Phytochemical Composition and Pharmacological Potential of Lemongrass (Cymbopogon) and Impact on Gut Microbiota
Abstract
:1. Introduction
2. Phytochemical Constituents of Lemongrass
2.1. Volatile Constituents of Lemongrass
2.2. Phenolic Constituents of Lemongrass
3. Therapeutic Potential of Lemongrass
3.1. Disease Modulatory Role of Lemongrass
3.2. Utilization of Lemongrass in Folk Medicine
3.3. Antioxidant Potential
3.4. Anti-Hypertensive and Anti-Obesity Activity
3.5. Anti-Inflammatory Potential
3.6. Anxiolytic Properties
3.7. Hypoglycemic and Hypolipidemic Effects
3.8. Anti-Cancer Activity
3.9. Cytotoxicity and Anti-Mutagenicity
4. Lemongrass and Gut Microbiota
5. Industrial Applications of Lemongrass
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shah, G.; Shri, R.; Panchal, V.; Sharma, N.; Singh, B.; Mann, A.S. Scientific basis for the therapeutic use of Cymbopogon citratus, stapf (Lemon grass). J. Adv. Pharm. Technol. Res. 2011, 2, 3. [Google Scholar] [CrossRef] [PubMed]
- Vélez, P.R.C.; Ali, A.; Fournier-Level, A.; Dunshea, F.; Jusuf, P.R. P06-04 Antioxidant activity and embryotoxicity of Citrus australasica, Tasmannia lanceolata and Diploglottis australis extracts in zebrafish. Toxicol. Lett. 2022, 368, S114. [Google Scholar] [CrossRef]
- Ali, A.; Cottrell, J.J.; Dunshea, F.R. Identification and characterization of anthocyanins and non-anthocyanin phenolics from Australian native fruits and their antioxidant, antidiabetic, and anti-Alzheimer potential. Food Res. Int. 2022, 162, 111951. [Google Scholar] [CrossRef]
- Kiloni, S.M.; Akhtar, A.; Cáceres-Vélez, P.R.; Dunshea, F.; Jusuf, P. P06-05 Zebrafish embryo acute toxicity and antioxidant characterization of native Australian plants: Towards safe and effective glaucoma treatments. Toxicol. Lett. 2022, 368, S115. [Google Scholar] [CrossRef]
- Ali, A.; Zahid, H.F.; Cottrell, J.J.; Dunshea, F.R. A Comparative Study for Nutritional and Phytochemical Profiling of Coffea arabica (C. arabica) from Different Origins and Their Antioxidant Potential and Molecular Docking. Molecules 2022, 27, 5126. [Google Scholar] [CrossRef]
- Ali, A.; Bashmil, Y.M.; Cottrell, J.J.; Suleria, H.A.R.; Dunshea, F.R. LC-MS/MS-QTOF Screening and Identification of Phenolic Compounds from Australian Grown Herbs and Their Antioxidant Potential. Antioxidants 2021, 10, 1770. [Google Scholar] [CrossRef]
- Muala, W.C.B.; Desobgo, Z.S.C.; Jong, N.E. Optimization of extraction conditions of phenolic compounds from Cymbopogon citratus and evaluation of phenolics and aroma profiles of extract. Heliyon 2021, 7, e06744. [Google Scholar] [CrossRef]
- Ali, A.; Wu, H.; Ponnampalam, E.N.; Cottrell, J.J.; Dunshea, F.R.; Suleria, H.A.R. Comprehensive Profiling of Most Widely Used Spices for Their Phenolic Compounds through LC-ESI-QTOF-MS2 and Their Antioxidant Potential. Antioxidants 2021, 10, 721. [Google Scholar] [CrossRef]
- Cáceres-Vélez, P.R.; Ali, A.; Fournier-Level, A.; Dunshea, F.R.; Jusuf, P.R. Phytochemical and Safety Evaluations of Finger Lime, Mountain Pepper, and Tamarind in Zebrafish Embryos. Antioxidants 2022, 11, 1280. [Google Scholar] [CrossRef]
- Zahid, H.F.; Ali, A.; Ranadheera, C.S.; Fang, Z.; Dunshea, F.R.; Ajlouni, S. In vitro bioaccessibility of phenolic compounds and alpha-glucosidase inhibition activity in yoghurts enriched with mango peel powder. Food Biosci. 2022, 50, 102011. [Google Scholar] [CrossRef]
- Valduga, A.T.; Gonçalves, I.L.; Magri, E.; Finzer, J.R.D. Chemistry, pharmacology and new trends in traditional functional and medicinal beverages. Food Res. Int. 2019, 120, 478–503. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Krishan, P.; Swami, G.; Kaur, P.; Shah, G.; Kaur, A. Pharmacognostical investigation of Cymbopogon citratus (DC) Stapf. Der Pharm. Lett. 2010, 2, 181–189. [Google Scholar]
- Manvitha, K.; Bidya, B. Review on pharmacological activity of Cymbopogon citratus. Int. J. Herb. Med. 2014, 6, 7. [Google Scholar]
- Figueirinha, A.; Paranhos, A.; Pérez-Alonso, J.J.; Santos-Buelga, C.; Batista, M.T. Cymbopogon citratus leaves: Characterization of flavonoids by HPLC–PDA–ESI/MS/MS and an approach to their potential as a source of bioactive polyphenols. Food Chem. 2008, 110, 718–728. [Google Scholar] [CrossRef]
- Tovar, L.P.; Pinto, G.M.F.; Wolf-Maciel, M.R.; Batistella, C.B.; Maciel-Filho, R. Short-Path-Distillation process of lemongrass essential oil: Physicochemical characterization and assessment quality of the distillate and the residue products. Ind. Eng. Chem. Res. 2011, 50, 8185–8194. [Google Scholar] [CrossRef]
- Barbosa, L.C.A.; Pereira, U.A.; Martinazzo, A.P.; Maltha, C.R.Á.; Teixeira, R.R.; Melo, E.d.C. Evaluation of the chemical composition of Brazilian commercial Cymbopogon citratus (DC) Stapf samples. Molecules 2008, 13, 1864–1874. [Google Scholar] [CrossRef] [Green Version]
- Godwin, A.; Daniel, G.A.; Shadrack, D.; Elom, S.A.; Afua, N.; Ab, K.; Godsway, B.; Joseph, K.G.; Sackitey, N.O.; Isaak, K.B. Determination of elemental, phenolic, antioxidant and flavonoid properties of Lemon grass (Cymbopogon citratus Stapf). Int. Food Res. J. 2014, 21, 1971–1979. [Google Scholar]
- Ito, N.; Nagai, T.; Oikawa, T.; Yamada, H.; Hanawa, T. Antidepressant-like effect of l-perillaldehyde in stress-induced depression-like model mice through regulation of the olfactory nervous system. Evid.-Based Complement. Altern. Med. 2011, 2011, 512697. [Google Scholar] [CrossRef] [Green Version]
- Bassolé, I.H.N.; Lamien-Meda, A.; Bayala, B.; Obame, L.C.; Ilboudo, A.J.; Franz, C.; Novak, J.; Nebié, R.C.; Dicko, M.H. Chemical composition and antimicrobial activity of Cymbopogon citratus and Cymbopogon giganteus essential oils alone and in combination. Phytomedicine 2011, 18, 1070–1074. [Google Scholar] [CrossRef]
- Ali, A.; Cottrell, J.J.; Dunshea, F.R. LC-MS/MS Characterization of Phenolic Metabolites and Their Antioxidant Activities from Australian Native Plants. Metabolites 2022, 12, 1016. [Google Scholar] [CrossRef]
- Karami, S.; Yargholi, A.; Sadati Lamardi, S.N.; Soleymani, S.; Shirbeigi, L. A review of ethnopharmacology, phytochemistry and pharmacology of Cymbopogon species. Res. J. Pharmacogn. 2021, 8, 83–112. [Google Scholar]
- Lemos, I.C.S.; de Araújo Delmondes, G.; Dos Santos, A.D.F.; Santos, E.S.; de Oliveira, D.R.; de Figueiredo, P.R.L.; de Araújo Alves, D.; Barbosa, R.; de Menezes, I.R.A.; Coutinho, H.D.M. Ethnobiological survey of plants and animals used for the treatment of acute respiratory infections in children of a traditional community in the municipality of Barbalha, Ceará, Brazil. Afr. J. Tradit. Complement. Altern. Med. 2016, 13, 166–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iyamah, P.C.; Idu, M. Ethnomedicinal survey of plants used in the treatment of malaria in Southern Nigeria. J. Ethnopharmacol. 2015, 173, 287–302. [Google Scholar] [CrossRef] [PubMed]
- de Santana, B.F.; Voeks, R.A.; Funch, L.S. Ethnomedicinal survey of a maroon community in Brazil’s Atlantic tropical forest. J. Ethnopharmacol. 2016, 181, 37–49. [Google Scholar] [CrossRef] [PubMed]
- López-Rubalcava, C.; Estrada-Camarena, E. Mexican medicinal plants with anxiolytic or antidepressant activity: Focus on preclinical research. J. Ethnopharmacol. 2016, 186, 377–391. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, R.; Bhatti, G.R. Ethnobotany of plants used by the Thari people of Nara Desert, Pakistan. Fitoterapia 2008, 79, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, R.V.; Bieski, I.G.C.; Balogun, S.O.; de Oliveira Martins, D.T. Ethnobotanical study of medicinal plants used by Ribeirinhos in the North Araguaia microregion, Mato Grosso, Brazil. J. Ethnopharmacol. 2017, 205, 69–102. [Google Scholar] [CrossRef]
- Das, M.K.; Ansari, M.A. Evaluation of repellent action of Cymbopogan martinii martinii Stapf var sofia oil against Anopheles sundaicus in tribal villages of Car Nicobar Island, Andaman & Nicobar Islands, India. J. Vector Borne Dis. 2003, 40, 100. [Google Scholar]
- Bieski, I.G.C.; Leonti, M.; Arnason, J.T.; Ferrier, J.; Rapinski, M.; Violante, I.M.P.; Balogun, S.O.; Pereira, J.F.C.A.; Figueiredo, R.d.C.F.; Lopes, C.R.A.S. Ethnobotanical study of medicinal plants by population of valley of Juruena region, legal Amazon, Mato Grosso, Brazil. J. Ethnopharmacol. 2015, 173, 383–423. [Google Scholar] [CrossRef]
- Mahomoodally, M.F. Quantitative ethnobotanical study of common herbal remedies used against 13 human ailments catergories in Mauritius. Afr. J. Tradit. Complement. Altern. Med. 2014, 11, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Siew, Y.-Y.; Zareisedehizadeh, S.; Seetoh, W.-G.; Neo, S.-Y.; Tan, C.-H.; Koh, H.-L. Ethnobotanical survey of usage of fresh medicinal plants in Singapore. J. Ethnopharmacol. 2014, 155, 1450–1466. [Google Scholar] [CrossRef] [PubMed]
- Kujawska, M. Yerba mate (Ilex paraguariensis) beverage: Nutraceutical ingredient or conveyor for the intake of medicinal plants? Evidence from Paraguayan folk medicine. Evid.-Based Complement. Altern. Med. 2018, 2018, 6849317. [Google Scholar] [CrossRef] [Green Version]
- Chotchoungchatchai, S.; Saralamp, P.; Jenjittikul, T.; Pornsiripongse, S.; Prathanturarug, S. Medicinal plants used with Thai Traditional Medicine in modern healthcare services: A case study in Kabchoeng Hospital, Surin Province, Thailand. J. Ethnopharmacol. 2012, 141, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Neamsuvan, O.; Komonhiran, P.; Boonming, K. Medicinal plants used for hypertension treatment by folk healers in Songkhla province, Thailand. J. Ethnopharmacol. 2018, 214, 58–70. [Google Scholar] [CrossRef] [PubMed]
- Nagata, J.M.; Jew, A.R.; Kimeu, J.M.; Salmen, C.R.; Bukusi, E.A.; Cohen, C.R. Medical pluralism on Mfangano Island: Use of medicinal plants among persons living with HIV/AIDS in Suba District, Kenya. J. Ethnopharmacol. 2011, 135, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Nyamukuru, A.; Tabuti, J.R.S.; Lamorde, M.; Kato, B.; Sekagya, Y.; Aduma, P.R. Medicinal plants and traditional treatment practices used in the management of HIV/AIDS clients in Mpigi District, Uganda. J. Herb. Med. 2017, 7, 51–58. [Google Scholar] [CrossRef]
- Andrade, E.H.A.; Zoghbi, M.d.G.B.; Lima, M.d.P. Chemical composition of the essential oils of Cymbopogon citratus (DC.) Stapf cultivated in North of Brazil. J. Essent. Oil Bear. Plants 2009, 12, 41–45. [Google Scholar] [CrossRef]
- Oyeyemi, I.T.; Akinseye, K.M.; Adebayo, S.S.; Oyetunji, M.T.; Oyeyemi, O.T. Ethnobotanical survey of the plants used for the management of malaria in Ondo State, Nigeria. S. Afr. J. Bot. 2019, 124, 391–401. [Google Scholar] [CrossRef]
- Odoh, U.E.; Uzor, P.F.; Eze, C.L.; Akunne, T.C.; Onyegbulam, C.M.; Osadebe, P.O. Medicinal plants used by the people of Nsukka Local Government Area, south-eastern Nigeria for the treatment of malaria: An ethnobotanical survey. J. Ethnopharmacol. 2018, 218, 1–15. [Google Scholar] [CrossRef]
- Kujawska, M.; Pardo-de-Santayana, M. Management of medicinally useful plants by European migrants in South America. J. Ethnopharmacol. 2015, 172, 347–355. [Google Scholar] [CrossRef]
- Segun, P.A.; Ogbole, O.O.; Ajaiyeoba, E.O. Medicinal plants used in the management of cancer among the Ijebus of Southwestern Nigeria. J. Herb. Med. 2018, 14, 68–75. [Google Scholar] [CrossRef]
- Neamsuvan, O.; Madeebing, N.; Mah, L.; Lateh, W. A survey of medicinal plants for diabetes treating from Chana and Nathawee district, Songkhla province, Thailand. J. Ethnopharmacol. 2015, 174, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Boaduo, N.K.K.; Katerere, D.; Eloff, J.N.; Naidoo, V. Evaluation of six plant species used traditionally in the treatment and control of diabetes mellitus in South Africa using in vitro methods. Pharm. Biol. 2014, 52, 756–761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jagtap, S.D.; Deokule, S.S.; Bhosle, S.V. Some unique ethnomedicinal uses of plants used by the Korku tribe of Amravati district of Maharashtra, India. J. Ethnopharmacol. 2006, 107, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Sonibare, M.A.; Okorie, P.N.; Aremu, T.O.; Adegoke, A. Ethno-medicines for mosquito transmitted diseases from South-western Nigeria. J. Nat. Remedies 2015, 15, 33–42. [Google Scholar] [CrossRef]
- Nambiar, V.S.; Matela, H. Potential functions of lemon grass (Cymbopogon citratus) in health and disease. Int. J. Pharm. Biol. Arch. 2012, 3, 1035–1043. [Google Scholar]
- Puatanachokchai, R.; Kishida, H.; Denda, A.; Murata, N.; Konishi, Y.; Vinitketkumnuen, U.; Nakae, D. Inhibitory effects of lemon grass (Cymbopogon citratus, Stapf) extract on the early phase of hepatocarcinogenesis after initiation with diethylnitrosamine in male Fischer 344 rats. Cancer Lett. 2002, 183, 9–15. [Google Scholar] [CrossRef]
- Asaolu, M.F.; Oyeyemi, O.A.; Olanlokun, J.O. Chemical compositions, phytochemical constituents and in vitro biological activity of various extracts of Cymbopogon citratus. Pak. J. Nutr. 2009, 8, 1920–1922. [Google Scholar] [CrossRef]
- Negrelle, R.R.B.; Gomes, E.C. Cymbopogon citratus (DC.) Stapf: Chemical composition and biological activities. Rev. Bras. De Plantas Med. 2007, 9, 80–92. [Google Scholar]
- Rao, M.L.; Savithramma, N. Phytochemical studies of Svensonia hyderobadensis (Walp.) Mold: A rare medicinal plant. Der Pharm. Lett. 2011, 3, 51–55. [Google Scholar]
- Lonkar, P.B.; Chavan, U.D.; Pawar, V.D.; Bansode, V.V.; Amarowicz, R. Studies on preparation and preservation of lemongrass (Cymbopogon flexuosus (Steud) Wats) powder for tea. Emir. J. Food Agric. 2013, 25, 585–592. [Google Scholar] [CrossRef] [Green Version]
- Sharifi-Rad, J.; Song, S.; Ali, A.; Subbiah, V.; Taheri, Y.; Suleria, H.A.R. LC-ESI-QTOF-MS/MS characterization of phenolic compounds from Pyracantha coccinea M. Roem. and their antioxidant capacity. Cell. Mol. Biol. 2021, 67, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Chou, O.; Ali, A.; Subbiah, V.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. LC-ESI-QTOF-MS/MS Characterisation of Phenolics in Herbal Tea Infusion and Their Antioxidant Potential. Fermentation 2021, 7, 73. [Google Scholar] [CrossRef]
- Bashmil, Y.M.; Ali, A.; BK, A.; Dunshea, F.R.; Suleria, H.A.R. Screening and Characterization of Phenolic Compounds from Australian Grown Bananas and Their Antioxidant Capacity. Antioxidants 2021, 10, 1521. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Ekpenyong, C.E.; Akpan, E.E.; Daniel, N.E. Phytochemical constituents, therapeutic applications and toxicological profile of Cymbopogon citratus Stapf (DC) leaf extract. J. Pharmacogn. Phytochem. 2014, 3, 133–141. [Google Scholar]
- Vimal, M.; Vijaya, P.P.; Mumtaj, P.; Farhath, M.S.S. Antibacterial activity of selected compounds of essential oils from indigenous plants. J. Chem. Pharm. Res. 2013, 5, 248–253. [Google Scholar]
- Ranitha, M.; Nour, A.H.; Ziad, A.S.; Azhari, H.N.; ThanaRaj, S. Optimization of microwave assisted hydrodistillation of lemongrass (Cymbopogon citratus) using response surface methodology. Int. J. Res. Eng. Technol 2014, 3, 5–14. [Google Scholar]
- Okoh, O.O.; Afolayan, A.J. The effects of hydrodistillation and solvent free microwave extraction methods on the chemical composition and toxicity of essential oils from the leaves of Mentha longifolia L. subsp. capensis. J. Pharm. Pharm. 2011, 5, 2474–2478. [Google Scholar] [CrossRef]
- Karakaya, S.; El, S.N.; Karagozlu, N.; Sahin, S.; Sumnu, G.; Bayramoglu, B. Microwave-assisted hydrodistillation of essential oil from rosemary. J. Food Sci. Technol. 2014, 51, 1056–1065. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.-W.; Liu, Y.-Q.; Wei, S.-L.; Yan, Z.-J.; Lu, K. Comparison of microwave-assisted and conventional hydrodistillation in the extraction of essential oils from mango (Mangifera indica L.) flowers. Molecules 2010, 15, 7715–7723. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.-C.; Su, M.-S.; Lin, C.-C.; Chiu, C.-F. Comparison of Anti-Glycation Capacity of Two New Purple-Colored-Leaf Tea Cultivars with an Ordinary Green-Colored-Leaf Tea Cultivar in Taiwan. Glob. J. Obes. Diabetes Metab. Syndr. 2017, 4, 009–015. [Google Scholar] [CrossRef] [Green Version]
- Mirghani, M.E.S.; Liyana, Y.; Parveen, J. Bioactivity analysis of lemongrass (Cymbopogan citratus) essential oil. Int. Food Res. J. 2012, 19, 569–575. [Google Scholar]
- Cheel, J.; Theoduloz, C.; Rodríguez, J.; Schmeda-Hirschmann, G. Free radical scavengers and antioxidants from Lemongrass (Cymbopogon citratus (DC.) Stapf.). J. Agric. Food Chem. 2005, 53, 2511–2517. [Google Scholar] [CrossRef]
- Tiwari, M.; Dwivedi, U.N.; Kakkar, P. Suppression of oxidative stress and pro-inflammatory mediators by Cymbopogon citratus D. Stapf extract in lipopolysaccharide stimulated murine alveolar macrophages. Food Chem. Toxicol. 2010, 48, 2913–2919. [Google Scholar] [CrossRef]
- Ain, N.A.H.; Zaibunnisa, A.H.; Zahrah, H.M.S.; Norashikin, S. An experimental design approach for the extraction of lemongrass (Cymbopogon citratus) oleoresin using pressurised liquid extraction (PLE). Int. Food Res. J. 2013, 20, 451–455. [Google Scholar]
- Ekpenyong, C.E.; Daniel, N.E.; Antai, A.B. Bioactive natural constituents from lemongrass tea and erythropoiesis boosting effects: Potential use in prevention and treatment of anemia. J. Med. Food 2015, 18, 118–127. [Google Scholar] [CrossRef]
- Abbas, N.; Rasheed, A.; Ahmed, E.S.; Ali, S.; Irfan, U.M.; Al-Sueaadi, M.H. Study of anti-lipidemic effect of lemongrass (Cymbopogon citratus) aqueous roots and flower extracts on albino mice. Int. J. Pharm. Sci. Res. 2019, 10, 2785–2789. [Google Scholar]
- De Oliveira, E.; Silva, F.; Soares, J.; Valdez, A.; da Silva Ferreira, M.V.; da Silva Cecim, M. Cymbopogon citratus Protects Erythrocytes from Lipid Peroxidation in vitro. Cardiovasc. Hematol. Agents Med. Chem. (Former. Curr. Med. Chem.-Cardiovasc. Hematol. Agents) 2022, 20, 166–169. [Google Scholar] [CrossRef]
- Onyedikachi, U.B.; Awah, F.M.; Chukwu, C.N.; Ejiofor, E. Essential Oil of Grown in Umuahia: A Viable Candidate for Anti-Inflammatory and Antioxidant Therapy. Acta Univ. Cibiniensis. Ser. E Food Technol. 2021, 25, 1–14. [Google Scholar] [CrossRef]
- Jaswir, I.; Monsur, H.A. Anti-inflammatory compounds of macro algae origin: A review. J. Med. Plants Res. 2011, 5, 7146–7154. [Google Scholar]
- Francisco, V.; Figueirinha, A.; Neves, B.M.; García-Rodríguez, C.; Lopes, M.C.; Cruz, M.T.; Batista, M.T. Cymbopogon citratus as source of new and safe anti-inflammatory drugs: Bio-guided assay using lipopolysaccharide-stimulated macrophages. J. Ethnopharmacol. 2011, 133, 818–827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olorunnisola, S.K.; Hammed, A.M.; Simsek, S. Biological properties of lemongrass: An overview. Int. Food Res. J. 2014, 21, 455–462. [Google Scholar]
- Cencic, A.; Chingwaru, W. The role of functional foods, nutraceuticals, and food supplements in intestinal health. Nutrients 2010, 2, 611–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, S.K.; Singh, L.; Singh, S. A review on medicinal plants having antioxidant potential. Indian J. Res. Pharm. Biotechnol. 2013, 1, 404. [Google Scholar]
- Batista, G.d.A.P.; Cunha, C.L.; Scartezini, M.; von der Heyde, R.; Bitencourt, M.G.; Melo, S.F.d. Prospective double-blind crossover study of Camellia sinensis (green tea) in dyslipidemias. Arq. Bras. De Cardiol. 2009, 93, 128–134. [Google Scholar] [CrossRef] [Green Version]
- Sforcin, J.M.; Amaral, J.T.; Fernandes, A., Jr.; Sousa, J.P.B.; Bastos, J.K. Lemongrass effects on IL-1β and IL-6 production by macrophages. Nat. Prod. Res. 2009, 23, 1151–1159. [Google Scholar] [CrossRef]
- Salvia-Trujillo, L.; Rojas-Graü, A.; Soliva-Fortuny, R.; Martín-Belloso, O. Physicochemical characterization of lemongrass essential oil–alginate nanoemulsions: Effect of ultrasound processing parameters. Food Bioprocess Technol. 2013, 6, 2439–2446. [Google Scholar] [CrossRef]
- Fahmy, M.A.; Aly, F.A.E.; Hassan, E.M.; Farghaly, A.A.; Hassan, E.E.; Samea, N.S.A. Cymbopogon citratus essential oil has hepato/renal protection and anti-genotoxicity against carbon tetrachloride. Comun. Sci. 2020, 11, e3219. [Google Scholar] [CrossRef]
- Fandohan, P.; Gnonlonfin, B.; Laleye, A.; Gbenou, J.D.; Darboux, R.; Moudachirou, M. Toxicity and gastric tolerance of essential oils from Cymbopogon citratus, Ocimum gratissimum and Ocimum basilicum in Wistar rats. Food Chem. Toxicol. 2008, 46, 2493–2497. [Google Scholar] [CrossRef]
- Ml, S.F.; Lodder, H.M.; Gianotti Filho, O.; Ferreira, T.M.; Carlini, E.A. Pharmacology of lemongrass (Cymbopogon citratus Stapf). II. Effects of daily two month administration in male and female rats and in offspring exposed “in utero”. J. Ethnopharmacol. 1986, 17, 65–74. [Google Scholar]
- Plata-Rueda, A.; Rolim, G.D.S.; Wilcken, C.F.; Zanuncio, J.C.; Serrão, J.E.; Martínez, L.C. Acute Toxicity and Sublethal Effects of Lemongrass Essential Oil and Their Components against the Granary Weevil, Sitophilus granarius. Insects 2020, 11, 379. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Ponnampalam, E.N.; Pushpakumara, G.; Cottrell, J.J.; Suleria, H.A.R.; Dunshea, F.R. Cinnamon: A Natural Feed Additive for Poultry Health and Production—A Review. Animals 2021, 11, 2026. [Google Scholar] [CrossRef]
- Yaqoob, A.; Abdul Razzaq, P.; Iqbal, S.; Obaid ul, H.; Ishtiaq, H.; Hussain, S.; Altaf, M.; Ahmad, W.; Rizwan, M.; Zahid, H.; et al. Cinnamon Bioactives and their Impact on Poultry Nutrition and Meat Quality—Impact on Human Health. ACTA Sci. Nutr. Health 2022, 6, 29–38. [Google Scholar] [CrossRef]
- Cottrell, J.J.; Le, H.H.; Artaiz, O.; Iqbal, Y.; Suleria, H.A.; Ali, A.; Celi, P.; Dunshea, F.R. Recent advances in the use of phytochemicals to manage gastrointestinal oxidative stress in poultry and pigs. Anim. Prod. Sci. 2022, 62, 1140–1146. [Google Scholar] [CrossRef]
- Alagawany, M.; El-Saadony, M.T.; Elnesr, S.S.; Farahat, M.; Attia, G.; Madkour, M.; Reda, F.M. Use of lemongrass essential oil as a feed additive in quail’s nutrition: Its effect on growth, carcass, blood biochemistry, antioxidant and immunological indices, digestive enzymes and intestinal microbiota. Poult. Sci. 2021, 100, 101172. [Google Scholar] [CrossRef] [PubMed]
- Al-Sagheer, A.A.; Mahmoud, H.K.; Reda, F.M.; Mahgoub, S.A.; Ayyat, M.S. Supplementation of diets for Oreochromis niloticus with essential oil extracts from lemongrass (Cymbopogon citratus) and geranium (Pelargonium graveolens) and effects on growth, intestinal microbiota, antioxidant and immune activities. Aquac. Nutr. 2018, 24, 1006–1014. [Google Scholar] [CrossRef]
- Leite, A.M.; de Oliveira Lima, E.; de Souza, E.L.; Diniz, M.d.F.M.; Trajano, V.N.; de Medeiros, I.A. Inhibitory effect of beta-pinene, alpha-pinene and eugenol on the growth of potential infectious endocarditis causing Gram-positive bacteria. Rev. Bras. Ciências Farm. 2007, 43, 121–126. [Google Scholar] [CrossRef]
- Singh, B.R.; Singh, V.; Singh, R.K.; Ebibeni, N. Antimicrobial activity of lemongrass (Cymbopogon citratus) oil against microbes of environmental, clinical and food origin. Int. Res. J. Pharm. Pharm. 2011, 1, 228–236. [Google Scholar]
- Khalifah, A.M.; Abdalla, S.A.; Dosoky, W.M.; Shehata, M.G.; Khalifah, M.M. Utilization of lemongrass essential oil supplementation on growth performance, meat quality, blood traits and caecum microflora of growing quails. Ann. Agric. Sci. 2021, 66, 169–175. [Google Scholar] [CrossRef]
- Dewi, G.; Nair, D.V.T.; Peichel, C.; Johnson, T.J.; Noll, S.; Johny, A.K. Effect of lemongrass essential oil against multidrug-resistant Salmonella Heidelberg and its attachment to chicken skin and meat. Poult. Sci. 2021, 100, 101116. [Google Scholar] [CrossRef] [PubMed]
- Adukwu, E.C.; Bowles, M.; Edwards-Jones, V.; Bone, H. Antimicrobial activity, cytotoxicity and chemical analysis of lemongrass essential oil (Cymbopogon flexuosus) and pure citral. Appl. Microbiol. Biotechnol. 2016, 100, 9619–9627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majewska, E.; Kozlowska, M.; Gruszczynska-Sekowska, E.; Kowalska, D.; Tarnowska, K. Lemongrass (Cymbopogon citratus) essential oil: Extraction, composition, bioactivity and uses for food preservation-a review. Pol. J. Food Nutr. Sci. 2019, 69, 4. [Google Scholar] [CrossRef]
- Đorđević, T.M.; Đurović-Pejčev, R.D. Dissipation of chlorpyrifos-methyl by Saccharomyces cerevisiae during wheat fermentation. LWT-Food Sci. Technol. 2015, 61, 516–523. [Google Scholar] [CrossRef]
- da Silva, M.R.M.; Ricci-Júnior, E. An approach to natural insect repellent formulations: From basic research to technological development. Acta Trop. 2020, 212, 105419. [Google Scholar] [CrossRef]
Name of Compound | Formula | Concentration | References |
---|---|---|---|
Citral α | C10H16O | 40.8% | [1] |
Geraniol | C10H18O | 1.9–3.04% | [1,19] |
Citral β | C10H16O | 32% | [1] |
Geranyl acetate | C12H20O2 | 0.83% | [1] |
Terpinol | C10H18O | 0.45% | [1] |
Nerol | C10H18O | 4.18% | [1] |
β-Pinene | C10H16 | 0.4% | [1] |
Citronellal | C10H18O | 2.10% | [1] |
β-Myrcene | C10H16O | 11% | [19] |
Methylheptenone | C10H16O | 0.2% | [1] |
α-Pinene | C10H16 | 0.7% | [1] |
Limonene | C10H16 | NR | [1] |
Linalool | C10H18O | NR | [1] |
β-caryophyllene | C15H24 | NR | [1] |
α-Bisabolol | C15H26O | NR | [21] |
Eugenol | C10H12O2 | NR | [21] |
Citronellol | C10H20O | NR | [21] |
Elemicin | C12H16O3 | NR | [21] |
α-Thujene | C10H16 | NR | [21] |
Neral | C10H16O | NR | [21] |
Camphene | C10H16 | NR | [21] |
β-Selinene | C15H24 | NR | [21] |
Diosmin | C28H32O15 | 19.32 ± 5.47 μg/g | [20] |
Catechin | C15H14O6 | 19.23 ± 2.37 μg/g | [20] |
Procyanidin B2 | C30H26O12 | 46.75 ± 6.56 μg/g | [20] |
Quercetin-3-glucoside | C21H20O12 | 151.35 ± 11.34 μg/g | [20] |
Tricin | C17H14O7 | 12.34 ± 2.31 μg/g | [20] |
Kaempferol-3-glucoside | C21H20O11 | 21.45 ± 4.12 μg/g | [20] |
Caffeic acid | C9H8O4 | 445.21 ± 32.77 μg/g | [20] |
Chlorogenic acid | C16H18O9 | 377.65 ± 4.26 μg/g | [20] |
Cinnamic acid | C9H8O2 | 61.30 ± 17.31 μg/g | [20] |
Quinic acid | C7H12O6 | 161.52 ± 17.62 μg/g | [20] |
Ferulic acid | C10H10O4 | 12.17 ± 3.11 μg/g | [20] |
p-Coumaric acid | C9H8O3 | 393.32 ± 39.56 μg/g | [20] |
p-Hydroxybenzoic acid | C7H6O3 | 94.01 ± 2.24 μg/g | [20] |
Protocatechuic acid | C7H6O4 | 54.16 ± 3.65 μg/g | [20] |
Pyrogallol | C6H6O3 | 27.54 ± 5.76 μg/g | [20] |
No. | Therapeutic Utilization of Lemongrass | Plant Part Used | References |
---|---|---|---|
1 | Fever, headache, liver disease | Leaves | [22,23] |
2 | Stress, fever, inflammation | Leaves | [24,25,26] |
3 | High blood pressure, vomiting, stress, malaria | Leaves | [27,28] |
4 | Hypertension, flu, digestive problems | Aerial parts | [29] |
5 | Influenza | Leaves | [30] |
6 | Heart problems, nervous tension, digestion problems | Whole plant | [31,32] |
7 | Menstrual disorders, leucorrhea | Stems | [33] |
8 | Hypertension | Whole plant | [34] |
9 | HIV/AIDS | Leaves | [35,36] |
10 | Kidney problems | Aerial parts | [37] |
11 | Fever, common cold, malaria | Leaves | [30,38,39,40] |
12 | Cancer | Leaves | [31,41] |
13 | Diabetes | Whole plant | [42,43] |
14 | Muscle pain, runny nose and asthma, joint swelling | Aerial parts | [21] |
15 | Hair loss | Essential oil | [44] |
16 | Malaria | Essential oil | [28] |
17 | Insecticidal | Essential oil | [45] |
Concentration in Diet | Gut Microbiota | Animal or Gut Part or Type of Study | Ref. |
---|---|---|---|
300 mg/kg | Coliform, E. coli, and Salmonella; ↓ total bacterial count and Lactobacillus ↑ | caecal | [86] |
400 mg/kg | Total bacteria, Coliforms, Escherichia coli, and Aeromonas spp. counts ↓ | fish | [87] |
1 mg/mL | Lactobacillus acidophilus, Morganella morganii, most of the Bacillus spp. strains (84.3%), aeromonads (78%), Edwardsiella spp. (73.9%), 53.6% pseudomonads, 53.1% streptococci, and 50% of Budvicia aquatica and Leminorella ghirmontii were found to be sensitive to Lemongrass | in-vitro | [89] |
0.2–0.8 g/kg | Escherichia coli, Salmonella spp., ↓ Lactobacillus spp. ↑ | caecal | [90] |
0.5–1.5% | Salmonella Heidelberg ↓ | in-vitro | [91] |
* MIC—0.65% | Acinetobacter baumannii strains ↓ | in-vitro | [92] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiani, H.S.; Ali, A.; Zahra, S.; Hassan, Z.U.; Kubra, K.T.; Azam, M.; Zahid, H.F. Phytochemical Composition and Pharmacological Potential of Lemongrass (Cymbopogon) and Impact on Gut Microbiota. AppliedChem 2022, 2, 229-246. https://doi.org/10.3390/appliedchem2040016
Kiani HS, Ali A, Zahra S, Hassan ZU, Kubra KT, Azam M, Zahid HF. Phytochemical Composition and Pharmacological Potential of Lemongrass (Cymbopogon) and Impact on Gut Microbiota. AppliedChem. 2022; 2(4):229-246. https://doi.org/10.3390/appliedchem2040016
Chicago/Turabian StyleKiani, Hafiza Sehrish, Akhtar Ali, Shama Zahra, Zain Ul Hassan, Khadija Tul Kubra, Muhammad Azam, and Hafza Fasiha Zahid. 2022. "Phytochemical Composition and Pharmacological Potential of Lemongrass (Cymbopogon) and Impact on Gut Microbiota" AppliedChem 2, no. 4: 229-246. https://doi.org/10.3390/appliedchem2040016
APA StyleKiani, H. S., Ali, A., Zahra, S., Hassan, Z. U., Kubra, K. T., Azam, M., & Zahid, H. F. (2022). Phytochemical Composition and Pharmacological Potential of Lemongrass (Cymbopogon) and Impact on Gut Microbiota. AppliedChem, 2(4), 229-246. https://doi.org/10.3390/appliedchem2040016