A Brief History of Oxygen: 250 Years on
Abstract
:1. Introduction
2. The Discovery of Oxygen
3. Atmospheric Oxygen and Its Evolution
4. Discovery of Oxygen as Part of Metabolism and Ageing
5. Oxygen and Its Uses in Medicine
6. Oxygen and Space
7. Oxygen and the Future
Funding
Acknowledgments
Conflicts of Interest
References
- Neville, R.G. Steps leading to the discovery of oxygen, 1774: A bicentennial tribute to Joseph Priestley. J. Chem. Educ. 1974, 51, 428. [Google Scholar] [CrossRef] [PubMed]
- Partington, J.R.; McKie, D. Historical studies on the phlogiston theory.—I. The levity of phlogiston. Ann. Sci. 1937, 2, 361–404. [Google Scholar] [CrossRef]
- Allchin, D. Phlogiston after oxygen. Ambix 1992, 39, 110–116. [Google Scholar] [CrossRef]
- Severinghaus, J.W. Priestley, the furious free thinker of the enlightenment, and Scheele, the taciturn apothecary of Uppsala. Acta Anaesthesiol. Scand. 2002, 46, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Partington, J.R. The discovery of oxygen. J. Chem. Educ. 1962, 39, 123. [Google Scholar] [CrossRef]
- Williams, K.R. The discovery of oxygen and other priestley matters. J. Chem. Educ. 2003, 80, 1129. [Google Scholar] [CrossRef]
- Cassebaum, H.; Schufle, J.A. Scheele’s priority for the discovery of oxygen. J. Chem. Educ. 1975, 52, 442. [Google Scholar] [CrossRef]
- Priestley, J. The Discovery of Oxygen; W.F. Clay: London, UK, 1894; Volume 1. [Google Scholar]
- Oxygen. Available online: https://www.rsc.org/periodic-table/element/8/oxygen (accessed on 28 January 2022).
- Donovan, A. Antoine Lavoisier: Science, Administration and Revolution; Cambridge University Press: New York, NY, USA, 1996; Volume 5. [Google Scholar]
- Underwood, E.A. Lavoisier and the history of respiration. Proc. R. Soc. Med. 1944, 37, 247–262. [Google Scholar] [CrossRef] [Green Version]
- Kump, L.R. The rise of atmospheric oxygen. Nature 2008, 451, 277–278. [Google Scholar] [CrossRef]
- Farquhar, J.; Bao, H.; Thiemens, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 2000, 289, 756–758. [Google Scholar] [CrossRef] [Green Version]
- Walker, J.C. The early history of oxygen and ozone in the atmosphere. Pure Appl. Geophys. 1978, 117, 498–512. [Google Scholar] [CrossRef]
- Berner, R.A.; Beerling, D.J.; Dudley, R.; Robinson, J.M.; Wildman, R.A., Jr. Phanerozoic atmospheric oxygen. Annu. Rev. Earth Planet. Sci. 2003, 31, 105–134. [Google Scholar] [CrossRef] [Green Version]
- Mills, B.J.; Belcher, C.M.; Lenton, T.M.; Newton, R.J. A modeling case for high atmospheric oxygen concentrations during the Mesozoic and Cenozoic. Geology 2016, 44, 1023–1026. [Google Scholar] [CrossRef] [Green Version]
- Junge, W. Oxygenic photosynthesis: History, status and perspective. Q. Rev. Biophys. 2019, 52, e1. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Huang, J.; Liu, X.; Li, C.; Ding, L.; Yu, H. The global oxygen budget and its future projection. Sci. Bull. 2018, 63, 1180–1186. [Google Scholar] [CrossRef]
- Shaffer, G.; Olsen, S.M.; Pedersen, J.O.P. Long-term ocean oxygen depletion in response to carbon dioxide emissions from fossil fuels. Nat. Geosci. 2009, 2, 105–109. [Google Scholar] [CrossRef]
- McKenzie, R.L.; Aucamp, P.J.; Bais, A.F.; Björn, L.O.; Ilyas, M.; Madronich, S. Ozone depletion and climate change: Impacts on UV radiation. Photochem. Photobiol. Sci. 2011, 101, 182–198. [Google Scholar] [CrossRef]
- Rubin, M.B. The history of ozone. The Schönbein period, 1839–1868. Bull. Hist. Chem. 2001, 26, 40–56. [Google Scholar]
- History of Ozone. Available online: https://www.solutionozone.com/ozone/history/ (accessed on 21 February 2022).
- Ogilby, P.R. Singlet oxygen: There is indeed something new under the sun. Chem. Soc. Rev. 2010, 39, 3181–3209. [Google Scholar] [CrossRef]
- Greer, A. Christopher Foote’s discovery of the role of singlet oxygen [1O2 (1Δg)] in photosensitized oxidation reactions. Acc. Chem. Res. 2006, 39, 797–804. [Google Scholar] [CrossRef]
- Pauling, L. The discovery of the superoxide radical. Trends Biochem. Sci. 1979, 4, N270–N271. [Google Scholar] [CrossRef]
- Lynch, R.E.; Fridovich, I. Effects of superoxide on the erythrocyte membrane. J. Biol. Chem. 1978, 253, 1838–1845. [Google Scholar] [CrossRef]
- Bannister, W.H. From haemocuprein to copper-zinc superoxide dismutase: A history on the fiftieth anniversary of the discovery of haemocuprein and the twentieth anniversary of the discovery of superoxide dismutase. Free. Radic. Res. Commun. 1988, 5, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Berton, G.; Castaldi, M.A.; Cassatella, M.A.; Nauseef, W.M. Editorial: Celebrating the 50th anniversary of the seminal discovery that the phagocyte respiratory burst enzyme is an NADPH oxidase. J. Leukoc. Biol. 2015, 97, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.H.; Yang, Y.H.; Chiang, B.L. Chronic granulomatous disease: A comprehensive review. Clin. Rev. Allergy Immunol. 2021, 61, 101–113. [Google Scholar] [CrossRef]
- Mitchell, P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 1961, 191, 144–148. [Google Scholar] [CrossRef]
- Rich, P.R. A perspective on Peter Mitchell and the chemiosmotic theory. J. Bioenerg. Biomembr. 2008, 40, 407–410. [Google Scholar] [CrossRef]
- Cadenas, E.; Davies, K.J. Mitochondrial free radical generation, oxidative stress, and aging. Free. Radic. Biol. Med. 2000, 29, 222–230. [Google Scholar] [CrossRef]
- Harman, D. Free radical theory of aging: History. EXS 1992, 62, 1–10. [Google Scholar]
- Hensley, K.; Floyd, R.A. Reactive oxygen species and protein oxidation in aging: A look back, a look ahead. Arch. Biochem. Biophys. 2002, 397, 377–383. [Google Scholar] [CrossRef]
- Commoner, B.; Townsend, J.; Pake, G.E. Free radicals in biological materials. Nature 1954, 174, 689–691. [Google Scholar] [CrossRef]
- Harman, D. Aging: The Theory Based on Free Radical and Radiation Chemistry with Application to Cancer and Athrosclerosis; Rad. Lab. Calender, University of California: Berkeley, CA, USA, 1956. [Google Scholar]
- Harman, D. The free radical theory of aging: The effect of age on serum mercaptan levels. J. Gerontol. 1960, 15, 38–40. [Google Scholar] [CrossRef] [PubMed]
- Polidori, M.C.; Mecocci, P. Modeling the dynamics of energy imbalance: The free radical theory of aging and frailty revisited. Free. Radic. Biol. Med. 2022; in press. [Google Scholar] [CrossRef] [PubMed]
- Meyerhof, O. Recent investigations on the aerobic and an-aerobic metabolism of carbohydrates. J. Gen. Physiol. 1927, 8, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Hogeboom, G.H.; Claude, A.; Hotch-Kiss, R.D. The distribution of cytochrome oxidase and succinoxidase in the cytoplasm of the mammalian liver cell. J. Biol. Chem. 1946, 165, 615–629. [Google Scholar] [CrossRef]
- Glancy, B.; Kane, D.A.; Kavazis, A.N.; Goodwin, M.L.; Willis, W.T.; Gladden, L.B. Mitochondrial lactate metabolism: History and implications for exercise and disease. J. Physiol. 2021, 599, 863–888. [Google Scholar] [CrossRef]
- Richalet, J.P. The invention of hypoxia. J. Appl. Physiol. 1985 2021, 130, 1573–1582. [Google Scholar] [CrossRef]
- Wu, M.Y.; Yiang, G.T.; Liao, W.T.; Tsai, A.P.; Cheng, Y.L.; Cheng, P.W.; Li, C.Y.; Li, C.J. Current mechanistic concepts in ischemia and reperfusion injury. Cell Physiol. Biochem. 2018, 46, 1650–1667. [Google Scholar] [CrossRef]
- Jing, X.; Yang, F.; Shao, C.; Wei, K.; Xie, M.; Shen, H.; Shu, Y. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol. Cancer 2019, 18, 157. [Google Scholar] [CrossRef] [Green Version]
- Mittler, R.; Vanderauwera, S.; Suzuki, N.; Miller, G.; Tognetti, V.B.; Vandepoele, K.; Gollery, M.; Shulaev, V.; Van Breusegem, F. ROS signaling: The new wave? Trends Plant Sci. 2011, 16, 300–309. [Google Scholar] [CrossRef]
- Palmer, R.M.; Ferrige, A.G.; Moncada, S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987, 327, 524–526. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.A. Healing with oxygen: A history of hyperbaric medicine. Pharos Alpha Omega Alpha Honor Med. Soc. 2000, 63, 13–19. [Google Scholar] [PubMed]
- Edwards, M.L. Hyperbaric oxygen therapy. Part 1: History and principles. J. Vet. Emerg. Crit. Care (San Antonio) 2010, 20, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Biggs, A.T.; Littlejohn, L.F.; Dainer, H.M. Alternative uses of hyperbaric oxygen therapy in military medicine: Current positions and future directions. Mil. Med. 2022, 187, e40–e46. [Google Scholar] [CrossRef] [PubMed]
- Russell, G.; Nenov, A.; Hancock, J. Oxy-hydrogen gas: The rationale behind its use as a novel and sustainable treatment for COVID-19 and other respiratory diseases. Eur. Med. J. 2021. [Google Scholar] [CrossRef]
- Ben-Jaffel, L.; Ballester, G.E. Hubble Space Telescope detection of oxygen in the atmosphere of exoplanet HD 189733b. Astron. Astrophys. 2013, 553, A52. [Google Scholar] [CrossRef] [Green Version]
- Fauchez, T.J.; Villanueva, G.L.; Schwieterman, E.W.; Turbet, M.; Arney, G.; Pidhorodetska, D.; Kopparapu, R.K.; Mandell, A.; Domagal-Goldman, S.D. Sensitive probing of exoplanetary oxygen via mid-infrared collisional absorption. Nat. Astron. 2020, 4, 372–376. [Google Scholar] [CrossRef]
- Tian, F. History of water loss and atmospheric O2 buildup on rocky exoplanets near M dwarfs. Earth Planet. Sci. Lett. 2015, 432, 126–132. [Google Scholar] [CrossRef]
- Léger, A.; Fontecave, M.; Labeyrie, A.; Samuel, B.; Demangeon, O.; Valencia, D. Is the presence of oxygen on an exoplanet a reliable biosignature? Astrobiology 2011, 11, 335–341. [Google Scholar] [CrossRef]
- Meadows, V.S. Reflections on O2 as a biosignature in exoplanetary atmospheres. Astrobiology 2017, 17, 1022–1052. [Google Scholar] [CrossRef] [Green Version]
- Lane, N. Oxygen: The Molecule That Made the World; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Canfield, D.E. Oxygen: A Four Billion Year History; Princeton University Press: Princeton, NJ, USA, 2014; Volume 20. [Google Scholar]
- Proctor, D.M.; Fehling, K.A.; Shay, E.C.; Wittenborn, J.L.; Green, J.J.; Avent, C.; Bigham, R.D.; Connolly, M.; Lee, B.; Shepker, T.O.; et al. Physical and chemical characteristics of blast furnace, basic oxygen furnace, and electric arc furnace steel industry slags. Environ. Sci. Technol. 2000, 34, 1576–1582. [Google Scholar] [CrossRef]
- Man, Y.; Shen, W.; Chen, X.; Long, Z.; Corriou, J.P. Dissolved oxygen control strategies for the industrial sequencing batch reactor of the wastewater treatment process in the papermaking industry. Environ. Sci. Water Res. Technol. 2018, 4, 654–662. [Google Scholar] [CrossRef]
- Pásztor, I.; Thury, P.; Pulai, J. Chemical oxygen demand fractions of municipal wastewater for modeling of wastewater treatment. Int. J. Environ. Sci. Technol. 2009, 6, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Von Glasow, R.; Jickells, T.D.; Baklanov, A.; Carmichael, G.R.; Church, T.M.; Gallardo, L.; Hughes, C.; Kanakidou, M.; Liss, P.S.; Mee, L.; et al. Megacities and large urban agglomerations in the coastal zone: Interactions between atmosphere, land, and marine ecosystems. Ambio 2013, 42, 13–28. [Google Scholar] [CrossRef]
- Clayton, M. Worldwide race to make better batteries. Eureka 2009, 1, 9. [Google Scholar]
- Dou, Y.; Lian, R.; Chen, G.; Wei, Y.; Peng, Z. Identification of a better charge redox mediator for lithium–oxygen batteries. Energy Storage Mater. 2020, 25, 795–800. [Google Scholar] [CrossRef]
- Kwak, R.W.J.; Sharon, D.; Xia, C.; Kim, H.; Johnson, L.R.; Bruce, P.G.; Nazar, L.F.; Sun, Y.K.; Frimer, A.A.; Noked, M.; et al. Lithium–oxygen batteries and related systems: Potential, status, and future. Chem. Rev. 2020, 120, 6626–6683. [Google Scholar] [CrossRef]
- Forrester, S.J.; Kikuchi, D.S.; Hernandes, M.S.; Xu, Q.; Griendling, K.K. Reactive oxygen species in metabolic and inflammatory signaling. Circ. Res. 2018, 122, 877–902. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hancock, J.T. A Brief History of Oxygen: 250 Years on. Oxygen 2022, 2, 31-39. https://doi.org/10.3390/oxygen2010004
Hancock JT. A Brief History of Oxygen: 250 Years on. Oxygen. 2022; 2(1):31-39. https://doi.org/10.3390/oxygen2010004
Chicago/Turabian StyleHancock, John T. 2022. "A Brief History of Oxygen: 250 Years on" Oxygen 2, no. 1: 31-39. https://doi.org/10.3390/oxygen2010004
APA StyleHancock, J. T. (2022). A Brief History of Oxygen: 250 Years on. Oxygen, 2(1), 31-39. https://doi.org/10.3390/oxygen2010004