You are currently viewing a new version of our website. To view the old version click .
  • Tracked forImpact Factor
  • 8.4CiteScore
  • 25 daysTime to First Decision

Oxygen

Oxygen is an international, peer-reviewed, open access journal on the whole field of oxygen research published quarterly online by MDPI.

All Articles (133)

The purpose of this analysis is to report on the clinical efficacy of Continuous Diffusion of Oxygen (CDO) therapy in real-world clinical practice and compare those results to data published in controlled clinical studies. For the real-world clinical results, a Prospective Patients Database (PPD) of 764 patients treated using CDO therapy in a broad range of clinical practices across a wide range of wound types and wound locations was analyzed. The objectives included analyzing the clinical efficacy of CDO therapy across multiple wound types and anatomical locations, testing the data for robustness, and comparing the efficacy to results from controlled clinical studies for CDO and NPWT. The PPD data is also analyzed for efficacy among the sexes and by age for older patients in the Medicare population. The robustness of the PPD data is tested using various non- and semi-parametric statistical tools, including the Kaplan–Meier and Cox proportional hazard (PH) models, among others. The results show that CDO therapy is highly efficacious with an average healing success rate of 76.3% in real-world application, ranging from 71.2% to 84.1% for different wound types. The Medicare age population had an average age of 78 years old and similar healing rates to the overall population, with slightly better results for pressure ulcers in the older patient population. The PPD data proved to be extremely robust in every test method, demonstrating substantially equivalent efficacy in various wound types and locations, as well as between men and women. The PPD results for CDO compared favorably to clinical trial results for CDO and NPWT. Both clinical trial and PPD data for CDO exhibited better healing rates when compared to NPWT. Kaplan–Meier analysis shows that CDO use in clinical practice has 79.2% full closure in 112 days, as compared to NPWT, which has 43.2% full closure in the same timeframe for similar wound sizes and severity. These results demonstrate not only that CDO is highly efficacious in clinical practice, but that the efficacy is also similar across all wound types and locations in the body. CDO also compares very favorably to NPWT.

2 December 2025

Summary illustration of datasets used in cost-effectiveness analysis.

Sex- and Age-Specific Trajectories of Hemoglobin and Aerobic Power in Competitive Youth Athletes

  • Jonas Haferanke,
  • Lisa Baumgartner and
  • Maximilian Dettenhofer
  • + 6 authors

Maximal aerobic power (V̇O2peak) in youth depends on hemoglobin (Hb)—mediated oxygen transport. While sex- and age-specific patterns are established in untrained cohorts, further research is needed in competitive adolescent athletes. We studied 124 young athletes matched by age and sex (62 boys, 62 girls; 10–16 years). Hb was measured from fasting blood samples, and V̇O2peak was determined via cardiopulmonary exercise testing (CPET). Boys showed higher Hb than girls (14.43 ± 0.85 g/dL vs. 13.6 ± 0.74 g/dL; p < 0.001) and a significant age-related increase (B = 0.29, p < 0.001), whereas girls remained stable. V̇O2peak was also higher in boys (50.03 ± 6.18 mL/min/kg, p < 0.001). Regression analysis identified Hb as a strong predictor of V̇O2peak (β = 0.40, p < 0.001). These findings demonstrate that classical developmental Hb trajectories persist in highly trained youth and confirm Hb as a key determinant of aerobic power. Monitoring hematological status, particularly in female athletes, is essential for optimizing performance and development.

22 November 2025

Relationship between hemoglobin concentration (Hb) and age by biological sex; Intersection at age 10.83 years, Hb 13.65 g/dL; blue, boys; red, girls. Bold x marks the intersection point of the curves.

Root pruning has been proposed as a practical method to regulate growth and metabolite accumulation in horticultural crops, yet its physiological and metabolic consequences in hydroponically grown lettuce remain poorly understood. In this study, we examined the effects of root pruning, applied two days before harvest, on biomass production, oxidative stress responses, and metabolite accumulation in red leaf lettuce. Root pruning suppressed root growth and reduced root water content in a severity-dependent manner. Shoot fresh weight also declined, whereas shoot dry weight was significantly reduced only under severe pruning. Young leaves of pruned plants exhibited transient reddish coloration, which was most pronounced under severe pruning. Quantitative analyses revealed that anthocyanin content increased up to 4.5-fold compared with the control, while total phenolic content also rose significantly. These metabolic changes were accompanied by pronounced oxidative stress, as indicated by elevated hydrogen peroxide accumulation and enhanced lipid peroxidation. In addition, leaf nitrate concentration decreased significantly in both moderate and severe pruning treatments. Collectively, these findings demonstrate that root pruning acts as a controllable stressor that triggers oxidative stress signaling, enhances antioxidant metabolite accumulation, and reduces nitrate content, highlighting its potential as a pre-harvest strategy for improving the nutritional and functional quality of hydroponic lettuce.

22 November 2025

Representative root morphology of red leaf lettuce 2 days after root pruning. Scale bars represent 2 cm.

This review indicates that microalgae may serve as a sustainable supply of bioactive compounds and lipids over the long run. It also discusses the significance of lactic acid bacteria (LAB) and Saccharomyces cerevisiae in biotransformation processes. Microalgae contribute to food security and environmental sustainability due to their rapid growth and diverse applications, including food, feed, and biofuels. Fermentation with LAB and S. cerevisiae enhances the nutritional and functional properties of microalgal biomass, rendering it more digestible, bioactive, and palatable. This review discusses the metabolic characteristics of LAB and S. cerevisiae, their ability to modify microalgal components through enzymatic action, and the resultant products, including enhanced fatty acid profiles and bioactive compounds. Furthermore, the biotransformation of pigments during LAB fermentation is examined, revealing significant alterations in the hue and bioactivity of the pigments, hence enhancing the appeal of microalgal products. Future perspectives emphasize the necessity for further investigation to identify optimal fermentation conditions and to explore the synergistic interactions between LAB and S. cerevisiae in the production of novel beneficial components from microalgae using both microbes.

5 November 2025

Possible metabolic processes employed by microorganisms for nutrient transformation. The figure was obtained with modification from Mazguene (2023) [44].

News & Conferences

Issues

Open for Submission

Editor's Choice

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Oxygen - ISSN 2673-9801