Study of the Total Phenolic Content, Total Antioxidant Activity and In Vitro Digestibility of Novel Wheat Crackers Enriched with Cereal, Legume and Agricultural By-Product Flours
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cracker Dough Preparation and Baking Conditions
2.2. Extraction
2.3. Simulated In Vitro Gastrointestinal Digestion
2.4. Determination of Total Phenolic Content (Folin–Ciocalteu Assay)
2.5. Determination of Antioxidant Activity (FRAP Assay)
2.6. Statistical Analysis
3. Results
3.1. Total Phenolic Content of Novel Wheat Crackers
3.2. Antioxidant Activity of Novel Wheat Crackers
3.3. Simulated In Vitro Gastrointestinal Digestion
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, Z.S.; Abozed, S.S. Functional and antioxidant properties of novel snack crackers incorporated with Hibiscus sabdariffa by-product. J. Adv. Res. 2015, 6, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Giarnetti, M.; Paradiso, V.M.; Caponio, F.; Summo, C.; Pasqualone, A. Fat replacement in shortbread cookies using an emulsion filled gel based on inulin and extra virgin olive oil. LWT 2015, 63, 339–345. [Google Scholar] [CrossRef]
- Mir, S.A.; Bosco, S.J.D.; Shah, M.A.; Santhalakshmy, S.; Mir, M.M. Effect of apple pomace on quality characteristics of brown rice based cracker. J. Saudi Soc. Agric. Sci. 2017, 16, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Satija, A.; Hu, F.B. Cardiovascular Benefits of Dietary Fiber. Curr. Atheroscler. Rep. 2012, 14, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Holtekjølen, A.K.; Bævre, A.B.; Rødbotten, M.; Berg, H.; Knutsen, S.H. Antioxidant properties and sensory profiles of breads containing barley flour. Food Chem. 2008, 110, 414–421. [Google Scholar] [CrossRef]
- Panfili, G.; Fratianni, A.; Irano, M. Normal phase high-performance liquid chromatography method for the determination of tocopherols and tocotrienols in cereals. J. Agric. Food Chem. 2003, 51, 3940–3944. [Google Scholar] [CrossRef]
- El Khoury, D.; Cuda, C.; Luhovyy, B.L.; Anderson, G.H. Beta glucan: Health benefits in obesity and metabolic syndrome. J. Nutr. Metab. 2012, 2012, 851362. [Google Scholar] [CrossRef] [Green Version]
- Brennan, C.S.; Cleary, L.J. The potential use of cereal (1→3,1→4)-β-d-glucans as functional food ingredients. J. Cereal Sci. 2005, 42, 1–13. [Google Scholar] [CrossRef]
- Otles, S. Cereal based functional foods and nutraceuticals. Acta Sci. Pol. Technol. Aliment. 2006, 5, 107–112. [Google Scholar]
- Lampart-Szczapa, E.; Siger, A.; Trojanowska, K.; Nogala-Kalucka, M.; Malecka, M.; Pacholek, B. Chemical composition and antibacterial activities of lupin seeds extracts. Nahr. Food 2003, 47, 286–290. [Google Scholar] [CrossRef]
- Siger, A.; Czubinski, J.; Kachlicki, P.; Dwiecki, K.; Lampart-Szczapa, E.; Nogala-Kalucka, M. Antioxidant activity and phenolic content in three lupin species. J. Food Compos. Anal. 2012, 25, 190–197. [Google Scholar] [CrossRef]
- Hamama, A.A.; Bhardwaj, H.L. Phytosterols, triterpene alcohols, and phospholipids in seed oil from white lupin. JAOCS J. Am. Oil Chem. Soc. 2004, 81, 1039–1044. [Google Scholar] [CrossRef]
- Boschin, G.; Arnoldi, A. Legumes are valuable sources of tocopherols. Food Chem. 2011, 127, 1199–1203. [Google Scholar] [CrossRef] [PubMed]
- Duranti, M. Grain legume proteins and nutraceutical properties. Fitoterapia 2006, 77, 67–82. [Google Scholar] [CrossRef] [PubMed]
- Jayasena, V. Effect of lupin flour incorporation on the physical characteristics of dough and biscuits. Qual. Assur. Saf. Crop. Foods 2011, 3, 140–147. [Google Scholar] [CrossRef]
- Jukanti, A.K.; Gaur, P.M.; Gowda, C.L.L.; Chibbar, R.N. Nutritional quality and health benefits of chickpea (Cicer arietinum L.): A review. Br. J. Nutr. 2012, 108, S11–S26. [Google Scholar] [CrossRef] [Green Version]
- Szefer, P.; Lebiedzin, A. Food Chemistry Vitamins B in grain and cereal—Grain food, soy-products and seeds. Food Chem. 2006, 95, 116–122. [Google Scholar] [CrossRef]
- Dixon, R.A. Phytoestrogens. Annu. Rev. Plant Biol. 2004, 55, 225–261. [Google Scholar] [CrossRef] [Green Version]
- Rachwa-Rosiak, D.; Nebesny, E.; Budryn, G. Chickpeas—Composition, Nutritional Value, Health Benefits, Application to Bread and Snacks: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1137–1145. [Google Scholar] [CrossRef]
- Rodríguez, R.; Jiménez, A.; Fernández-Bolaños, J.; Guillén, R.; Heredia, A. Dietary fibre from vegetable products as source of functional ingredients. Trends Food Sci. Technol. 2006, 17, 3–15. [Google Scholar] [CrossRef]
- Nikolić, N.Č.; Todorović, Z.B.; Stojanović, J.S.; Veličković, D.T.; Lazić, M.L. The fatty acids and acylglycerols in chickpea and lentil flour. Agro Food Ind. Hi Tech 2013, 24, 66–68. [Google Scholar]
- Cuevas, M.; García, J.F.; Hodaifa, G.; Sánchez, S. Oligosaccharides and sugars production from olive stones by autohydrolysis and enzymatic hydrolysis. Ind. Crops Prod. 2015, 70, 100–106. [Google Scholar] [CrossRef]
- Rodríguez, G.; Lama, A.; Rodríguez, R.; Jiménez, A.; Guillén, R.; Fernández-Bolaños, J. Olive stone an attractive source of bioactive and valuable compounds. Bioresour. Technol. 2008, 99, 5261–5269. [Google Scholar] [CrossRef]
- Chanioti, S.; Siamandoura, P.; Tzia, C. Evaluation of Extracts Prepared from Olive Oil By-Products Using Microwave-Assisted Enzymatic Extraction: Effect of Encapsulation on the Stability of Final Products. Waste Biomass Valorization 2016, 7, 831–842. [Google Scholar] [CrossRef]
- Fernández-Bolaños, J.; Rodríguez, G.; Rodríguez, R.; Guillén, R.; Jiménez, A. Extraction of interesting organic compounds from olive oil waste. Grasas Aceites 2006, 57, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Maestri, D.; Barrionuevo, D.; Bodoira, R.; Zafra, A.; Jiménez-López, J.; Alché, J.d.D. Nutritional profile and nutraceutical components of olive (Olea europaea L.) seeds. J. Food Sci. Technol. 2019, 56, 4359–4370. [Google Scholar] [CrossRef] [PubMed]
- Obied, H.K.; Prenzler, P.D.; Omar, S.H.; Ismael, R.; Servili, M.; Esposto, S.; Taticchi, A.; Selvaggini, R.; Urbani, S. Pharmacology of Olive Biophenols; Elsevier: Amsterdam, The Netherlands, 2012; Volume 6, ISBN 9780444593894. [Google Scholar]
- Ranalli, A.; Pollastri, L.; Contento, S.; Di Loreto, G.; Iannucci, E.; Lucera, L.; Russi, F. Acylglycerol and fatty acid components of pulp, seed, and whole olive fruit oils. Their use to characterize fruit variety by chemometrics. J. Agric. Food Chem. 2002, 50, 3775–3779. [Google Scholar] [CrossRef]
- Bolek, S. Olive stone powder: A potential source of fiber and antioxidant and its effect on the rheological characteristics of biscuit dough and quality. Innov. Food Sci. Emerg. Technol. 2020, 64, 102423. [Google Scholar] [CrossRef]
- Jahanbakhshi, R.; Ansari, S. Physicochemical Properties of Sponge Cake Fortified by Olive Stone Powder. J. Food Qual. 2020, 2020, 1493638. [Google Scholar] [CrossRef]
- Beres, C.; Costa, G.N.S.; Cabezudo, I.; da Silva-James, N.K.; Teles, A.S.C.; Cruz, A.P.G.; Mellinger-Silva, C.; Tonon, R.V.; Cabral, L.M.C.; Freitas, S.P. Towards integral utilization of grape pomace from winemaking process: A review. Waste Manag. 2017, 68, 581–594. [Google Scholar] [CrossRef]
- Baiano, A.; Terracone, C. Varietal differences among the phenolic profiles and antioxidant activities of seven table grape cultivars grown in the south of Italy based on chemometrics. J. Agric. Food Chem. 2011, 59, 9815–9826. [Google Scholar] [CrossRef]
- Xia, E.; Deng, G.; Guo, Y.; Li, H. Biological Activities of Polyphenols from Grapes. Int. J. Mol. Sci. 2010, 11, 622–646. [Google Scholar] [CrossRef] [Green Version]
- Bada, J.C.; León-Camacho, M.; Copovi, P.; Alonso, L. Characterization of grape seed oil from wines with protected denomination of origin (PDO) from Spain. Grasas Aceites 2015, 66, e085. [Google Scholar] [CrossRef] [Green Version]
- Horvath, G.; Wessjohann, L.; Bigirimana, J.; Monica, H.; Jansen, M.; Guisez, Y.; Caubergs, R.; Horemans, N. Accumulation of tocopherols and tocotrienols during seed development of grape (Vitis vinifera L. cv. Albert Lavallée). Plant Physiol. Biochem. 2006, 44, 724–731. [Google Scholar] [CrossRef] [Green Version]
- Pardo, J.E.; Fernández, E.; Rubio, M.; Alvarruiz, A.; Alonso, G.L. Characterization of grape seed oil from different grape varieties (Vitis vinifera). Eur. J. Lipid Sci. Technol. 2009, 111, 188–193. [Google Scholar] [CrossRef]
- Özvural, E.B.; Vural, H. Grape seed flour is a viable ingredient to improve the nutritional profile and reduce lipid oxidation of frankfurters. MESC 2011, 88, 179–183. [Google Scholar] [CrossRef]
- Yu, J.; Ahmedna, M. Functional components of grape pomace: Their composition, biological properties and potential applications. Int. J. Food Sci. Technol. 2013, 48, 221–237. [Google Scholar] [CrossRef]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saura-calixto, F.; Gon, I. Food Chemistry Intake and bioaccessibility of total polyphenols in a whole diet. Food Chem. 2007, 101, 492–501. [Google Scholar] [CrossRef] [Green Version]
- Koli, R.; Erlund, I.; Jula, A.; Marniemi, J.; Mattila, P.; Alfthan, G. Bioavailability of various polyphenols from a diet containing moderate amounts of berries. J. Agric. Food Chem. 2010, 58, 3927–3932. [Google Scholar] [CrossRef]
- Nayak, B.; Liu, R.H.; Tang, J. Effect of Processing on Phenolic Antioxidants of Fruits, Vegetables, and Grains—A Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 887–918. [Google Scholar] [CrossRef] [PubMed]
- Cilla, A.; Bosch, L.; Barberá, R.; Alegría, A. Effect of processing on the bioaccessibility of bioactive compounds—A review focusing on carotenoids, minerals, ascorbic acid, tocopherols and polyphenols. J. Food Compos. Anal. 2018, 68, 3–15. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C. Polyphenols: Food source and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [Green Version]
- Velderrain-Rodríguez, G.R.; Palafox-Carlos, H.; Wall-Medrano, A.; Ayala-Zavala, J.F.; Chen, C.Y.O.; Robles-Sánchez, M.; Astiazaran-García, H.; Alvarez-Parrilla, E.; González-Aguilar, G.A. Phenolic compounds: Their journey after intake. Food Funct. 2014, 5, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Isik, F.; Yapar, A. Effect of tomato seed supplementation on chemical and nutritional properties of tarhana. J. Food Meas. Charact. 2017, 11, 667–674. [Google Scholar] [CrossRef]
- Drakou, M.; Birmpa, A.; Koutelidakis, A.E.; Komaitis, M.; Panagou, E.Z.; Kapsokefalou, M. Total antioxidant capacity, total phenolic content and iron and zinc dialyzability in selected Greek varieties of table olives, tomatoes and legumes from conventional and organic farming. Int. J. Food Sci. Nutr. 2015, 66, 197–202. [Google Scholar] [CrossRef]
- Kapsokefalou, M.; Miller, D.D. Effects of Meat and Selected Food Components on the Valence of Nonheme Iron during In Vitro Digestion. J. Food Sci. 1991, 56, 352–355. [Google Scholar] [CrossRef]
- Argyri, K.; Birba, A.; Miller, D.D.; Komaitis, M.; Kapsokefalou, M. Predicting relative concentrations of bioavailable iron in foods using in vitro digestion: New developments. Food Chem. 2009, 113, 602–607. [Google Scholar] [CrossRef]
- Argyri, K.; Athanasatou, A.; Bouga, M.; Kapsokefalou, M. The potential of an in vitro digestion method for predicting glycemic response of foods and meals. Nutrients 2016, 8, 209. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Koutelidakis, A.E.; Andritsos, N.D.; Kabolis, D.; Kapsokefalou, M.; Drosinos, E.H.; Komaitis, M. Antioxidant and antimicrobial properties of tea and aromatic plant extracts against bacterial foodborne pathogens: A comparative evaluation. Curr. Top. Nutraceutical Res. 2016, 14, 133–142. [Google Scholar]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kandyliari, A.; Elmaliklis, I.N.; Kontopoulou, O.; Tsafkopoulou, M.; Komninos, G.; Ntzatha, C.; Petsas, A.; Karantonis, H.C.; Koutelidakis, A.E. An epidemiological study report on the antioxidant and phenolic content of selected mediterranean functional foods, their consumption association with the body mass index, and consumers purchasing behavior in a sample of healthy greek adults. Appl. Sci. 2021, 11, 7818. [Google Scholar] [CrossRef]
- Punia, S.; Sandhu, K.S.; Kaur, M. Quantification of phenolic acids and antioxidant potential of wheat rusks as influenced by partial replacement with barley flour. J. Food Sci. Technol. 2020, 57, 3782–3791. [Google Scholar] [CrossRef]
- Aly, A.A.; El-Deeb, F.E.; Abdelazeem, A.A.; Hameed, A.M.; Abdulaziz Alfi, A.; Alessa, H.; Alrefaei, A.F. Addition of Whole Barley Flour as a Partial Substitute of Wheat Flour to Enhance the Nutritional Value of Biscuits. Arab. J. Chem. 2021, 14, 103112. [Google Scholar] [CrossRef]
- Sharma, P.; Gujral, H.S. Cookie making behavior of wheat-barley flour blends and effects on antioxidant properties. LWT 2014, 55, 301–307. [Google Scholar] [CrossRef]
- Narwal, S.; Kumar, D.; Sheoran, S.; Verma, R.P.S.; Gupta, R.K. Hulless barley as a promising source to improve the nutritional quality of wheat products. J. Food Sci. Technol. 2017, 54, 2638–2644. [Google Scholar] [CrossRef]
- Gupta, M.; Bawa, A.S.; Abu-Ghannam, N. Effect of barley flour and freeze-thaw cycles on textural nutritional and functional properties of cookies. Food Bioprod. Process. 2011, 89, 520–527. [Google Scholar] [CrossRef]
- Sharma, P.; Gujral, H.S. Antioxidant potential of wheat flour chapattis as affected by incorporating barley flour. LWT 2014, 56, 118–123. [Google Scholar] [CrossRef]
- Holtekjølen, A.K.; Knutsen, S.H. Antioxidant Activity and Phenolics in Breads with Added Barley Flour; Elsevier Inc.: Amsterdam, The Netherlands, 2011; ISBN 9780123808868. [Google Scholar]
- Altan, A.; McCarthy, K.L.; Maskan, M. Effect of extrusion process on antioxidant activity, total phenolics and β-glucan content of extrudates developed from barley-fruit and vegetable by-products. Int. J. Food Sci. Technol. 2009, 44, 1263–1271. [Google Scholar] [CrossRef]
- Manzocco, L.; Calligaris, S.; Mastrocola, D.; Nicoli, M.C.; Lerici, C.R. Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends Food Sci. Technol. 2000, 11, 340–346. [Google Scholar] [CrossRef]
- Abd El-Maasoud, S.; Ghaly, M. Influence of Addition Sweet Lupine Flour on Quality and Antioxidant Characteristics of Biscuits. J. Food Dairy Sci. 2018, 9, 163–170. [Google Scholar] [CrossRef]
- Rumiyati, R.; James, A.P.; Jayasena, V. Effects of lupin incorporation on the physical properties and stability of bioactive constituents in muffins. Int. J. Food Sci. Technol. 2015, 50, 103–110. [Google Scholar] [CrossRef]
- Plustea, L.; Negrea, M.; Cocan, I.; Radulov, I.; Tulcan, C.; Berbecea, A.; Popescu, I.; Obistioiu, D.; Hotea, I.; Suster, G.; et al. Lupin (Lupinus spp.)-Fortified Bread: A Sustainable, Nutritionally, Functionally, and Technologically Valuable Solution for Bakery. Foods 2022, 11, 2067. [Google Scholar] [CrossRef] [PubMed]
- Rumiyati; Jayasena, V.; James, A.P. Total Phenolic and Phytosterol Compounds and the Radical Scavenging Activity of Germinated Australian Sweet Lupin Flour. Plant Foods Hum. Nutr. 2013, 68, 352–357. [Google Scholar] [CrossRef] [PubMed]
- Pasqualone, A.; De Angelis, D.; Squeo, G.; Difonzo, G.; Caponio, F.; Summo, C. The effect of the addition of apulian black chickpea flour on the nutritional and qualitative properties of durum wheat-based bakery products. Foods 2019, 8, 504. [Google Scholar] [CrossRef] [Green Version]
- Niño-Medina, G.; Muy-Rangel, D.; De La Garza, A.L.; Rubio-Carrasco, W.; Pérez-Meza, B.; Araujo-Chapa, A.P.; Gutiérrez-Álvarez, K.A.; Urías-Orona, V. Dietary fiber from chickpea (Cicer arietinum) and soybean (Glycine max) husk byproducts as baking additives: Functional and nutritional properties. Molecules 2019, 24, 991. [Google Scholar] [CrossRef] [Green Version]
- Segev, A.; Badani, H.; Galili, L.; Hovav, R.; Kapulnik, Y.; Shomer, I.; Galili, S. Effects of Baking, Roasting and Frying on Total Polyphenols and Antioxidant Activity in Colored Chickpea Seeds. Food Nutr. Sci. 2012, 3, 369–376. [Google Scholar] [CrossRef] [Green Version]
- Collar, C.; Jiménez, T.; Conte, P.; Fadda, C. Impact of ancient cereals, pseudocereals and legumes on starch hydrolysis and antiradical activity of technologically viable blended breads. Carbohydr. Polym. 2014, 113, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Millar, K.A.; Barry-Ryan, C.; Burke, R.; Hussey, K.; McCarthy, S.; Gallagher, E. Effect of pulse flours on the physiochemical characteristics and sensory acceptance of baked crackers. Int. J. Food Sci. Technol. 2017, 52, 1155–1163. [Google Scholar] [CrossRef] [Green Version]
- Vogrinčič, M.; Timoracka, M.; Melichacova, S.; Vollmannova, A.; Kreft, I. Degradation of rutin and polyphenols during the preparation of tartary buckwheat bread. J. Agric. Food Chem. 2010, 58, 4883–4887. [Google Scholar] [CrossRef]
- Argyri, E.A.; Piromalis, S.P.; Koutelidakis, A.; Kafetzopoulos, D.; Petsas, A.S.; Skalkos, D.; Nasopoulou, C.; Dimou, C.; Karantonis, H.C. Olive paste-enriched cookies exert increased antioxidant activities. Appl. Sci. 2021, 11, 5515. [Google Scholar] [CrossRef]
- Acun, S.; Gül, H. Effects of grape pomace and grape seed flours on cookie quality. Qual. Assur. Saf. Crop. Foods 2014, 6, 81–88. [Google Scholar] [CrossRef]
- Maman, R.; Yu, J. Chemical Composition and Particle Size of Grape Seed Flour and Their Effects on the Characteristics of Cookies. J. Food Res. 2019, 8, 111. [Google Scholar] [CrossRef] [Green Version]
- Antonic, B.; Dordevic, D.; Jancikova, S.; Holeckova, D.; Tremlova, B.; Kulawik, P. Effect of grape seed flour on the antioxidant profile, textural and sensory properties ofwaffles. Processes 2021, 9, 131. [Google Scholar] [CrossRef]
- Yalcin, E.; Ozdal, T.; Gok, I. Investigation of textural, functional, and sensory properties of muffins prepared by adding grape seeds to various flours. J. Food Process. Preserv. 2022, 46, e15316. [Google Scholar] [CrossRef]
- Yalcin, E.; Gok, I.; Ozdal, T. Effect of Grape Seed Flour on the Phenolic Profile, Antioxidant Capacity and Sensory Properties of Muffins. Lat. Am. Appl. Res. 2022, 52, 213–220. [Google Scholar] [CrossRef]
- Hoye, C. Value-Added Product Development Utilizing Washington State Grape Seed Flour; Washington State University: Pullman, WA, USA, 2009. [Google Scholar]
- Lee, S.C.; Kim, J.H.; Jeong, S.M.; Kim, D.R.; Ha, J.U.; Nam, K.C.; Ahn, D.U. Effect of far-infrared radiation on the antioxidant activity of rice hulls. J. Agric. Food Chem. 2003, 51, 4400–4403. [Google Scholar] [CrossRef] [PubMed]
- Meral, R.; Erim Köse, Y. The effect of bread-making process on the antioxidant activity and phenolic profile of enriched breads. Qual. Assur. Saf. Crop. Foods 2019, 11, 171–181. [Google Scholar] [CrossRef]
- Borrelli, R.C.; Mennella, C.; Barba, F.; Russo, M.; Russo, G.L.; Krome, K.; Erbersdobler, H.F.; Faist, V.; Fogliano, V. Characterization of coloured compounds obtained by enzymatic extraction of bakery products. Food Chem. Toxicol. 2003, 41, 1367–1374. [Google Scholar] [CrossRef] [PubMed]
- Žilić, S.; Kocadağli, T.; Vančetović, J.; Gökmen, V. Effects of baking conditions and dough formulations on phenolic compound stability, antioxidant capacity and color of cookies made from anthocyanin-rich corn flour. LWT 2016, 65, 597–603. [Google Scholar] [CrossRef]
- Stratil, P.; Klejdus, B.; Kubáň, V. Determination of phenolic compounds and their antioxidant activity in fruits and cereals. Talanta 2007, 71, 1741–1751. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Jiménez, J.; Saura-Calixto, F. Literature data may underestimate the actual antioxidant capacity of cereals. J. Agric. Food Chem. 2005, 53, 5036–5040. [Google Scholar] [CrossRef] [Green Version]
- Fallico, B.; Grasso, A.; Arena, E. Hazardous Chemical Compounds in Cookies: The Role of Sugars and the Kinetics of Their Formation during Baking. Foods 2022, 11, 4066. [Google Scholar] [CrossRef]
- Cincotta, F.; Brighina, S.; Condurso, C.; Arena, E.; Verzera, A.; Fallico, B. Sugars Replacement as a Strategy to Control the Formation of α-Dicarbonyl and Furanic Compounds during Cookie Processing. Foods 2021, 10, 2101. [Google Scholar] [CrossRef]
- Purlis, E. Browning development in bakery products—A review. J. Food Eng. 2010, 99, 239–249. [Google Scholar] [CrossRef]
- Tu, J.; Brennan, M.A.; Wu, G.; Bai, W.; Cheng, P.; Tian, B.; Brennan, C.S. Delivery of phenolic compounds, peptides and β-glucan to the gastrointestinal tract by incorporating dietary fibre-rich mushrooms into sorghum biscuits. Foods 2021, 10, 1812. [Google Scholar] [CrossRef]
- Marinelli, V.; Padalino, L.; Conte, A.; Del Nobile, M.A.; Briviba, K. Red grape marc flour as food ingredient in durum wheat spaghetti: Nutritional evaluation and bioaccessibility of bioactive compounds. Food Sci. Technol. Res. 2018, 24, 1093–1100. [Google Scholar] [CrossRef]
- McDougall, G.J.; Fyffe, S.; Dobson, P.; Stewart, D. Anthocyanins from red wine—Their stability under simulated gastrointestinal digestion. Phytochemistry 2005, 66, 2540–2548. [Google Scholar] [CrossRef]
- Rocchetti, G.; Rizzi, C.; Cervini, M.; Rainero, G.; Bianchi, F.; Giuberti, G.; Lucini, L.; Simonato, B. Impact of grape pomace powder on the phenolic bioaccessibility and on in vitro starch digestibility of wheat based bread. Foods 2021, 10, 507. [Google Scholar] [CrossRef]
- Cedola, A.; Cardinali, A.; Del Nobile, M.A.; Conte, A. Amalia Conte Enrichment of Bread with Olive Oil Industrial By-Product. J. Agric. Sci. Technol. B 2019, 9, 119–127. [Google Scholar] [CrossRef]
- Cedola, A.; Cardinali, A.; D’Antuono, I.; Conte, A.; Del Nobile, M.A. Cereal foods fortified with by-products from the olive oil industry. Food Biosci. 2020, 33, 100490. [Google Scholar] [CrossRef]
- Gawlik-Dziki, U.; Dziki, D.; Świeca, M.; Sȩczyk, Ł.; Rózyło, R.; Szymanowska, U. Bread enriched with Chenopodium quinoa leaves powder—The procedures for assessing the fortification efficiency. LWT 2015, 62, 1226–1234. [Google Scholar] [CrossRef]
- Everette, J.D.; Bryant, Q.M.; Green, A.M.; Abbey, Y.A.; Wangila, G.W.; Walker, R.B. Thorough study of reactivity of various compound classes toward the folin-Ciocalteu reagent. J. Agric. Food Chem. 2010, 58, 8139–8144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Crackers | Wheat Flour (g) | Chickpea Flour (g) | Lupine Flour (g) | Barley Flour (g) | Grape Seed Flour (g) | Olive Seed Flour (g) | Sugar (g) | Canola Oil (g) | Baking Powder (g) | Salt (g) | Water (g) |
---|---|---|---|---|---|---|---|---|---|---|---|
W | 200 | - | - | - | - | - | 4 | 40 | 3.7 | 2 | 80 |
C1 | 160 | 40 | - | - | - | - | 4 | 40 | 3.7 | 2 | 80 |
C2 | 140 | 60 | - | - | - | - | 4 | 40 | 3.7 | 2 | 80 |
C3 | 120 | 80 | - | - | - | - | 4 | 40 | 3.7 | 2 | 80 |
C4 | 100 | 100 | - | - | - | - | 4 | 40 | 3.7 | 2 | 80 |
C5 | 80 | 120 | - | - | - | - | 4 | 40 | 3.7 | 2 | 80 |
C6 | 40 | 160 | - | - | - | - | 4 | 40 | 3.7 | 2 | 80 |
L1 | 180 | - | 20 | - | - | - | 4 | 40 | 3.7 | 2 | 80 |
L2 | 160 | - | 40 | - | - | - | 4 | 40 | 3.7 | 2 | 80 |
L3 | 140 | - | 60 | - | - | - | 4 | 40 | 3.7 | 2 | 80 |
L4 | 120 | - | 80 | - | - | - | 4 | 40 | 3.7 | 2 | 80 |
B1 | 180 | - | - | 20 | - | - | 4 | 40 | 3.7 | 2 | 80 |
B2 | 160 | - | - | 40 | - | - | 4 | 40 | 3.7 | 2 | 80 |
B3 | 140 | - | - | 60 | - | - | 4 | 40 | 3.7 | 2 | 80 |
G1 | 180 | - | - | - | 20 | - | 4 | 40 | 3.7 | 2 | 80 |
G2 | 160 | - | - | - | 40 | - | 4 | 40 | 3.7 | 2 | 80 |
G3 | 140 | - | - | - | 60 | - | 4 | 40 | 3.7 | 2 | 80 |
O1 | 180 | - | - | - | - | 20 | 4 | 40 | 3.7 | 2 | 80 |
O2 | 160 | - | - | - | - | 40 | 4 | 40 | 3.7 | 2 | 80 |
O3 | 140 | - | - | - | - | 60 | 4 | 40 | 3.7 | 2 | 80 |
Antioxidant Activity FeSO4 (μΜ) | ||
---|---|---|
Level of Substitution 100% wheat flour (control) | Dough 31.69 ± 0.69 | Cracker 51.78 ± 0.89 |
10% olive stone flour | 77.79 ± 2.23 a* | 136.32 ± 7.95 a* |
20% olive stone flour | 131.97 ± 6.15 b* | 222.53 ± 8.86 b* |
30% olive stone flour | 225.52 ± 17.43 c* | 321.49 ± 9.02 c* |
10% grape stone flour | 90.20 ± 4.07 d* | 201.29 ± 19.56 d* |
20% grape stone flour | 145.22 ± 10.33 e* | 330.53 ± 10.91 e* |
30% grape stone flour | 127.17 ± 2.12 f* | 360.56 ± 2.78 f* |
10% lupine flour | 44.87 ± 3.47 g* | 52.76 ± 2.33 g |
20% lupine flour | 49.60 ± 0.44 h* | 68.66 ± 4.43 h* |
30% lupine flour | 50.98 ± 1.68 i* | 80.37 ± 3.41 i* |
40% lupine flour | 51.27 ± 1.14 j* | 73.87 ± 8.53 j* |
10% barley flour | 60.17 ± 2.41 k* | 45.83 ± 6.36 k |
20% barley flour | 61.12 ± 5.01 l* | 47.24 ± 2.87 l |
30% barley flour | 69.72 ± 4.08 * | 67.37 ± 4.39 * |
20% chickpea flour | 51.27 ± 0.31 * | 50.85 ± 2.47 |
30% chickpea flour | 51.32 ± 0.05 m* | 71.84 ± 2.22 m* |
40% chickpea flour | 53.54 ± 1.01 * | 77.96 ± 8.52 * |
50% chickpea flour | 52.40 ± 0.98 n* | 80.22 ± 10.43 n* |
60% chickpea flour | 51.71 ± 0.38 o* | 85.92 ± 4.13 o* |
80% chickpea flour | 52.86 ± 1.15 p* | 90.21 ± 5.57 p* |
Crackers | Pearson Correlation Coefficients |
---|---|
Olive seed flour | 0.891 * |
Grape seed flour | 0.914 * |
Barley flour | 0.558 |
Lupine flour | 0.689 * |
Chickpea flour | 0.830 * |
Crackers | Undigested (mg GAE/10 mL) | After Digestion (mg GAE/10 mL) | Phenolic Bioaccessibility % |
---|---|---|---|
O3 | 64.89 ± 2.12 | 60.35 ± 1.93 † | 93.01% |
G1 | 62.01 ± 3.71 * | 33.42 ± 1.07 *† | 53.89% |
G2 | 88.73 ± 6.07 * | 42.33 ± 0.42 *† | 47.71% |
G3 | 95.84 ± 9.16 * | 44.31 ± 0.33 *† | 46.23% |
W (control) | 29.66 ± 2.64 * | 21.91 ± 0.13 * | 73.89% |
Crackers | Undigested FeSO4 (μΜ) | After Digestion FeSO4 (μΜ) | Antioxidant Activity % |
---|---|---|---|
O3 | 321.49 ± 9.02 * | 279.37 ± 9.13 *† | 86.90% |
G1 | 201.29 ± 19.56 * | 138.74 ± 2.51 *† | 68.93% |
G2 | 330.53 ± 10.91 * | 150.68 ± 2.81 *† | 45.59% |
G3 | 360.56 ± 2.78 * | 159.25 ± 1.97 *† | 44.17% |
W (control) | 51.78 ± 0.89 * | 66.82 ± 0.52 * | 129.05% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatziharalambous, D.; Kaloteraki, C.; Potsaki, P.; Papagianni, O.; Giannoutsos, K.; Koukoumaki, D.I.; Sarris, D.; Gkatzionis, K.; Koutelidakis, A.E. Study of the Total Phenolic Content, Total Antioxidant Activity and In Vitro Digestibility of Novel Wheat Crackers Enriched with Cereal, Legume and Agricultural By-Product Flours. Oxygen 2023, 3, 256-273. https://doi.org/10.3390/oxygen3020017
Chatziharalambous D, Kaloteraki C, Potsaki P, Papagianni O, Giannoutsos K, Koukoumaki DI, Sarris D, Gkatzionis K, Koutelidakis AE. Study of the Total Phenolic Content, Total Antioxidant Activity and In Vitro Digestibility of Novel Wheat Crackers Enriched with Cereal, Legume and Agricultural By-Product Flours. Oxygen. 2023; 3(2):256-273. https://doi.org/10.3390/oxygen3020017
Chicago/Turabian StyleChatziharalambous, Despina, Chrysoula Kaloteraki, Panagiota Potsaki, Olga Papagianni, Konstantinos Giannoutsos, Danai I. Koukoumaki, Dimitris Sarris, Konstantinos Gkatzionis, and Antonios E. Koutelidakis. 2023. "Study of the Total Phenolic Content, Total Antioxidant Activity and In Vitro Digestibility of Novel Wheat Crackers Enriched with Cereal, Legume and Agricultural By-Product Flours" Oxygen 3, no. 2: 256-273. https://doi.org/10.3390/oxygen3020017
APA StyleChatziharalambous, D., Kaloteraki, C., Potsaki, P., Papagianni, O., Giannoutsos, K., Koukoumaki, D. I., Sarris, D., Gkatzionis, K., & Koutelidakis, A. E. (2023). Study of the Total Phenolic Content, Total Antioxidant Activity and In Vitro Digestibility of Novel Wheat Crackers Enriched with Cereal, Legume and Agricultural By-Product Flours. Oxygen, 3(2), 256-273. https://doi.org/10.3390/oxygen3020017