Predicting Animal Welfare Labels from Pork Fat Using Raman Spectroscopy and Chemometrics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Raman Analysis
2.3. Spectral Processing and Statistical Analysis
2.3.1. Data Preprocessing
2.3.2. Explorative Data Modeling
2.3.3. Predictive Data Modeling
2.3.4. Model Optimization and Validation
3. Results
3.1. Raman Spectra of Fat Samples
3.2. Data Analysis
3.2.1. Principal Component Analysis (PCA)
3.2.2. Predictive Modeling for Pork Origins
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- González, N.; Marquès, M.; Nadal, M.; Domingo, J.L. Meat consumption: Which are the current global risks? A review of recent (2010–2020) evidences. Food Res. Int. 2020, 137, 109341. [Google Scholar] [CrossRef]
- Henchion, M.; McCarthy, M.; Resconi, V.C.; Troy, D. Meat consumption: Trends and quality matters. Meat Sci. 2014, 98, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Meat and Dairy Production—Our World in Data. Available online: https://ourworldindata.org/meat-production (accessed on 13 March 2023).
- Bohrer, B.M. Review: Nutrient density and nutritional value of meat products and non-meat foods high in protein. Trends Food Sci. Technol. 2017, 65, 103–112. [Google Scholar] [CrossRef]
- Bonnet, C.; Bouamra-Mechemache, Z.; Réquillart, V.; Treich, N. Viewpoint: Regulating meat consumption to improve health, the environment and animal welfare. Food Policy 2020, 97, 101847. [Google Scholar] [CrossRef]
- Demarche, X.; Wiśniewska-Danek, K.; Otto, J.; Wojciechowski, J.; Friel, C.; Voinea, D.; Roșca, L. Animal Welfare in the EU: Closing the Gap between Ambitious Goals and Practical Implementation. Available online: https://www.eca.europa.eu/Lists/ECADocuments/SR18_31/SR_ANIMAL_WELFARE_EN.pdf (accessed on 14 March 2023).
- Akaichi, F.; Glenk, K.; Revoredo-Giha, C. Could animal welfare claims and nutritional information boost the demand for organic meat? Evidence from non-hypothetical experimental auctions. J. Clean. Prod. 2019, 207, 961–970. [Google Scholar] [CrossRef]
- Siegrist, M.; Hartmann, C. Impact of sustainability perception on consumption of organic meat and meat substitutes. Appetite 2019, 132, 196–202. [Google Scholar] [CrossRef]
- Mie, A.; Andersen, H.R.; Gunnarsson, S.; Kahl, J.; Kesse-Guyot, E.; Rembiałkowska, E.; Quaglio, G.; Grandjean, P. Human health implications of organic food and organic agriculture: A comprehensive review. Environ. Health 2017, 16, 111. [Google Scholar] [CrossRef]
- Popa, M.E.; Mitelut, A.C.; Popa, E.E.; Stan, A.; Popa, V.I. Organic foods contribution to nutritional quality and value. Trends Food Sci. Technol. 2019, 84, 15–18. [Google Scholar] [CrossRef]
- Średnicka-Tober, D.; Barański, M.; Seal, C.; Sanderson, R.; Benbrook, C.; Steinshamn, H.; Gromadzka-Ostrowska, J.; Rembiałkowska, E.; Skwarło-Sońta, K.; Eyre, M.; et al. Composition differences between organic and conventional meat: A systematic literature review and meta-analysis. Br. J. Nutr. 2016, 115, 994–1011. [Google Scholar] [CrossRef]
- Staudigel, M.; Trubnikov, A. High price premiums as barriers to organic meat demand? A hedonic analysis considering species, cut and retail outlet. Aust. J. Agric. Resour. Econ. 2022, 66, 309–334. [Google Scholar] [CrossRef]
- Bjorklund, E.; Heins, B.; DiCostanzo, A.; Chester-Jones, H. Fatty acid profiles, meat quality, and sensory attributes of organic versus conventional dairy beef steers. J. Dairy Sci. 2014, 97, 1828–1834. [Google Scholar] [CrossRef] [PubMed]
- Högberg, A.; Pickova, J.; Andersson, K.; Lundström, K. Fatty acid composition and tocopherol content of muscle in pigs fed organic and conventional feed with different n6/n3 ratios, respectively. Food Chem. 2003, 80, 177–186. [Google Scholar] [CrossRef]
- Kamihiro, S.; Stergiadis, S.; Leifert, C.; Eyre, M.D.; Butler, G. Meat quality and health implications of organic and conventional beef production. Meat Sci. 2015, 100, 306–318. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, G.B.; Alewijn, M.; Boerrigter-Eenling, R.; Van Ruth, S.M. Compositional Signatures of Conventional, Free Range, and Organic Pork Meat Using Fingerprint Techniques. Foods 2015, 4, 359–375. [Google Scholar] [CrossRef]
- Gibbs, R.A.; Rymer, C.; Givens, D. Fatty acid composition of cooked chicken meat and chicken meat products as influenced by price range at retail. Food Chem. 2013, 138, 1749–1756. [Google Scholar] [CrossRef]
- Man, K.-Y.; Chan, C.-O.; Tang, H.-H.; Dong, N.-P.; Capozzi, F.; Wong, K.-H.; Kwok, K.W.H.; Chan, H.M.; Mok, D.K.-W. Mass spectrometry-based untargeted metabolomics approach for differentiation of beef of different geographic origins. Food Chem. 2021, 338, 127847. [Google Scholar] [CrossRef] [PubMed]
- Parinet, J.; Royer, E.; Saint-Hilaire, M.; Chafey, C.; Noël, L.; Minvielle, B.; Dervilly-Pinel, G.; Engel, E.; Guérin, T. Classification of trace elements in tissues from organic and conventional French pig production. Meat Sci. 2018, 141, 28–35. [Google Scholar] [CrossRef]
- Gatmaitan, A.N.; Lin, J.Q.; Zhang, J.; Eberlin, L.S. Rapid Analysis and Authentication of Meat Using the MasSpec Pen Technology. J. Agric. Food Chem. 2021, 69, 3527–3536. [Google Scholar] [CrossRef]
- Legner, R.; Voigt, M.; Servatius, C.; Klein, J.; Hambitzer, A.; Jaeger, M. A Four-Level Maturity Index for Hot Peppers (Capsicum annum) Using Non-Invasive Automated Mobile Raman Spectroscopy for On-Site Testing. Appl. Sci. 2021, 11, 1614. [Google Scholar] [CrossRef]
- Sourdaine, M.; Guenther, D.; Dowgiallo, A.-M.; Harvey, C.; Mattley, Y.; Guckian, A.; Lischtschenko, O. Protecting the food supply chain: Utilizing SERS and portable Raman spectroscopy. Tech. Mess. 2015, 82, 625–632. [Google Scholar] [CrossRef]
- Dib, O.H.; Assaf, A.; Pean, A.; Durand, M.-J.; Jouanneau, S.; Ramanathan, R.; Thouand, G. Raman Spectroscopy Application in Food Waste Analysis: A Step towards a Portable Food Quality-Warning System. Sustainability 2023, 15, 188. [Google Scholar] [CrossRef]
- McVey, C.; Elliott, C.T.; Cannavan, A.; Kelly, S.D.; Petchkongkaew, A.; Haughey, S.A. Portable spectroscopy for high throughput food authenticity screening: Advancements in technology and integration into digital traceability systems. Trends Food Sci. Technol. 2021, 118, 777–790. [Google Scholar] [CrossRef]
- Engel, J.; Gerretzen, J.; Szymańska, E.; Jansen, J.J.; Downey, G.; Blanchet, L.; Buydens, L.M. Breaking with trends in pre-processing? TrAC Trends Anal. Chem. 2013, 50, 96–106. [Google Scholar] [CrossRef]
- Eilers, P.H.C. A perfect smoother. Anal. Chem. 2003, 75, 3631–3636. [Google Scholar] [CrossRef] [PubMed]
- Lwin, T.; Martens, H.; Naes, T. Multivariate Calibration. Biometrics 1991, 47, 1203. [Google Scholar] [CrossRef]
- Feissel, M.; Lewandowski, W. A comparative analysis of Vondrak and Gaussian smoothing techniques. J. Geodesy 1984, 58, 464–474. [Google Scholar] [CrossRef]
- Bro, R.; Smilde, A.K. Principal component analysis. Anal. Methods 2014, 6, 2812–2831. [Google Scholar] [CrossRef]
- Bro, R.; Smilde, A.K. Centering and scaling in component analysis. J. Chemom. 2003, 17, 16–33. [Google Scholar] [CrossRef]
- Ruiz-Perez, D.; Guan, H.; Madhivanan, P.; Mathee, K.; Narasimhan, G. So you think you can PLS-DA? BMC Bioinform. 2020, 21, 2. [Google Scholar] [CrossRef] [PubMed]
- Westad, F.; Marini, F. Validation of chemometric models—A tutorial. Anal. Chim. Acta 2015, 893, 14–24. [Google Scholar] [CrossRef]
- Beattie, J.R.; Bell, S.E.J.; Borggaard, C.; Fearon, A.M.; Moss, B.W. Classification of Adipose Tissue Species using Raman Spectroscopy. Lipids 2007, 42, 679–685. [Google Scholar] [CrossRef]
- Olsen, E.F.; Rukke, E.-O.; Flåtten, A.; Isaksson, T. Quantitative determination of saturated-, monounsaturated- and polyunsaturated fatty acids in pork adipose tissue with non-destructive Raman spectroscopy. Meat Sci. 2007, 76, 628–634. [Google Scholar] [CrossRef] [PubMed]
- Beattie, J.R.; Bell, S.E.; Borgaard, C.; Fearon, A.; Moss, B.W. Prediction of adipose tissue composition using raman spectroscopy Average properties and individual fatty acids. Lipids 2006, 41, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://beterleven.dierenbescherming.nl/over-de-dieren/alle-dieren/varkens/ (accessed on 14 March 2023).
- Czamara, K.; Majzner, K.; Pacia, M.Z.; Kochan, K.; Kaczor, A.; Baranska, M. Raman spectroscopy of lipids: A review. J. Raman Spectrosc. 2015, 46, 4–20. [Google Scholar] [CrossRef]
- Saleem, M.; Amin, A.; Irfan, M. Raman spectroscopy based characterization of cow, goat and buffalo fats. J. Food Sci. Technol. 2021, 58, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Hansen, L.; Claudi-Magnussen, C.; Jensen, S.; Andersen, H. Effect of organic pig production systems on performance and meat quality. Meat Sci. 2006, 74, 605–615. [Google Scholar] [CrossRef]
- Berhe, D.T.; Eskildsen, C.E.; Lametsch, R.; Hviid, M.S.; Van Den Berg, F.; Engelsen, S.B. Prediction of total fatty acid parameters and individual fatty acids in pork backfat using Raman spectroscopy and chemometrics: Understanding the cage of covariance between highly correlated fat parameters. Meat Sci. 2016, 111, 18–26. [Google Scholar] [CrossRef]
Validated Classification Accuracy = 96.67% | Predicted Class | |||
---|---|---|---|---|
1 Star | 3 Stars | Local Farm | ||
True class | 1 Star | 18 | 0 | 0 |
3 Stars | 2 | 16 | 0 | |
Local farm | 0 | 0 | 24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szykuła, K.M.; Offermans, T.; Lischtschenko, O.; Meurs, J.; Guenther, D.; Mattley, Y.; Jaeger, M.; Honing, M. Predicting Animal Welfare Labels from Pork Fat Using Raman Spectroscopy and Chemometrics. AppliedChem 2023, 3, 279-289. https://doi.org/10.3390/appliedchem3020017
Szykuła KM, Offermans T, Lischtschenko O, Meurs J, Guenther D, Mattley Y, Jaeger M, Honing M. Predicting Animal Welfare Labels from Pork Fat Using Raman Spectroscopy and Chemometrics. AppliedChem. 2023; 3(2):279-289. https://doi.org/10.3390/appliedchem3020017
Chicago/Turabian StyleSzykuła, Katarzyna M., Tim Offermans, Oliver Lischtschenko, Joris Meurs, Derek Guenther, Yvette Mattley, Martin Jaeger, and Maarten Honing. 2023. "Predicting Animal Welfare Labels from Pork Fat Using Raman Spectroscopy and Chemometrics" AppliedChem 3, no. 2: 279-289. https://doi.org/10.3390/appliedchem3020017
APA StyleSzykuła, K. M., Offermans, T., Lischtschenko, O., Meurs, J., Guenther, D., Mattley, Y., Jaeger, M., & Honing, M. (2023). Predicting Animal Welfare Labels from Pork Fat Using Raman Spectroscopy and Chemometrics. AppliedChem, 3(2), 279-289. https://doi.org/10.3390/appliedchem3020017