Oxygen in the Earth System
Abstract
:1. Introduction
2. The Atmospheric Oxygen Cycle
3. The Evolution of Atmospheric Oxygen
4. Atmospheric Ozone
4.1. Total Column Ozone
4.2. Tropospheric Ozone
4.3. Stratospheric Ozone
5. Oxygen in the Lower Atmosphere
6. Inferring Temperature and Wind from Oxygen and Ozone Lines
7. Oxygen in the Middle and Upper Atmosphere
7.1. Gravity Waves in Airglow
7.2. Aurora
7.3. Oxygen Ions in the Ionosphere and Magnetosphere
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keeling, R.F. The atmospheric oxygen cycle: The oxygen isotopes of atmospheric CO2 and 02 and the 02/N2 ratio. Rev. Geophys. 1995, 33, 1253–1262. [Google Scholar] [CrossRef]
- Chapman, S. The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth. Proc. Phys. Soc. 1931, 43, 26–45. [Google Scholar] [CrossRef]
- Catling, D.C. Oxygenation of the Earth’s Atmosphere. In Encyclopedia of Astrobiology; Gargaud, M., Irvine, W.M., Amils, R., Cleaves, H.J.J., Pinti, D.L., Quintanilla, J.C., Rouan, D., Spohn, T., Tirard, S., Viso, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1816–1826. [Google Scholar] [CrossRef]
- Galewsky, J.; Steen-Larsen, H.C.; Field, R.D.; Worden, J.; Risi, C.; Schneider, M. Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle. Rev. Geophys. 2016, 54, 809–865. [Google Scholar] [CrossRef]
- Ishidoya, S.; Tsuboi, K.; Niwa, Y.; Matsueda, H.; Murayama, S.; Ishijima, K.; Saito, K. Spatiotemporal variations of the δ(O2 / N2), CO2 and δ(APO) in the troposphere over the western North Pacific. Atmos. Chem. Phys. 2022, 22, 6953–6970. [Google Scholar] [CrossRef]
- Grégoire, M.; Garçon, V.; Garcia, H.; Breitburg, D.; Isensee, K.; Oschlies, A.; Telszewski, M.; Barth, A.; Bittig, H.C.; Carstensen, J.; et al. A Global Ocean Oxygen Database and Atlas for Assessing and Predicting Deoxygenation and Ocean Health in the Open and Coastal Ocean. Front. Mar. Sci. 2021, 8. [Google Scholar] [CrossRef]
- Paulmier, A. Oxygen and the ocean. In The Ocean Revealed; Euzen, A., Gaill, F., Lacroix, D., Cury, P., Eds.; CNRS: Paris, France, 2017; pp. 48–49. [Google Scholar]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Cane, M.A.; Braconnot, P.; Clement, A.; Gildor, H.; Joussaume, S.; Kageyama, M.; Khodri, M.; Paillard, D.; Tett, S.; Zorita, E. Progress in Paleoclimate Modeling. J. Clim. 2006, 19, 5031–5057. [Google Scholar] [CrossRef] [Green Version]
- Brasseur, G.P.; Solomon, S. Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere, 3rd ed.; Springer: Dordrecht, The Netherland, 2005; p. 644. [Google Scholar]
- Newman, P.A.; Oman, L.D.; Douglass, A.R.; Fleming, E.L.; Frith, S.M.; Hurwitz, M.M.; Kawa, S.R.; Jackman, C.H.; Krotkov, N.A.; Nash, E.R.; et al. What would have happened to the ozone layer if chlorofluorocarbons (CFCs) had not been regulated? Atmos. Chem. Phys. 2009, 9, 2113–2128. [Google Scholar] [CrossRef] [Green Version]
- Tarasick, D.W.; Smit, H.G.J.; Thompson, A.M.; Morris, G.A.; Witte, J.C.; Davies, J.; Nakano, T.; Van Malderen, R.; Stauffer, R.M.; Johnson, B.J.; et al. Improving ECC Ozonesonde Data Quality: Assessment of Current Methods and Outstanding Issues. Earth Space Sci. 2021, 8, e2019EA000914. [Google Scholar] [CrossRef]
- Gröbner, J.; Schill, H.; Egli, L.; Stübi, R. Consistency of total column ozone measurements between the Brewer and Dobson spectroradiometers of the LKO Arosa and PMOD/WRC Davos. Atmos. Meas. Tech. 2021, 14, 3319–3331. [Google Scholar] [CrossRef]
- Bhartia, P.K.; McPeters, R.D.; Flynn, L.E.; Taylor, S.; Kramarova, N.A.; Frith, S.; Fisher, B.; DeLand, M. Solar Backscatter UV (SBUV) total ozone and profile algorithm. Atmos. Meas. Tech. 2013, 6, 2533–2548. [Google Scholar] [CrossRef] [Green Version]
- World Meteorological Organization. The Ozone Hole. 2023. Available online: https://www.theozonehole.org/wmoozone.htm (accessed on 16 June 2023).
- Yu, R.; Lin, Y.; Zou, J.; Dan, Y.; Cheng, C. Review on Atmospheric Ozone Pollution in China: Formation, Spatiotemporal Distribution, Precursors and Affecting Factors. Atmosphere 2021, 12, 1675. [Google Scholar] [CrossRef]
- Copernicus Atmosphere Monitoring Service. Three Peculiar Antarctic Ozone Hole Seasons. 2023. Available online: https://atmosphere.copernicus.eu/three-peculiar-antarctic-ozone-hole-seasons-row-what-we-know (accessed on 16 June 2023).
- Liu, X.; Bhartia, P.K.; Chance, K.; Spurr, R.J.D.; Kurosu, T.P. Ozone profile retrievals from the Ozone Monitoring Instrument. Atmos. Chem. Phys. 2010, 10, 2521–2537. [Google Scholar] [CrossRef] [Green Version]
- Solomon, S.; Garcia, R.R.; Rowland, F.S.; Wuebbles, D.J. On the depletion of Antarctic ozone. Nature 1986, 321, 755–758. [Google Scholar] [CrossRef] [Green Version]
- Steinbrecht, W.; Froidevaux, L.; Fuller, R.; Wang, R.; Anderson, J.; Roth, C.; Bourassa, A.; Degenstein, D.; Damadeo, R.; Zawodny, J.; et al. An update on ozone profile trends for the period 2000 to 2016. Atmos. Chem. Phys. 2017, 17, 10675–10690. [Google Scholar] [CrossRef] [Green Version]
- Fauchez, T.J.; Villanueva, G.L.; Schwieterman, E.W.; Turbet, M.; Arney, G.; Pidhorodetska, D.; Kopparapu, R.K.; Mandell, A.; Domagal-Goldman, S.D. Sensitive probing of exoplanetary oxygen via mid-infrared collisional absorption. Nat. Astron. 2020, 4, 372–376. [Google Scholar] [CrossRef] [Green Version]
- Lovelock, J.E. Geophysiology, the science of Gaia. Rev. Geophys. 1989, 27, 215–222. [Google Scholar] [CrossRef]
- Krochin, W.; Stober, G.; Murk, A. Development of a Polarimetric 50-GHz Spectrometer for Temperature Sounding in the Middle Atmosphere. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 5644–5651. [Google Scholar] [CrossRef]
- Rüfenacht, R.; Murk, A.; Kämpfer, N.; Eriksson, P.; Buehler, S.A. Middle-atmospheric zonal and meridional wind profiles from polar, tropical and midlatitudes with the ground-based microwave Doppler wind radiometer WIRA. Atmos. Meas. Tech. 2014, 7, 4491–4505. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, M.J.; Lambert, A.; Manney, G.L.; Read, W.G.; Livesey, N.J.; Froidevaux, L.; Ao, C.O.; Bernath, P.F.; Boone, C.D.; Cofield, R.E.; et al. Validation of the Aura Microwave Limb Sounder temperature and geopotential height measurements. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.L.; Schwartz, M.J.; Waters, J.W.; Limpasuvan, V.; Wu, Q.; Killeen, T.L. Mesospheric doppler wind measurements from Aura Microwave Limb Sounder (MLS). Adv. Space Res. 2008, 42, 1246–1252. [Google Scholar] [CrossRef]
- Fleming, E.L.; Chandra, S.; Burrage, M.D.; Skinner, W.R.; Hays, P.B.; Solheim, B.H.; Shepherd, G.G. Climatological mean wind observations from the UARS high-resolution Doppler imager and wind imaging interferometer: Comparison with current reference models. J. Geophys. Res. Atmos. 1996, 101, 10455–10473. [Google Scholar] [CrossRef]
- McLandress, C.; Shepherd, G.G.; Solheim, B.H. Satellite observations of thermospheric tides: Results from the Wind Imaging Interferometer on UARS. J. Geophys. Res. Atmos. 1996, 101, 4093–4114. [Google Scholar] [CrossRef]
- Killeen, T.L.; Wu, Q.; Solomon, S.C.; Ortland, D.A.; Skinner, W.R.; Niciejewski, R.J.; Gell, D.A. TIMED Doppler Interferometer: Overview and recent results. J. Geophys. Res. Space Phys. 2006, 111, A10S01. [Google Scholar] [CrossRef]
- Mlynczak, M.G.; Hunt, L.A.; Russell, J.M., III; Marshall, B.T. Updated SABER Night Atomic Oxygen and Implications for SABER Ozone and Atomic Hydrogen. Geophys. Res. Lett. 2018, 45, 5735–5741. [Google Scholar] [CrossRef]
- Hays, P.; Roble, R. Stellar occultation measurements of molecular oxygen in the lower thermosphere. Planet. Space Sci. 1973, 21, 339–348. [Google Scholar] [CrossRef] [Green Version]
- Yee, J.H.; Vervack, R.J., Jr.; DeMajistre, R.; Morgan, F.; Carbary, J.F.; Romick, G.J.; Morrison, D.; Lloyd, S.A.; DeCola, P.L.; Paxton, L.J.; et al. Atmospheric remote sensing using a combined extinctive and refractive stellar occultation technique 1. Overview and proof-of-concept observations. J. Geophys. Res. Atmos. 2002, 107, ACH 15-1–ACH 15-13. [Google Scholar] [CrossRef]
- Sun, M.; Dong, X.; Zhu, Q.; Cheng, X.; Wang, H.; Wu, J. Comparison and Analysis of Stellar Occultation Simulation Results and SABER-Satellite-Measured Data in Near Space. Remote Sens. 2022, 14, 5065. [Google Scholar] [CrossRef]
- Quessette, J.A. On the measurement of molecular oxygen concentration by absorption spectroscopy. J. Geophys. Res. 1970, 75, 839–844. [Google Scholar] [CrossRef]
- Osborne, J.J.; Harris, I.L.; Roberts, G.T.; Chambers, A.R. Satellite and rocket-borne atomic oxygen sensor techniques. Rev. Sci. Instrum. 2001, 72, 4025–4041. [Google Scholar] [CrossRef]
- Eberhart, M.; Löhle, S.; Steinbeck, A.; Binder, T.; Fasoulas, S. Measurement of atomic oxygen in the middle atmosphere using solid electrolyte sensors and catalytic probes. Atmos. Meas. Tech. 2015, 8, 3701–3714. [Google Scholar] [CrossRef] [Green Version]
- Lednyts’kyy, O.; von Savigny, C. Photochemical modeling of molecular and atomic oxygen based on multiple nightglow emissions measured in situ during the Energy Transfer in the Oxygen Nightglow rocket campaign. Atmos. Chem. Phys. 2020, 20, 2221–2261. [Google Scholar] [CrossRef] [Green Version]
- Wiesemeyer, H.; Güsten, R.; Aladro, R.; Klein, B.; Hübers, H.W.; Richter, H.; Graf, U.U.; Justen, M.; Okada, Y.; Stutzki, J. First detection of the atomic 18O isotope in the mesosphere and lower thermosphere of Earth. Phys. Rev. Res. 2023, 5, 013072. [Google Scholar] [CrossRef]
- Cottin, H.; Kotler, J.M.; Billi, D.; Cockell, C.; Demets, R.; Ehrenfreund, P.; Elsaesser, A.; d’Hendecourt, L.; van Loon, J.J.W.A.; Martins, Z.; et al. Space as a Tool for Astrobiology: Review and Recommendations for Experimentations in Earth Orbit and Beyond. Space Sci. Rev. 2017, 209, 83–181. [Google Scholar] [CrossRef] [Green Version]
- Hargreaves, J.K. The Solar-Terrestrial Environment: An Introduction to Geospace—The Science of the Terrestrial Upper Atmosphere, Ionosphere, and Magnetosphere; Cambridge Atmospheric and Space Science Series; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar] [CrossRef]
- Rees, M.H. Physics and Chemistry of the Upper Atmosphere; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Mukherjee, G.; Sikha, P.; Parihar, N.; Ghodpage, R.; Tukaram, P. Studies of the wind filtering effect of gravity waves observed at Allahabad (25.45°N, 81.85°E) in India. Earth Planets Space 2010, 62, 309–318. [Google Scholar] [CrossRef] [Green Version]
- Yue, J.; Perwitasari, S.; Xu, S.; Hozumi, Y.; Nakamura, T.; Sakanoi, T.; Saito, A.; Miller, S.D.; Straka, W.; Rong, P. Preliminary Dual-Satellite Observations of Atmospheric Gravity Waves in Airglow. Atmosphere 2019, 10, 650. [Google Scholar] [CrossRef] [Green Version]
- Vedantham, H.K.; Callingham, J.R.; Shimwell, T.W.; Tasse, C.; Pope, B.J.S.; Bedell, M.; Snellen, I.; Best, P.; Hardcastle, M.J.; Haverkorn, M.; et al. Coherent radio emission from a quiescent red dwarf indicative of star–planet interaction. Nat. Astron. 2020, 4, 577–583. [Google Scholar] [CrossRef] [Green Version]
- Mendillo, M.; Withers, P.; Dalba, P.A. Atomic oxygen ions as ionospheric biomarkers on exoplanets. Nat. Astron. 2018, 2, 287–291. [Google Scholar] [CrossRef]
- Shelley, E.G.; Johnson, R.G.; Sharp, R.D. Satellite observations of energetic heavy ions during a geomagnetic storm. J. Geophys. Res. 1972, 77, 6104–6110. [Google Scholar] [CrossRef]
- Fuselier, S.A. Ionospheric Oxygen ions in the dayside magnetosphere. J. Atmos. Sol.-Terr. Phys. 2020, 210, 105448. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hocke, K. Oxygen in the Earth System. Oxygen 2023, 3, 287-299. https://doi.org/10.3390/oxygen3030019
Hocke K. Oxygen in the Earth System. Oxygen. 2023; 3(3):287-299. https://doi.org/10.3390/oxygen3030019
Chicago/Turabian StyleHocke, Klemens. 2023. "Oxygen in the Earth System" Oxygen 3, no. 3: 287-299. https://doi.org/10.3390/oxygen3030019
APA StyleHocke, K. (2023). Oxygen in the Earth System. Oxygen, 3(3), 287-299. https://doi.org/10.3390/oxygen3030019