74.2061 | −7.99181 | −30.1235 | −55.8887 |
6442560 | TbAT1 | −48.1948 | −8.40646 | −69.8895 | −4.43734 | −30.5629 | −53.9663 |
550286 | TbAT1 | −31.5112 | −8.07276 | −40.3092 | −6.76122 | −16.4097 | −28.2781 |
71357126 | TbAT1 | −44.6042 | −8.06138 | −57.6981 | −9.66823 | −23.8084 | −39.9465 |
71357126 | Casein kinase | −39.9705 | −8.06672 | −68.2929 | −11.1469 | −27.7441 | −45.1234 |
31211 | Leucyl tRNA synthetase | −41.0339 | −8.08338 | −50.9063 | −12.5422 | −15.9189 | −30.3871 |
6442560 | MRP E | −46.2196 | −8.08799 | −79.0799 | −15.4979 | −28.3857 | −53.0275 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, W.; Tipu, M.Y.; Khan, M.u.R.; Akbar, H.; Anjum, A.A.; Ovais Omer, M. Ginger-Derived Compounds Alleviate Oxidative Stress and Genotoxicity in Trypanosoma evansi Infection: An Integrated In Vivo and In Silico Study. Oxygen 2025, 5, 19. https://doi.org/10.3390/oxygen5030019
Ahmad W, Tipu MY, Khan MuR, Akbar H, Anjum AA, Ovais Omer M. Ginger-Derived Compounds Alleviate Oxidative Stress and Genotoxicity in Trypanosoma evansi Infection: An Integrated In Vivo and In Silico Study. Oxygen. 2025; 5(3):19. https://doi.org/10.3390/oxygen5030019
Chicago/Turabian StyleAhmad, Waqas, Muhammad Yasin Tipu, Muti ur Rehman Khan, Haroon Akbar, Aftab Ahmad Anjum, and Muhammad Ovais Omer. 2025. "Ginger-Derived Compounds Alleviate Oxidative Stress and Genotoxicity in Trypanosoma evansi Infection: An Integrated In Vivo and In Silico Study" Oxygen 5, no. 3: 19. https://doi.org/10.3390/oxygen5030019
APA StyleAhmad, W., Tipu, M. Y., Khan, M. u. R., Akbar, H., Anjum, A. A., & Ovais Omer, M. (2025). Ginger-Derived Compounds Alleviate Oxidative Stress and Genotoxicity in Trypanosoma evansi Infection: An Integrated In Vivo and In Silico Study. Oxygen, 5(3), 19. https://doi.org/10.3390/oxygen5030019