Vegetation Index Comparison for Estimating Above-Ground Carbon (Cag) in Mangrove Forests Using Sentinel-2 Imagery: Case Study from West Bali, Indonesia
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Location
2.2. Field Samples
2.3. Image Data Processing
2.4. Data Analysis
3. Results and Discussion
3.1. Vegetation Index-Based Above-Ground Carbon (Cag) Model
3.2. Spatial Distribution of Above-Ground Carbon (Cag)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Donato, D.C.; Kauffman, J.B.; Murdiyarso, D.; Kurnianto, S.; Stidham, M.; Kanninen, M. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 2011, 4, 293–297. [Google Scholar] [CrossRef]
- de Lacerda, L.D.; Borges, R.; Ferreira, A.C. Neotropical mangroves: Conservation and sustainable use in a scenario of global climate change. Aquat. Conserv. Mar. Freshw. Ecosyst. 2019, 29, 1347–1364. [Google Scholar] [CrossRef]
- Dinilhuda, A.; Akbar, A.A.; Herawaty, H. Potentials of mangrove ecosystem as storage of carbon for global warming mitigation. Biodiversitas 2020, 21, 5353–5362. [Google Scholar] [CrossRef]
- Andiani, A.A.E.; Karang, I.W.G.A.; Putra, I.N.G.; Dharmawan, I.W.E. Hubungan antar parameter struktur tegakan mangrove dalam estimasi simpanan karbon aboveground pada skala komunitas. J. Ilmu Teknol. Kelaut. Trop. 2021, 13, 483–496. [Google Scholar] [CrossRef]
- Campbell, A.D.; Fatoyinbo, T.; Charles, S.P.; Bourgeau-Chavez, L.L.; Goes, J.; Gomes, H.; Lagomasino, D. A review of carbon monitoring in wet carbon systems using remote sensing. Environ. Res. Lett. 2022, 17, 025009. [Google Scholar] [CrossRef]
- As-syakur, A.R.; Aryunisha, P.E.P.; Wijana, I.M.S.; Novanda, I.G.A.; Dewi, I.G.A.I.P.; Andiani, A.A.E.; Sugiana, I.P. Comparison of mangrove canopy covering accuracy using Landsat 8 and Landsat 9 imagery based on several vegetation indices in West Bali National Park. In Proceedings of the E3S Web of Conferences, Denpasar-Bali, Indonesia, 6–7 June 2023; Volume 442, p. 03001. [Google Scholar]
- Komiyama, A.; Poungparn, S.; Kato, S. Common allometric equations for estimating the tree weight of mangroves. J. Trop. Ecol. 2005, 21, 471–477. [Google Scholar] [CrossRef]
- Pham, T.D.; Xia, J.; Ha, N.T.; Bui, D.T.; Le, N.N.; Takeuchi, W. A review of remote sensing approaches for monitoring blue carbon ecosystems: Mangroves, seagrasses and salt marshes during 2010–2018. Sensors 2019, 19, 1933. [Google Scholar] [CrossRef]
- Maurya, K.; Mahajan, S.; Chaube, N. Remote sensing techniques: Mapping and monitoring of mangrove ecosystem—A review. Complex Intell. Syst. 2021, 7, 2797–2818. [Google Scholar] [CrossRef]
- Wicaksono, P. Mangrove above-ground carbon stock mapping of multi-resolution passive remote-sensing systems. Int. J. Remote Sens. 2017, 38, 1551–1571. [Google Scholar] [CrossRef]
- Purnamasari, E.; Kamal, M.; Wicaksono, P. Comparison of vegetation indices for estimating above-ground mangrove carbon stocks using PlanetScope image. Reg. Stud. Mar. Sci. 2021, 44, 101730. [Google Scholar] [CrossRef]
- Kamal, M.; Hidayatullah, M.F.; Mahyatar, P.; Ridha, S.M. Estimation of aboveground mangrove carbon stocks from WorldView-2 imagery based on generic and species-specific allometric equations. Remote Sens. Appl. Soc. Environ. 2022, 26, 100748. [Google Scholar] [CrossRef]
- Phiri, D.; Simwanda, M.; Salekin, S.; Nyirenda, V.R.; Murayama, Y.; Ranagalage, M. Sentinel-2 data for land cover/use mapping: A review. Remote Sens. 2020, 12, 2291. [Google Scholar] [CrossRef]
- Tran, T.V.; Reef, R.; Zhu, X. A review of spectral indices for mangrove remote sensing. Remote Sens. 2022, 14, 4868. [Google Scholar] [CrossRef]
- Mngadi, M.; Odindi, J.; Mutanga, O. The utility of Sentinel-2 spectral data in quantifying above-ground carbon stock in an urban reforested landscape. Remote Sens. 2021, 13, 4281. [Google Scholar] [CrossRef]
- Du, J.; Zhang, Y.; Liang, Z.; Song, K. Enhancing precision in crop residue cover estimation: A comparative analysis of Sentinel-2 MSI and Landsat 8 OLI data. Preprints 2024. [Google Scholar] [CrossRef]
- Li, H.; Zhao, L.; Sun, L.; Li, X.; Wang, J.; Han, Y.; Chen, J. Capability of phenology-based Sentinel-2 composites for rubber plantation mapping in a large area with complex vegetation landscapes. Remote Sens. 2022, 14, 5338. [Google Scholar] [CrossRef]
- Binh, N.A.; Hauser, L.T.; Salinero-Delgado, M.; Hoa, P.V.; Thao, G.T.P.; Verrelst, J. Monitoring mangrove traits through optical Earth observation: Towards spatio-temporal scalability using cloud-based Sentinel-2 continuous time series. ISPRS J. Photogramm. Remote Sens. 2024, 214, 135–152. [Google Scholar] [CrossRef]
- Alongi, D.M. The impact of climate change on mangrove forests. Curr. Clim. Change Rep. 2015, 1, 30–39. [Google Scholar] [CrossRef]
- Kauffman, J.B.; Heider, C.; Norfolk, J.; Payton, F. Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic. Ecol. Appl. 2014, 24, 518–527. [Google Scholar] [CrossRef]
- Huxham, M.; Whitlock, D.; Githaiga, M.; Dencer-Brown, A. Carbon in the coastal seascape: How interactions between mangrove forests, seagrass meadows and tidal marshes influence carbon storage. Curr. For. Rep. 2018, 4, 101–110. [Google Scholar] [CrossRef]
- Lovelock, C.E.; Ruess, R.W.; Feller, I.C. CO2 efflux from cleared mangrove peat. PLoS ONE 2011, 6, e21279. [Google Scholar] [CrossRef]
- Simard, M.; Fatoyinbo, L.; Smetanka, C.; Rivera-Monroy, V.H.; Castañeda-Moya, E.; Thomas, N.; Van der Stocken, T. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nat. Geosci. 2019, 12, 40–45. [Google Scholar] [CrossRef]
- Kristensen, E.; Bouillon, S.; Dittmar, T.; Marchand, C. Organic carbon dynamics in mangrove ecosystems: A review. Aquat. Bot. 2008, 89, 201–219. [Google Scholar] [CrossRef]
- Bordoloi, R.; Das, B.; Tripathi, O.P.; Sahoo, U.K.; Nath, A.J.; Deb, S.; Tajo, L. Satellite based integrated approaches to modelling spatial carbon stock and carbon sequestration potential of different land uses of Northeast India. Environ. Sustain. Indic. 2022, 13, 100166. [Google Scholar] [CrossRef]
- Twilley, R.R.; Rovai, A.S.; Riul, P. Coastal morphology explains global blue carbon distributions. Front. Ecol. Environ. 2018, 16, 503–508. [Google Scholar] [CrossRef]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, 2013. [Google Scholar]
- Gebremedhin, A.; Badenhorst, P.; Wang, J.; Giri, K.; Spangenberg, G.; Smith, K. Development and validation of a model to combine NDVI and plant height for high-throughput phenotyping of herbage yield in a perennial ryegrass breeding program. Remote Sens. 2019, 11, 2494. [Google Scholar] [CrossRef]
- Muhsoni, F.F.; Sambah, A.B.; Mahmudi, M.; Wiadnya, D.G.R. Comparison of different vegetation indices for assessing mangrove density using Sentinel-2 imagery. GEOMATE J. 2018, 14, 42–51. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Lymburner, L.; Beggs, P.J.; Jacobson, C.R. Estimation of canopy-average surface-specific leaf area using Landsat TM data. Photogramm. Eng. Remote Sens. 2000, 66, 183–192. [Google Scholar]
- Gitelson, A.A.; Keydan, G.P.; Merzlyak, M.N. Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophys. Res. Lett. 2006, 33, L11402. [Google Scholar] [CrossRef]
- Rahman, Y.; Wardiatno, Y.; Yulianda, F.; Rusmana, I. Socio-ecological system of carbon-based mangrove ecosystem on the coast of West Muna Regency, Southeast Sulawesi-Indonesia. Aquac. Aquar. Conserv. Legis. 2020, 13, 518–528. [Google Scholar]
- Kern, A.; Barcza, Z.; Marjanović, H.; Árendás, T.; Fodor, N.; Bónis, P.; Bognár, P.; Lichtenberger, J. Statistical modelling of crop yield in Central Europe using climate data and remote sensing vegetation indices. Agric. For. Meteorol. 2018, 260, 300–320. [Google Scholar] [CrossRef]
- Filho, M.G.; Kuplich, T.M.; Quadros, F.L.D. Estimating natural grassland biomass by vegetation indices using Sentinel 2 remote sensing data. Int. J. Remote Sens. 2020, 41, 2861–2876. [Google Scholar] [CrossRef]
- Anscombe, F.J. Graphs in statistical analysis. Am. Stat. 1973, 27, 17–21. [Google Scholar] [CrossRef]
- Lembang, R.K.; Huliselan, S.; Adji, F. Pendugaan biomassa dan karbon tersimpan mangrove Rhizophora apiculata dan Sonneratia alba di Desa Simau. J. Hutan Pulau-Pulau Kecil 2019, 3, 68–72. [Google Scholar] [CrossRef]
- Ramadhan, A.; Suwadji, S. Model penduga biomassa hutan mangrove menggunakan citra satelit Sentinel-2A di Kabupaten Rembang Jawa Tengah. J. Wana Trop. 2023, 13, 72–84. [Google Scholar] [CrossRef]
- Jiang, Q.; Tang, Z.; Zhou, L.; Hu, G.; Deng, G.; Xu, M.; Sang, G. Mapping paddy rice planting area in Dongting Lake area combining time series Sentinel-1 and Sentinel-2 images. Remote Sens. 2023, 15, 2794. [Google Scholar] [CrossRef]
- Xing, N.; Huang, W.; Xie, Q.; Shi, Y.; Ye, H.; Dong, Y.; Wu, M.; Sun, G.; Jiao, Q. A transformed triangular vegetation index for estimating winter wheat leaf area index. Remote Sens. 2019, 12, 16. [Google Scholar] [CrossRef]
- Morcillo-Pallarés, P.; Rivera-Caicedo, J.P.; Belda, S.; De Grave, C.; Burriel, H.; Moreno, J.; Verrelst, J. Quantifying the robustness of vegetation indices through global sensitivity analysis of homogeneous and forest leaf-canopy radiative transfer models. Remote Sens. 2019, 11, 2418. [Google Scholar] [CrossRef]
- Barati, S.; Rayegani, B.; Saati, M.; Sharifi, A.; Nasri, M. Comparison the accuracies of different spectral indices for estimation of vegetation cover fraction in sparse vegetated areas. Egypt. J. Remote Sens. Space Sci. 2011, 14, 49–56. [Google Scholar] [CrossRef]
- Suardana, A.M.A.P.; Anggraini, N.; Nandika, M.R.; Aziz, K.; As-Syakur, A.R.; Ulfa, A.; Wijaya, A.D.; Prasetio, W.; Winarso, G.; Dewanti, R. Estimation and mapping above-ground mangrove carbon stock using sentinel-2 data derived vegetation indices in Benoa Bay of Bali Province, Indonesia. For. Soc. 2023, 7, 116–134. [Google Scholar] [CrossRef]
- Hidayati, I.N.; Suharyadi, R.; Danoedoro, P. Exploring spectral index band and vegetation indices for estimating vegetation area. Indones. J. Geogr. 2018, 50, 211–221. [Google Scholar] [CrossRef]
- Roustaei, N. Application and interpretation of linear-regression analysis. Med. Hypothesis Discov. Innov. Ophthalmol. 2024, 13, 151. [Google Scholar] [CrossRef]
- Ziglari, L. Statistical approaches to interpret multiple regression results. Methods Psychol. 2024, 10, 100136. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R.; Taylor, J. Linear regression. In An Introduction to Statistical Learning: With Applications in Python; Springer International Publishing: Cham, Switzerland, 2023; pp. 69–134. [Google Scholar]
- Karang, I.W.G.A.; Nuarsa, I.W.; Hendrawan, I.G.; Dewi, N.M.N.B.S.; Yasa, P.K.; Krisnanda, I.M.D. Satellite remote sensing techniques for mapping and estimating mangrove carbon stocks in the small island of Gili Meno, West Nusa Tenggara, Indonesia. Biodiversitas J. Biol. Divers. 2024, 25, 3189–3200. [Google Scholar] [CrossRef]
- Meng, Y.; Bai, J.; Gou, R.; Cui, X.; Feng, J.; Dai, Z.; Diao, X.; Zhu, X.; Lin, G. Relationships between above-and below-ground carbon stocks in mangrove forests facilitate better estimation of total mangrove blue carbon. Carbon Balance Manag. 2021, 16, 8. [Google Scholar] [CrossRef]
- Barreñada, L.; Dhiman, P.; Timmerman, D.; Boulesteix, A.L.; Van Calster, B. Understanding overfitting in random forest for probability estimation: A visualization and simulation study. Diagn. Progn. Res. 2024, 8, 14. [Google Scholar] [CrossRef]
- Salman, H.A.; Kalakech, A.; Steiti, A. Random forest algorithm overview. Babylon. J. Mach. Learn. 2024, 2024, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Merilä, P.; Lindroos, A.J.; Helmisaari, H.S.; Hilli, S.; Nieminen, T.M.; Nöjd, P.; Ukonmaanaho, L. Carbon stocks and transfers in coniferous boreal forests along a latitudinal gradient. Ecosystems 2024, 27, 151–167. [Google Scholar] [CrossRef]
- Gebeyehu, G.; Soromessa, T.; Bekele, T.; Teketay, D. Carbon stocks and factors affecting their storage in dry Afromontane forests of Awi Zone, northwestern Ethiopia. J. Ecol. Environ. 2019, 43, 7. [Google Scholar] [CrossRef]
- Oktaviona, S.; Amin, B.; Ghalib, M. Carbon stock assessment on mangrove forest ecosystem in Jorong Ujuang Labuang District, Agam, West Sumatera Province. JOM Perikan. Ilmu Kelaut. 2017, 4, 1–12. [Google Scholar]
- Manafe, G.; Kaho, M.R.; Risamasu, F.; Adisucipto, J. Estimasi biomassa permukaan dan stok karbon pada tegakan pohon Avicennia marina dan Rhizophora mucronata di perairan pesisir Oebelo Kabupaten Kupang. J. Bumi Lestari 2016, 16, 163–173. [Google Scholar] [CrossRef]
No. | Name Band | Description | Spatial Resolution |
---|---|---|---|
1 | B2 | Blue | 10 m |
2 | B3 | Green | 10 m |
3 | B4 | Red | 10 m |
4 | B5 | RedEdge1 | 20 m |
5 | B6 | RedEdge2 | 20 m |
6 | B8 | Nir | 10 m |
7 | B12 | Swir2 | 20 m |
Vegetation Indices | Formula |
---|---|
NDVI (Normalized Difference Vegetation Index) | (NIR − Red)/(NIR + Red) |
EVI (Enhanced Vegetation Index) | 2.5 × ((NIR − Red)/(NIR + (6 × Red) − (7.5 × Blue) + 1)) |
SAVI (Soil-Adjusted Vegetation Index) | ((NIR − Red)/(NIR + Red + 0.5)) × (1 + 0.5) |
ARVI (Atmospherically Resistant Vegetation Index) | (NIR − (2 × Red) + Blue)/(NIR + (2 × Red) + Blue) |
VARI (Visible Atmospherically Resistant Index) | (Green − Red)/(Green + Red − Blue) |
GCI (Green Chlorophyll Index) | (NIR/Green) − 1 |
OSAVI (Optimized Soil-Adjusted Vegetation Index) | (NIR − Red)/(NIR + Red + 0.16) |
NNIR (Normalized Near Infrared) | NIR/(NIR + Red + Green) |
CVI (Chlorophyll Vegetation Index) | (NIR × Red)/(Green2) |
SIPI (Structure Insensitive Pigment Index) | (NIR − Blue)/(NIR − Red) |
GRVI (Green Ratio Vegetation Index) | (NIR/Green) |
GNDVI (Green Normalized Vegetation Index) | (NIR − Green)/(NIR + Green) |
TRVI (Transformed Ratio Vegetation Index) | (NIR/Red)1/2 |
SR (Simple Ratio Index) | NIR/Red |
MSR Green (Modified Green Simple Ratio) | ((NIR/Green) − 1)/((NIR/Green) + 1)1/2 |
MSR Red (Modified Red Simple Ratio) | ((NIR/Red) − 1)/((NIR/Red) + 1)1/2 |
NDREI (Normalized Difference Red-Edge Index) | (NIR − RedEdge1)/(NIR + RedEdge1) |
GLI (Green Leaf Index) | ((2 × Green) − Blue − Red)/((2 × Green) + Blue + Red) |
MCARI (Modified Chlorophyll Absorption Ratio Index) | ((RedEdge1 − Red) − 0.2) × (RedEdge1 − Green) × (RedEdge1/Red) |
NDYI (Normalized Difference Yellowness Index) | (Green − Blue)/(Green + Blue) |
RENDVI (Red Edge Normalized Difference Vegetation Index) | (RedEdge2 − RedEdge1)/(RedEdge2 + RedEdge1) |
CIRE (Chlorophyll Index Red Edge) | (NIR/RedEdge1) − 1 |
TriVI (Triangular Vegetation Index) | 0.5 × (120 × (NIR − Green)) − 200 × (Red − Green) |
CCI (Chlorophyll Carotenoid Index) | (Green − Red)/(Green + Red) |
RDVI (Renormalized Difference Vegetation Index) | (NIR − Red)/((NIR + Red)0.5) |
DVI (Difference Vegetation Index) | NIR − Red |
IPVI (Infrared Percentage Vegetation Index) | NIR/(NIR + Red) |
TGI (Triangular Greenness Index) | −0.5 × (190 × (Red − Green) − 120 × (Green − Blue)) |
mRE-SR (Modified Red Edge-Simple Ratio) | ((NIR/RedEdge1)−1)/((NIR/RedEdge1) + 1)1/2 |
MTCI (MERIS Terrestrial Chlorophyll Index) | (RedEdge2 − RedEdge1)/(RedEdge1 − Red) |
SLAVI (Specific Leaf Area Vegetation Index) | NIR/(Red + SWIR2) |
AFRI2100 (Aerosol Free Vegetation Index (2100 nm)) | (NIR − (0.5) × SWIR2)/(NIR + (0.5) × SWIR2) |
Vegetation Indices | Linear Regression Equation (r) (Where y = Cag Count, x = Vegetation Index Value) | Correlation Coefficient (r) | Coefficient of Determination (R2) | Significant Level |
---|---|---|---|---|
SIPI | Y = 656.64 − 553.71 X | −0.385 | 0.118 | ns |
TGI | Y = 16.12 + 28.27 X | 0.321 | 0.071 | ns |
MCARI | Y = 44.13 + 368.80 X | 0.339 | 0.083 | ns |
CVI | Y = −36.65 + 37.77 X | 0.400 | 0.130 | * |
NDYI | Y = −85.34 + 682.35 X | 0.556 | 0.285 | ** |
MTCI | Y = −5.07 + 39.09 X | 0.581 | 0.314 | ** |
IPVI | Y = −598.74 + 772.84 X | 0.630 | 0.375 | ** |
NDVI | Y = −212.32 + 386.42 X | 0.630 | 0.375 | ** |
VARI | Y = −0.419 + 246.56 X | 0.641 | 0.390 | ** |
AFRI2100 | Y = −344.57 + 524.48 X | 0.643 | 0.393 | ** |
GLI | Y = −40.71 + 532.74 X | 0.646 | 0.397 | ** |
CCI | Y = −1.42 + 390.45 X | 0.656 | 0.410 | ** |
ARVI | Y = −118.16 + 320.06 X | 0.679 | 0.442 | ** |
RENDVI | Y = −84.21 + 409.33 X | 0.687 | 0.453 | ** |
NNIR | Y = −416.94 + 660.02 X | 0.702 | 0.474 | ** |
GNDVI | Y = −291.99 + 555.69 X | 0.705 | 0.480 | ** |
TriVI | Y = −90.70 + 11.10 X | 0.707 | 0.482 | ** |
OSAVI | Y = −190.49 + 552.38 X | 0.709 | 0.485 | ** |
RDVI | Y = −171.17 + 612.25 X | 0.729 | 0.514 | ** |
EVI | Y = −128.47 + 465.91 X | 0.730 | 0.516 | ** |
SAVI | Y = −154.30 + 559.40 X | 0.734 | 0.522 | ** |
DVI | Y = −107.30 + 848.068 X | 0.744 | 0.537 | ** |
NDREI | Y = −147.15 + 458.55 X | 0.745 | 0.539 | ** |
MSR Green | Y = −126.25 + 119.97 X | 0.788 | 0.607 | ** |
mRE-SR | Y = −74.16 + 150.64 X | 0.794 | 0.617 | ** |
MSR Red | Y = −67.98 + 60.29 X | 0.809 | 0.641 | ** |
GCI | Y = −57.17 + 30.81 X | 0.814 | 0.651 | ** |
GRVI | Y = −87.98 + 30.81 X | 0.814 | 0.651 | ** |
CIRE | Y = −32.80 + 53.014 X | 0.817 | 0.655 | ** |
TRVI | Y = −124.13 + 69.18 X | 0.817 | 0.656 | ** |
SLAVI | Y = −15.08 + 26.75 X | 0.832 | 0.682 | ** |
SR | Y = −20.46 + 10.99 X | 0.847 | 0.707 | ** |
Region | Mangrove Area (ha) | Estimation of Above-Ground Carbon (Cag) (tonC) |
---|---|---|
A | 245.85 | 24,332.38 |
B | 35.91 | 2390.82 |
C | 95.09 | 8271.35 |
Total | 376.85 | 34,994.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novanda, I.G.A.; Setiawati, M.D.; Sugiana, I.P.; Dewi, I.G.A.I.P.; Andiani, A.A.E.; Kamasan, M.W.; Aryunisha, I.P.E.P.; As-syakur, A.R. Vegetation Index Comparison for Estimating Above-Ground Carbon (Cag) in Mangrove Forests Using Sentinel-2 Imagery: Case Study from West Bali, Indonesia. Coasts 2025, 5, 33. https://doi.org/10.3390/coasts5030033
Novanda IGA, Setiawati MD, Sugiana IP, Dewi IGAIP, Andiani AAE, Kamasan MW, Aryunisha IPEP, As-syakur AR. Vegetation Index Comparison for Estimating Above-Ground Carbon (Cag) in Mangrove Forests Using Sentinel-2 Imagery: Case Study from West Bali, Indonesia. Coasts. 2025; 5(3):33. https://doi.org/10.3390/coasts5030033
Chicago/Turabian StyleNovanda, I Gede Agus, Martiwi Diah Setiawati, I Putu Sugiana, I Gusti Ayu Istri Pradnyandari Dewi, Anak Agung Eka Andiani, Made Wirakumara Kamasan, I Putu Echa Priyaning Aryunisha, and Abd. Rahman As-syakur. 2025. "Vegetation Index Comparison for Estimating Above-Ground Carbon (Cag) in Mangrove Forests Using Sentinel-2 Imagery: Case Study from West Bali, Indonesia" Coasts 5, no. 3: 33. https://doi.org/10.3390/coasts5030033
APA StyleNovanda, I. G. A., Setiawati, M. D., Sugiana, I. P., Dewi, I. G. A. I. P., Andiani, A. A. E., Kamasan, M. W., Aryunisha, I. P. E. P., & As-syakur, A. R. (2025). Vegetation Index Comparison for Estimating Above-Ground Carbon (Cag) in Mangrove Forests Using Sentinel-2 Imagery: Case Study from West Bali, Indonesia. Coasts, 5(3), 33. https://doi.org/10.3390/coasts5030033