Understanding Hydrogen: Lessons to Be Learned from Physical Interactions between the Inert Gases and the Globin Superfamily
Abstract
:1. Introduction
2. Biological Effects of Argon
3. Biological Effects of Xenon
4. Biological Effects of Other Noble Gases
5. Bioactivity Action of Noble Gases
6. Xenon Pockets in the Globins
7. Hydrophobic Cavities in Other Proteins
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ge, L.; Yang, M.; Yang, N.N.; Yin, X.X.; Song, W.G. Molecular hydrogen: A preventive and therapeutic medical gas for various diseases. Oncotarget 2017, 8, 102653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zulfiqar, F.; Russell, G.; Hancock, J.T. Molecular hydrogen in agriculture. Planta 2021, 254, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Ohno, K.; Ito, M.; Ichihara, M.; Ito, M. Molecular hydrogen as an emerging therapeutic medical gas for neurodegenerative and other diseases. Oxidative Med. Cell. Longev. 2012, 2012, 353152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, G.; Rehman, M.; LeBaron, T.W.; Veal, D.; Adukwu, E.; Hancock, J.T. An overview of SARS-CoV-2 (COVID-19) infection: The importance of molecular hydrogen as an adjunctive therapy. React. Oxyg. Species 2020, 10, 150–165. [Google Scholar] [CrossRef]
- Alwazeer, D.; Liu, F.F.C.; Wu, X.Y.; LeBaron, T.W. Combating oxidative stress and inflammation in COVID-19 by molecular hydrogen therapy: Mechanisms and perspectives. Oxidative Med. Cell. Longev. 2021, 2021, 5513868. [Google Scholar] [CrossRef]
- Cheng, P.; Wang, J.; Zhao, Z.; Kong, L.; Lou, W.; Zhang, T.; Jing, D.; Yu, J.; Shu, Z.; Huang, L.; et al. Molecular hydrogen increases quantitative and qualitative traits of rice grain in field trials. Plants 2021, 10, 2331. [Google Scholar] [CrossRef]
- Russell, G.; Nenov, A.; Hancock, J. Oxy-hydrogen gas: The rationale behind its use as a novel and sustainable treatment for COVID-19 and other respiratory diseases. Eur. Med. J. 2021, 21-00027. [Google Scholar] [CrossRef]
- Lin, C.P.; Chuang, W.C.; Lu, F.J.; Chen, C.Y. Anti-oxidant and anti-inflammatory effects of hydrogen-rich water alleviate ethanol-induced fatty liver in mice. World J. Gastroenterol. 2017, 23, 4920. [Google Scholar] [CrossRef]
- Sun, H.; Chen, L.; Zhou, W.; Hu, L.; Li, L.; Tu, Q.; Chang, Y.; Liu, Q.; Sun, X.; Wu, M.; et al. The protective role of hydrogen-rich saline in experimental liver injury in mice. J. Hepatol. 2011, 54, 471–480. [Google Scholar] [CrossRef]
- Zheng, X.; Zheng, X.; Mao, Y.; Cai, J.; Li, Y.; Liu, W.; Sun, P.; Zhang, J.H.; Sun, X.; Yuan, H. Hydrogen-rich saline protects against intestinal ischemia/reperfusion injury in rats. Free. Radic. Res. 2009, 43, 478–484. [Google Scholar] [CrossRef]
- Liu, S.; Li, J.; Oshita, S.; Kamruzzaman, M.; Cui, M.; Fan, W. Formation of a hydrogen radical in hydrogen nanobubble water and its effect on copper toxicity in Chlorella. ACS Sustain. Chem. Eng. 2021, 9, 11100–11109. [Google Scholar] [CrossRef]
- Kawamura, T.; Huang, C.S.; Tochigi, N.; Lee, S.; Shigemura, N.; Billiar, T.R.; Okumura, M.; Nakao, A.; Toyoda, Y. Inhaled hydrogen gas therapy for prevention of lung transplant-induced ischemia/reperfusion injury in rats. Transplantation 2010, 90, 1344–1351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Su, W.J.; Chen, Y.; Wu, T.Y.; Gong, H.; Shen, X.L.; Wang, Y.X.; Sun, X.J.; Jiang, C.L. Effects of hydrogen-rich water on depressive-like behavior in mice. Sci. Rep. 2016, 6, 23742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ostojic, S.M.; Vukomanovic, B.; Calleja-Gonzalez, J.; Hoffman, J.R. Effectiveness of oral and topical hydrogen for sports-related soft tissue injuries. Postgrad. Med. 2014, 126, 188–196. [Google Scholar] [CrossRef]
- Hu, H.; Li, P.; Shen, W. Preharvest application of hydrogen-rich water not only affects daylily bud yield but also contributes to the alleviation of bud browning. Sci. Hortic. 2021, 287, 110267. [Google Scholar] [CrossRef]
- Ren, P.J.; Jin, X.; Liao, W.B.; Wang, M.; Niu, L.J.; Li, X.P.; Xu, X.T.; Zhu, Y.C. Effect of hydrogen-rich water on vase life and quality in cut lily and rose flowers. Hortic. Environ. Biotechnol. 2017, 58, 576–584. [Google Scholar] [CrossRef]
- Fu, X.; Ma, L.; Gui, R.; Li, Y.; Yang, X.; Zhang, J.; Imran, M.; Tang, X.; Tian, H.; Mo, Z. Hydrogen rich water (HRW) induces plant growth and physiological attributes in fragrant rice varieties under salt stress. Res. Sq. 2020. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Zhao, S.; Li, P.; Shen, W. Hydrogen gas prolongs the shelf life of kiwifruit by decreasing ethylene biosynthesis. Postharvest Biol. Technol. 2018, 135, 123–130. [Google Scholar] [CrossRef]
- Li, L.; Liu, Y.; Wang, S.; Zou, J.; Ding, W.; Shen, W. Magnesium hydride-mediated sustainable hydrogen supply prolongs the vase life of cut carnation flowers via hydrogen sulfide. Front. Plant Sci. 2020, 11, 595376. [Google Scholar] [CrossRef]
- Hancock, J.T.; Russell, G. Downstream signalling from molecular hydrogen. Plants 2021, 10, 367. [Google Scholar] [CrossRef]
- Cejka, C.; Kossl, J.; Holan, V.; Zhang, J.H.; Cejkova, J. An immunohistochemical study of the increase in antioxidant capacity of corneal epithelial cells by molecular hydrogen, leading to the suppression of alkali-induced oxidative stress. Oxidative Med. Cell. Longev. 2020, 2020, 7435260. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, J.; Hao, H.; Feng, Z.; Chen, M.; Wang, H.; Ye, M. Hydrogen-rich water increases postharvest quality by enhancing antioxidant capacity in Hypsizygus marmoreus. Amb Express 2017, 7, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Q.; Su, N.; Cai, J.; Shen, Z.; Cui, J. Hydrogen-rich water enhances cadmium tolerance in Chinese cabbage by reducing cadmium uptake and increasing antioxidant capacities. J. Plant Physiol. 2015, 175, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Cui, W.; Fang, P.; Zhu, K.; Mao, Y.; Gao, C.; Xie, Y.; Wang, J.; Shen, W. Hydrogen-rich water confers plant tolerance to mercury toxicity in alfalfa seedlings. Ecotoxicol. Environ. Saf. 2014, 105, 103–111. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, W.; Qi, F.; Cui, W.; Xie, Y.; Shen, W. Hydrogen-rich water regulates cucumber adventitious root development in a heme oxygenase-1/carbon monoxide-dependent manner. J. Plant Physiol. 2014, 171, 1–8. [Google Scholar] [CrossRef]
- Shen, N.Y.; Bi, J.B.; Zhang, J.Y.; Zhang, S.M.; Gu, J.X.; Qu, K.; Liu, C. Hydrogen-rich water protects against inflammatory bowel disease in mice by inhibiting endoplasmic reticulum stress and promoting heme oxygenase-1 expression. World J. Gastroenterol. 2017, 23, 1375. [Google Scholar] [CrossRef]
- Ohsawa, I.; Ishikawa, M.; Takahashi, K.; Watanabe, M.; Nishimaki, K.; Yamagata, K.; Katsura, K.; Katayama, Y.; Asoh, S.; Ohta, S. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 2007, 13, 688. [Google Scholar] [CrossRef]
- Hanaoka, T.; Kamimura, N.; Yokota, T.; Takai, S.; Ohta, S. Molecular hydrogen protects chondrocytes from oxidative stress and indirectly alters gene expressions through reducing peroxynitrite derived from nitric oxide. Med. Gas Res. 2011, 1, 18. [Google Scholar] [CrossRef] [Green Version]
- Penders, J.; Kissner, R.; Koppenol, W.H. ONOOH does not react with H2: Potential beneficial effects of H2 as an antioxidant by selective reaction with hydroxyl radicals and peroxynitrite. Free Radic. Biol. Med. 2014, 75, 191–194. [Google Scholar] [CrossRef]
- Hancock, J.T.; LeBaron, T.W.; Russell, G. Molecular hydrogen: Redox reactions and possible biological interactions. React. Oxyg. Species 2021, 11, m17–m25. [Google Scholar] [CrossRef]
- Peck, H.D. The ATP-dependent reduction of sulfate with hydrogen in extracts of Desulfovibrio desulfuricans. Proc. Natl. Acad. Sci. USA 1959, 45, 701–708. [Google Scholar] [CrossRef] [Green Version]
- Hancock, J.T.; Hancock, T.H. Hydrogen gas, ROS metabolism, and cell signaling: Are hydrogen spin states important? React. Oxyg. Species 2018, 6, 389–395. [Google Scholar] [CrossRef]
- Bren, K.L.; Eisenberg, R.; Gray, H.B. Discovery of the magnetic behavior of hemoglobin: A beginning of bioinorganic chemistry. Proc. Natl. Acad. Sci. USA. 2015, 112, 13123–13127. [Google Scholar] [CrossRef] [Green Version]
- Pauling, L.; Coryell, C.D. The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin. Proc. Natl. Acad. Sci. USA. 1936, 22, 210–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.A.; Jong, Y.C.; Kang, M.S.; Yu, C.J. Antioxidation activity of molecular hydrogen via protoheme catalysis in vivo; an insight from ab initio calculations. Res. Sq. 2022; pre-print. [Google Scholar]
- Vázquez-Limón, C.; Hoogewijs, D.; Vinogradov, S.N.; Arredondo-Peter, R. The evolution of land plant hemoglobins. Plant Sci. 2012, 191, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Winterbourn, C.C. The biological chemistry of hydrogen peroxide. Methods Enzymol. 2013, 528, 3–25. [Google Scholar]
- Hess, D.T.; Stamler, J.S. Regulation by S-nitrosylation of protein post-translational modification. J. Biol. Chem. 2012, 287, 4411–4418. [Google Scholar] [CrossRef] [Green Version]
- Kolbert, Z.; Feigl, G.; Bordé, Á.; Molnár, Á.; Erdei, L. Protein tyrosine nitration in plants: Present knowledge, computational prediction and future perspectives. Plant Physiol. Biochem. 2017, 113, 56–63. [Google Scholar] [CrossRef] [Green Version]
- Filipovic, M.R.; Zivanovic, J.; Alvarez, B.; Banerjee, R. Chemical biology of H2S signaling through persulfidation. Chem. Rev. 2018, 118, 1253–1337. [Google Scholar] [CrossRef]
- Wang, J.; Cai, C.; Geng, P.; Tan, F.; Yang, Q.; Wang, R.; Shen, W. A new discovery of argon functioning in plants: Regulation of salinity tolerance. Antioxidants 2022, 11, 1168. [Google Scholar] [CrossRef] [PubMed]
- Edge, C.J.; Dickinson, R. Argon: A noble, but not inert, treatment for brain trauma? Br. J. Anaesth. 2021, 126, 41–43. [Google Scholar] [CrossRef]
- Ryang, Y.M.; Fahlenkamp, A.V.; Rossaint, R.; Wesp, D.; Loetscher, P.D.; Beyer, C.; Coburn, M. Neuroprotective effects of argon in an in vivo model of transient middle cerebral artery occlusion in rats. Crit. Care Med. 2011, 39, 1448–1453. [Google Scholar] [CrossRef]
- Loetscher, P.D.; Rossaint, J.; Rossaint, R.; Weis, J.; Fries, M.; Fahlenkamp, A.; Ryang, Y.M.; Grottke, O.; Coburn, M. Argon: Neuroprotection in in vitro models of cerebral ischemia and traumatic brain injury. Crit. Care 2009, 13, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagel, P.S.; Krolikowski, J.G.; Shim, Y.H.; Venkatapuram, S.; Kersten, J.R.; Weihrauch, D.; Warltier, D.C.; Pratt, P.F., Jr. Noble gases without anesthetic properties protect myocardium against infarction by activating prosurvival signaling kinases and inhibiting mitochondrial permeability transition in vivo. Anesth. Analg. 2007, 105, 562–569. [Google Scholar] [CrossRef]
- Rizvi, M.; Jawad, N.; Li, Y.; Vizcaychipi, M.P.; Maze, M.; Ma, D. Effect of noble gases on oxygen and glucose deprived injury in human tubular kidney cells. Exp. Biol. Med. 2010, 235, 886–891. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Zhang, R.; Sun, X. Bustling argon: Biological effect. Med. Gas Res. 2013, 3, 22. [Google Scholar] [CrossRef] [Green Version]
- Gerth, W.A. Nitrogen binding to deoxyhemoglobin at high pressures and its relation to changes in hemoglobin-oxygen affinity. J. Biol. Chem. 1988, 263, 13515–13521. [Google Scholar] [CrossRef]
- Jordan, B.D.; Wright, E.L. Xenon as an anesthetic agent. AANA J. 2010, 78, 387–392. [Google Scholar]
- Lawrence, J.H.; Loomis, W.F.; Tobias, C.A.; Turpin, F.H. Preliminary observations on the narcotic effect of xenon with a review of values for solubilities of gases in water and oils. J. Physiol. 1946, 105, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, S.; Ma, D.; Maze, M.; Franks, N.P. Effects of xenon on in vitro and in vivo models of neuronal injury. J. Am. Soc. Anesthesiol. 2002, 96, 1485–1491. [Google Scholar] [CrossRef] [PubMed]
- Goetzenich, A.; Hatam, N.; Preuss, S.; Moza, A.; Bleilevens, C.; Roehl, A.B.; Autschbach, R.; Bernhagen, J.; Stoppe, C. The role of hypoxia-inducible factor-1α and vascular endothelial growth factor in late-phase preconditioning with xenon, isoflurane and levosimendan in rat cardiomyocytes. Interact. Cardiovasc. Thorac. Surg. 2014, 18, 321–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ash, S.A.; Valchev, G.I.; Looney, M.; Ni Mhathuna, A.; Crowley, P.D.; Gallagher, H.C.; Buggy, D.J. Xenon decreases cell migration and secretion of a pro-angiogenesis factor in breast adenocarcinoma cells: Comparison with sevoflurane. Br. J. Anaesth. 2014, 113, i14–i21. [Google Scholar] [CrossRef] [PubMed]
- Petzelt, C.; Taschenberger, G.; Schmehl, W.; Kox, W.J. Xenon-induced inhibition of Ca2+-regulated transitions in the cell cycle of human endothelial cells. Pflügers Arch. 1999, 437, 737–744. [Google Scholar] [CrossRef]
- Petzelt, C.; Blom, P.; Schmehl, W.; Müller, J.; Kox, W.J. Xenon prevents cellular damage in differentiated PC-12 cells exposed to hypoxia. BMC Neurosci. 2004, 5, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khlusov, I.A.; Zhukov, P.G.; Sukhikh, G.T. Cell effects of xenon n vitro under hypothermal conditions. Bull. Exp. Biol. Med. 2007, 143, 510–513. [Google Scholar] [CrossRef]
- Zhu, Y.; Mosko, J.J.; Chidekel, A.; Wolfson, M.R.; Shaffer, T.H. Effects of xenon gas on human airway epithelial cells during hyperoxia and hypothermia. J. Neonatal-Perinat. Med. 2020, 13, 469–476. [Google Scholar] [CrossRef]
- Spaggiari, S.; Kepp, O.; Rello-Varona, S.; Chaba, K.; Adjemian, S.; Pype, J.; Galluzzi, L.; Lemaire, M.; Kroemer, G. Antiapoptotic activity of argon and xenon. Cell Cycle 2013, 12, 2636–2642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokawa, K.; Kagenishi, T.; Pavlovič, A.; Gall, S.; Weiland, M.; Mancuso, S.; Baluška, F. Anaesthetics stop diverse plant organ movements, affect endocytic vesicle recycling and ROS homeostasis, and block action potentials in Venus flytraps. Ann. Bot. 2018, 122, 747–756. [Google Scholar] [CrossRef] [Green Version]
- Weber, N.C.; Smit, K.F.; Hollmann, M.W.W.; Preckel, B. Targets involved in cardioprotection by the non-anesthetic noble gas helium. Curr. Drug Targets 2015, 16, 786–792. [Google Scholar] [CrossRef]
- Weber, N.C.; Preckel, B. Gaseous mediators: An updated review on the effects of helium beyond blowing up balloons. Intensive Care Med. Exp. 2019, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Oei, G.T.; Weber, N.C.; Hollmann, M.W.; Preckel, B. Cellular effects of helium in different organs. J. Am. Soc. Anesthesiol. 2010, 112, 1503–1510. [Google Scholar] [CrossRef] [Green Version]
- Smit, K.F.; Brevoord, D.; De Hert, S.; de Mol, B.A.; Kerindongo, R.P.; van Dieren, S.; Schlack, W.S.; Hollmann, M.W.; Weber, N.C.; Preckel, B. Effect of helium pre-or postconditioning on signal transduction kinases in patients undergoing coronary artery bypass graft surgery. J. Transl. Med. 2016, 14, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Jawad, N.; Rizvi, M.; Gu, J.; Adeyi, O.; Tao, G.; Maze, M.; Ma, D. Neuroprotection (and lack of neuroprotection) afforded by a series of noble gases in an in vitro model of neuronal injury. Neurosci. Lett. 2009, 460, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Weber, N.C.; Toma, O.; Wolter, J.I.; Wirthle, N.M.; Schlack, W.; Preckel, B. Mechanisms of xenon- and isoflurane-induced preconditioning—a potential link to the cytoskeleton via the MAPKAPK-2/HSP27 pathway. Br. J. Pharmacol. 2005, 146, 445–455. [Google Scholar] [CrossRef] [Green Version]
- Winkler, D.A.; Warden, A.C.; Prangé, T.; Colloc’h, N.; Thornton, A.W.; Ramirez-Gil, J.F.; Farjot, G.; Katz, I. Massive in silico study of noble gas binding to the structural proteome. J. Chem. Inf. Model. 2019, 59, 4844–4854. [Google Scholar] [CrossRef] [PubMed]
- Winkler, D.A.; Katz, I.; Warden, A.; Thornton, A.W.; Farjot, G. Identifying medically relevant xenon protein targets by in silico screening of the structural proteome. Med. Gas Res. 2023, 13, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Tang, P. Amphiphilic sites for general anesthetic action? Evidence from 129Xe-[1H] intermolecular nuclear Overhauser effects. Biochim. Biophys. Acta 1997, 1323, 154–162. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.; Zadeh Haghighi, H.; Salahub, D.; Simon, C. Radical pairs may play a role in xenon-induced general anesthesia. Sci. Rep. 2021, 11, 6287. [Google Scholar] [CrossRef]
- Song, Y.Q. Spin polarization–induced nuclear Overhauser effect: An application of spin-polarized xenon and helium. Concepts Magn. Reson. 2000, 12, 6–20. [Google Scholar] [CrossRef]
- Richards, S.L.; Wilkins, K.A.; Swarbreck, S.M.; Anderson, A.A.; Habib, N.; Smith, A.G.; McAinsh, M.; Davies, J.M. The hydroxyl radical in plants: From seed to seed. J. Exp. Bot. 2015, 66, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Speckmann, B.; Steinbrenner, H.; Grune, T.; Klotz, L.O. Peroxynitrite: From interception to signaling. Arch. Biochem. Biophys. 2016, 595, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Liu, X.; Du, J.; Deng, X.; Fan, Y. The role of hemoglobin in nitric oxide transport in vascular system. Med. Nov. Technol. Devices 2020, 5, 100034. [Google Scholar] [CrossRef]
- Gupta, K.J.; Hebelstrup, K.H.; Mur, L.A.; Igamberdiev, A.U. Plant hemoglobins: Important players at the crossroads between oxygen and nitric oxide. FEBS Lett. 2011, 585, 3843–3849. [Google Scholar] [CrossRef] [PubMed]
- Helms, C.C.; Gladwin, M.T.; Kim-Shapiro, D.B. Erythrocytes and vascular function: Oxygen and nitric oxide. Front. Physiol. 2018, 9, 125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Premont, R.T.; Reynolds, J.D.; Zhang, R.; Stamler, J.S. Role of nitric oxide carried by hemoglobin in cardiovascular physiology: Developments on a three-gas respiratory cycle. Circ Res. 2020, 126, 129–158. [Google Scholar] [CrossRef]
- Bellelli, A.; Tame, J.R.H. Hemoglobin allostery and pharmacology. Mol. Asp. Med. 2022, 84, 101037. [Google Scholar] [CrossRef]
- Shibayama, N. Allosteric transitions in hemoglobin revisited. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2020, 1864, 129335. [Google Scholar] [CrossRef]
- Ahmed, M.H.; Ghatge, M.S.; Safo, M.K. Hemoglobin: Structure, function and allostery. In Vertebrate and Invertebrate Respiratory Proteins, Lipoproteins and Other Body Fluid Proteins; Springer: Berlin/Heidelberg, Germany, 2020; pp. 345–382. [Google Scholar]
- Van Kampen, E.J.; Zijlstra, W.G. Spectrophotometry of hemoglobin and hemoglobin derivatives. Adv. Clin. Chem. 1983, 23, 199–257. [Google Scholar]
- Malte, H.; Lykkeboe, G.; Wang, T. The Magnitude of the Bohr effect profoundly influences the shape and position of the blood oxygen equilibrium curve. Comp. Biochem. Physiol. Part A 2021, 254, 110880. [Google Scholar] [CrossRef]
- Premont, R.T.; Singel, D.J.; Stamler, J.S. The enzymatic function of the honorary enzyme: S-nitrosylation of hemoglobin in physiology and medicine. Mol. Asp. Med. 2021, 84, 101056. [Google Scholar] [CrossRef] [PubMed]
- Conn, H.L., Jr. Equilibrium distribution of radioxenon in tissue: Xenon-hemoglobin association curve. J. Appl. Physiol. 1961, 16, 1065–1070. [Google Scholar] [CrossRef] [PubMed]
- Yeh, S.Y.; Peterson, R.E. Solubility of krypton and xenon in blood, protein solutions, and tissue homogenates. J. Appl. Physiol. 1965, 20, 1041–1047. [Google Scholar] [CrossRef] [PubMed]
- Tilton, R.F., Jr.; Kuntz, I.D., Jr.; Petsko, G.A. Cavities in proteins: Structure of a metmyoglobin xenon complex solved to 1.9. ANG. Biochemistry 1984, 23, 2849–2857. [Google Scholar] [CrossRef]
- Tilton, R., Jr.; Kuntz, I., Jr.; Petsko, G. Corrections-Cavities in proteins: Structure of a metmyoglobin-xenon complex solved to 1.9 Å. Biochemistry 1985, 24, 7853. [Google Scholar] [CrossRef]
- Tilton, R.F., Jr.; Singh, U.C.; Weiner, S.J.; Connolly, M.L.; Kuntz, I.D., Jr.; Kollman, P.A.; Max, N.; Case, D.A. Computational studies of the interaction of myoglobin and xenon. J. Mol. Biol. 1986, 192, 443–456. [Google Scholar] [CrossRef]
- Corda, M.; Era, B.; Fais, A.; Casu, M. Structural investigation of pig metmyoglobin by 129Xe NMR spectroscopy. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2004, 1674, 182–192. [Google Scholar] [CrossRef]
- Schoenborn, B. Binding of xenon to horse haemoglobin. Nature 1965, 208, 760–762. [Google Scholar] [CrossRef]
- Savino, C.; Miele, A.E.; Draghi, F.; Johnson, K.A.; Sciara, G.; Brunori, M.; Vallone, B. Pattern of cavities in globins: The case of human hemoglobin. Biopolym. Orig. Res. Biomol. 2009, 91, 1097–1107. [Google Scholar] [CrossRef]
- Tilton, R.F., Jr.; Kuntz, I.D., Jr. Nuclear magnetic resonance studies of xenon-129 with myoglobin and hemoglobin. Biochemistry 1982, 21, 6850–6857. [Google Scholar] [CrossRef] [PubMed]
- Wolber, J.; Cherubini, A.; Leach, M.O.; Bifone, A. Hyperpolarized 129Xe NMR as a probe for blood oxygenation. Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med. 2000, 43, 491–496. [Google Scholar] [CrossRef]
- Lepeshkevich, S.V.; Gilevich, S.N.; Parkhats, M.V.; Dzhagarov, B.M. Molecular oxygen migration through the xenon docking sites of human hemoglobin in the R-state. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2016, 1864, 1110–1121. [Google Scholar] [CrossRef] [PubMed]
- Prangé, T.; Schiltz, M.; Pernot, L.; Colloc’h, N.; Longhi, S.; Bourguet, W.; Fourme, R. Exploring hydrophobic sites in proteins with xenon or krypton. Proteins Struct. Funct. Bioinform. 1998, 30, 61–73. [Google Scholar] [CrossRef]
- Bowers, C.R.; Storhaug, V.; Webster, C.E.; Bharatam, J.; Cottone, A.; Gianna, R.; Betsey, K.; Gaffney, B.J. Exploring surfaces and cavities in lipoxygenase and other proteins by hyperpolarized xenon-129 NMR. J. Am. Chem. Soc. 1999, 121, 9370–9377. [Google Scholar] [CrossRef] [PubMed]
- Schiltz, M.; Fourme, R.; Broutin, I.; Prangé, T. The catalytic site of serine proteinases as a specific binding cavity for xenon. Structure 1995, 3, 309–316. [Google Scholar] [CrossRef] [Green Version]
- Whittington, D.A.; Rosenzweig, A.C.; Frederick, C.A.; Lippard, S.J. Xenon and halogenated alkanes track putative substrate binding cavities in the soluble methane monooxygenase hydroxylase. Biochemistry 2001, 40, 3476–3482. [Google Scholar] [CrossRef]
- Duff, A.P.; Trambaiolo, D.M.; Cohen, A.E.; Ellis, P.J.; Juda, G.A.; Shepard, E.M.; Langley, D.B.; Dooley, D.M.; Freeman, H.C.; Guss, J.M. Using xenon as a probe for dioxygen-binding sites in copper amine oxidases. J. Mol. Biol. 2004, 344, 599–607. [Google Scholar] [CrossRef]
- Abraini, J.H.; Marassio, G.; David, H.N.; Vallone, B.; Prangé, T.; Colloc’h, N. Crystallographic studies with xenon and nitrous oxide provide evidence for protein-dependent processes in the mechanisms of general anesthesia. Anesthesiology 2014, 121, 1018–1027. [Google Scholar] [CrossRef] [Green Version]
- Wiebelhaus, N.; Singh, N.; Zhang, P.; Craig, S.L.; Beratan, D.N.; Fitzgerald, M.C. Discovery of the xenon–protein interactome using large-scale measurements of protein folding and stability. J. Am. Chem. Soc. 2022, 144, 3925–3938. [Google Scholar] [CrossRef]
- Singh, R.B.; Halabi, G.; Fatima, G.; Rai, R.H.; Tarnava, A.T.; LeBaron, T.W. Molecular hydrogen as an adjuvant therapy may be associated with increased oxygen saturation and improved exercise tolerance in a COVID-19 patient. Clin. Case Rep. 2021, 9, e05039. [Google Scholar] [CrossRef]
- Turan, H.T.; Meuwly, M. Local hydration control and functional implications through S-nitrosylation of proteins: Kirsten rat sarcoma virus (KRAS) and hemoglobin (Hb). arXiv 2022, arXiv:2209.04688. [Google Scholar]
- Turan, H.T.; Meuwly, M. Interaction at a distance: Xenon migration in Mb. arXiv 2022, arXiv:2209.03776. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hancock, J.T.; Russell, G.; Craig, T.J.; May, J.; Morse, H.R.; Stamler, J.S. Understanding Hydrogen: Lessons to Be Learned from Physical Interactions between the Inert Gases and the Globin Superfamily. Oxygen 2022, 2, 578-590. https://doi.org/10.3390/oxygen2040038
Hancock JT, Russell G, Craig TJ, May J, Morse HR, Stamler JS. Understanding Hydrogen: Lessons to Be Learned from Physical Interactions between the Inert Gases and the Globin Superfamily. Oxygen. 2022; 2(4):578-590. https://doi.org/10.3390/oxygen2040038
Chicago/Turabian StyleHancock, John T., Grace Russell, Tim J. Craig, Jennifer May, H. Ruth Morse, and Jonathan S. Stamler. 2022. "Understanding Hydrogen: Lessons to Be Learned from Physical Interactions between the Inert Gases and the Globin Superfamily" Oxygen 2, no. 4: 578-590. https://doi.org/10.3390/oxygen2040038
APA StyleHancock, J. T., Russell, G., Craig, T. J., May, J., Morse, H. R., & Stamler, J. S. (2022). Understanding Hydrogen: Lessons to Be Learned from Physical Interactions between the Inert Gases and the Globin Superfamily. Oxygen, 2(4), 578-590. https://doi.org/10.3390/oxygen2040038