Group Contribution Revisited: The Enthalpy of Formation of Organic Compounds with “Chemical Accuracy” Part III
Abstract
:1. Introduction
2. Methods
Experimental Data and Computational Methods
3. Results
3.1. Chloro Hydrocarbons
+ NCl non-terminal * GC Cl non-terminal
3.2. Fluoro Hydrocarbons
3.3. Benzylhalides
3.4. Nitro Compounds
3.5. Acetals: 1,3-Dioxolane
4. Summary
5. Conclusions and Outlook
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Krevelen, D.W.; Chermin, H.A.G. Estimation of the free enthalpy (Gibbs free energy) of formation of organic compounds from group contributions. Chem. Eng. Sci. 1951, 1, 66–80, Erratum in 1952, 1, 238. [Google Scholar] [CrossRef]
- Benson, S.W.; Cruickshank, F.R.; Golden, D.M.; Haugen, G.R.; O‘Neal, H.E.; Rodgers, A.S.; Shaw, R.; Walsh, R. Additivity rules for the estimation of thermochemical properties. Chem. Rev. 1968, 69, 279–324. [Google Scholar] [CrossRef]
- Cohen, N.; Benson, S. Estimation of the heats of formation of organic compounds. Chem. Rev. 1993, 93, 2419–2438. [Google Scholar] [CrossRef]
- Joback, K.G.; Reid, R.C. Estimation of Pure-Component Properties from Group-Contributions. Chem. Eng. Commun. 1987, 57, 233–243. [Google Scholar] [CrossRef]
- Constantinou, L.; Gani, R. New group contribution method for estimating properties of pure compounds. AIChE J. 1994, 40, 1697–1710. [Google Scholar] [CrossRef]
- Marrero, J.; Gani, R. Group-contribution based estimation of pure component properties. Fluid Phase Equilibria 2001, 183–184, 183–208. [Google Scholar] [CrossRef]
- Hukkerikar, A.S.; Meier, R.J.; Sin, G.; Gani, R. A method to estimate the enthalpy of formation of organic compounds with chemical accuracy. Fluid Phase Equilibria 2013, 348, 23–32. [Google Scholar] [CrossRef]
- Argoub Kadda, A.; Mustapha, B.A.; Yahiaoui, A.; Khaled, T.; Hadji, D. Enthalpy of Formation Modeling Using Third Order Group Contribution Technics and Calculation by DFT Method. Int. J. Thermodyn. (IJoT) 2020, 23, 34–41. [Google Scholar] [CrossRef]
- Aouichaoui, A.R.N.; Fan, F.; Mansouri, S.S.; Abildskov, J.; Sin, G. Molecular Representations in Deep-Learning Models for Chemical Property Prediction. Comput. Aided Chem. Eng. 2022, 49, 1591–1596. [Google Scholar] [CrossRef]
- Meier, R.J. Group contribution revisited: The enthalpy of formation of organic compounds with “chemical accuracy”. ChemEngineering 2021, 5, 24. [Google Scholar] [CrossRef]
- Meier, R.J. Group contribution revisited: The enthalpy of formation of organic compounds with “chemical accuracy” Part II. AppliedChem 2021, 1, 111–129. [Google Scholar] [CrossRef]
- Available online: https://webbook.nist.gov/ (accessed on 20 October 2022).
- Proped (Property Prediction) Module Version 4.7 in ICAS23. Danish Technical University, Kongens Lyngby. Available online: https://www.kt.dtu.dk/english/research/kt-consortium/software (accessed on 20 October 2022).
- Spartan’ 10. Wavefunction Inc., Irvine, CA, USA. Available online: www.wavefun.com (accessed on 20 October 2022).
- Tirado-Rives, J.; Jorgensen, W.L. Performance of B3LYP Density Functional Methods for a Large Set of Organic Molecules. J. Chem. Theory Comput. 2008, 4, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Manion, J.A. Evaluated Enthalpies of Formation of the Stable Closed Shell C1 and C2 Chlorinated Hydrocarbons. J. Phys. Chem. Ref. Data 2002, 31, 123–172. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, R.A.; Pilcher, G. Measurements of heats of combustion by flame calorimetry. Part 7.—Chloromethane, chloroethane, 1-chloropropane, 2-chloropropane. Trans. Faraday Soc. 1971, 67, 3191–3201. [Google Scholar] [CrossRef]
- Stridth, G.; Sunner, S. Enthalpies of formation of some 1-chloroalkanes and the CH2-increment in the 1-chloroalkanes series. J. Chem. Thermodyn. 1975, 7, 161–168. [Google Scholar] [CrossRef]
- He, J.; An, X.; Hu, R. Measurements of enthalpies of formation of 2-chlorobutane and 1,2-dichlorobutane in gaseous state. Acta Chim. Sin. 1992, 50, 961–966. [Google Scholar]
- Lacher, J.R.; Amador, A.; Park, J.D. Reaction heats of organic compounds. Part 5.—Heats of hydrogenation of dichloromethane, 1,1- and 1,2-dichloroethane and 1,2-dichloropropane. Trans. Faraday Soc. 1967, 63, 1608–1611. [Google Scholar] [CrossRef]
- An, X.; He, J.; Hu, R. Study on the electrostatic interaction in organic chlorocompounds. Enthalpies of compustion and formation of 1,3- and 1,4-dichlorobutanes. Thermochim. Acta 1990, 169, 331–337. [Google Scholar]
- Pijpers, A.P.; Meier, R.J. Core Level Photoelectron Spectroscopy for Polymer and Catalyst Characterisation. Chem. Soc. Rev. 1999, 28, 233–238. [Google Scholar] [CrossRef]
- Schaffer, F.; Verevkin, S.P.; Rieger, H.-J.; Beckhaus, H.-D.; Rüchardt, C. Enthalpies of Formation of a Series of Fluorinated Hydrocarbons and Strain-Free Group Increments to Assess Polar and Anomeric Stabilization and Strain. Liebigs Ann. 1997, 1997, 1333–1344. [Google Scholar] [CrossRef]
- Kolesov, V.P.; Papina, T.S. Thermochemistry of Haloethanes. Russ. Chem. Rev. 1983, 52, 425. [Google Scholar] [CrossRef]
- Kormos, B.L.; Liebman, J.F.; Cramer, C.J. 298 K enthalpies of formation of monofluorinated alkanes: Theoretical predictions for methyl, ethyl, isopropyl and tert-butyl fluoride. J. Phys. Org. Chem. 2004, 17, 656–664. [Google Scholar] [CrossRef]
- Verevkin, S.P.; Krasnykh, E.L.; Wright, J.S. Thermodynamic properties of benzyl halides: Enthalpies of formation, strain enthalpies, and carbon–halogen bond dissociation enthalpies. Phys. Chem. Chem. Phys. 2003, 5, 2605–2611. [Google Scholar] [CrossRef]
- Härtel, M.A.C.; Klapötke, T.M.; Emel’yanenko, V.N.; Verevkin, S.P. Aliphatic nitroalkanes: Evaluation of thermochemical data with complementary experimental and computational methods. Thermochim. Acta 2017, 656, 151–160. [Google Scholar] [CrossRef]
- Fritzsche, K.; Dogan, B.; Beckhaus, H.-D.; Rüchardt, C. Geminale substituenteneffekte: Teil I. Thermochemie von 1-nitro-, 2-nitro-, 2,2-dinitro-und 2-cyano-2-nitroadamantan. Thermochim. Acta 1990, 160, 147–159. [Google Scholar] [CrossRef]
- Verevkin, S.P. Improved Benson Increments for the Estimation of Standard Enthalpies of Formation and Enthalpies of Vaporization of Alkyl Ethers, Acetals, Ketals, and Ortho Esters. J. Chem. Eng. Data 2002, 47, 1071–1097. [Google Scholar] [CrossRef]
- Verevkin, S.P.; Konnova, M.E.; Turovtsev, V.V.; Riabchunova, A.V.; Pimerzin, A.A. Weaving a Network of Reliable Thermochemistry around Lignin Building Blocks: Methoxy-Phenols and Methoxy-Benzaldehydes. Ind. Eng. Chem. Res. 2020, 59, 22626–22639. [Google Scholar] [CrossRef]
Chloromethanes | Manion [16] |
---|---|
CH3Cl | −81.9 |
CH2Cl2 | −95.1 |
CHCl3 | −102.9 |
CCl4 | −95.6 |
Chloroalkanes | Exp. Value | Model dHf | Model-Exp | ABS (Model-Exp) | ABS (MG-Exp) |
---|---|---|---|---|---|
Chloroethane (Manion [16]) | −112.1 | −113.49 | −1.39 | 1.39 | 9.30 |
1-Chloropropane (Fletcher and Pilcher [17]) | −132 | −134.12 | −2.12 | 2.12 | 0.10 |
1-Chlorobutane (Stridth et al. [18]) | −154.6 | −154.75 | −0.15 | 0.15 | 2.00 |
1-Chloropentane (Stridth et al. [18]) | −175.2 | −175.38 | −0.18 | 0.18 | 1.90 |
1-Chlorooctane (Stridth et al. [18]) | −238.9 | −237.27 | 1.63 | 1.63 | 3.50 |
1-Chlorododecane (Stridth et al. [18]) | −322 | −319.79 | 2.21 | 2.21 | 3.90 |
2-Chloropropane (Fletcher and Pilcher [17]) | −145 | −145.72 | −0.72 | 0.72 | 0.40 |
2-Chlorobutane (He et al. [19]) | −166.7 | −166.35 | 0.35 | 0.35 | 3.30 |
Averaged absolute difference | 1.09 | 3.05 |
Dichloroalkanes | Exp. Value | Model dHf | Model-Exp | ABS (Model-Exp) | MG-Exp | Joback and Reid-Exp | Final Model Present Work-Exp |
---|---|---|---|---|---|---|---|
1,1-dichloroethane (Manion [16]) | −132.5 | −147.36 | −14.86 | 14.86 | 0.50 | 11.5 | 1.74 |
1,2-dichloroethane (Manion [16]) | −132 | −142.26 | −10.26 | 10.26 | 6.80 | 16 | −4.26 |
1,2-dichloropropane (Lacher et al. [20]) | −162.8 | −174.49 | −11.69 | 11.69 | 7.45 | 20.8 | −5.69 |
1,2-dichlorobutane (He et al. [19]) | −191.2 | −195.12 | −3.92 | 3.92 | 0.84 | 28.6 | 2.08 |
1,3-dichlorobutane (He et al. [21]) | −195 | −195.12 | −0.12 | 0.12 | 4.00 | 32.40 | −0.12 |
1,4-dichlorobutane (An et al. [21]) | −183.4 | −183.52 | −0.12 | 0.12 | 3.25 | 26.4 | −0.12 |
averaged absolute difference | 6.83 | 3.81 | 22.6 | 2.33 | |||
Tri-, tetra-, hexachlororethane | exp. value [16] | model dHf | model-exp | ABS (model-exp) | MG-exp | Joback and Reid-exp | Final model present work-exp |
1,1,1-trichloroethane | −144.6 | −194.86 | −50.26 | 50.26 | 2.3 | 4 | −0.46 |
1,1,2-trichloroethane | −148 | −176.13 | −28.13 | 28.13 | 13.00 | 11 | 0.47 |
1,1,1,2-tetrachloroethane | −152.3 | −222.63 | −70.33 | 70.33 | 17.70 | −3.7 | −2.53 |
1,1,2,2-tetrachloroethane | −156.7 | −210 | −53.30 | 53.3 | 4.70 | −1.3 | 3.90 |
pentachloroethane | −155.9 | −257.5 | −101.60 | 101.6 | 31.10 | −21.1 | 0.80 |
hexachloroethane | −148.2 | −305 | −156.80 | 156.8 | 52.80 | −48.4 | −3.20 |
averaged absolute difference | 76.7 | 20.3 | 14.9 | 1.89 |
Fluoroalkanes | Exp. Value | Model dHf | Model-Exp | ABS (Model-Exp) + Corr. | ABS (ICAS23-Exp) | Number in [23], See Scheme 1 |
---|---|---|---|---|---|---|
Fluoroethane [25] | −278 | −281.49 | −3.49 | 3.49 | 13.60 | |
2-Fluoropropane [25] | −315.7 | −317.22 | −1.52 | 1.52 | ||
2-Fluoro-2-methylpropane [25] | −360 | −360.58 | −0.58 | 0.58 | ||
1-Fluorononane [23] | −423.5 | −425.9 | −2.40 | 2.40 | 14.30 | 1 |
1-Fluorododecane [23] | −489.2 | −487.8 | 1.41 | 1.41 | 18.20 | 2 |
1-Fluorotetradecane [23] | −533.0 | −529.1 | 3.95 | 3.95 | 20.00 | 3 |
2,2-Difluorononane [23] | −671.4 | −674.5 | −3.10 | 3.10 | 14 | |
(1,3-Diphenyl)-2-methyl-2-fluoropropane [23] | −136.7 | −136.1 | 0.58 | 0.58 | 8 | |
Fluorocyclohexane [23] | −336.6 | −341.9 | −5.28 | 5.28 | 103.22 | 6 |
1,1-Difluoroethane [24] | −497 | −483.36 | 13.64 | 3.86 | 88.40 | |
1,1-Difluoro-3-phenyl-propane [23] | −414.4 | −392.9 | 21.5 | 4.0 | 6.04 | 11 |
1,1,1-Trifluoroethane [24] | −748.7 | −698.9 | 49.84 | 2.7 | 43.04 | |
1-Chloro-1-fluoroethane [24] | −313.4 | −315.36 | −1.96 | 1.96 | 291.96 | |
Averaged absolute difference | 2.68 | 66.53 | ||||
1,1,2-Trifluoroethane [24] | −691 | −659.50 | 31.50 | 0.0 | ||
1,1-Diphenyl(fluoromethane) [23] | −42.6 | −55.5 | −12.90 | 12.9 | −69.40 | 7 |
1,3-Diphenyl-(2-methylphenyl)2-fluoropropane [23] | −14.1 | −23.9 | −9.8 | 9.8 | 9 | |
1,3-Diphenyl-2-phenyl-2-fluoropropane [23] | 15.0 | −3.3 | −18.3 | 18.3 | −42.00 | 10 |
Fluoromethylbenzene [23] | −126.3 | −148.6 | −22.4 | 22.4 | −64.09 | 5 |
Trifluoroethylbenzene [23] | −623.9 | −586.6 | 37.2 | 15.3 | 31.32 | 15 |
1,1-Diphenyl(trifluoroethane) [23] | −516.1 | −479.5 | 36.6 | 15.9 | 24.42 | 16 |
Triphenyl(3-fluoropropane) [23] | 57.5 | 10.7 | −46.8 | 46.8 | −10.69 | 4 |
1,2-Diphenyl-1,1-difluoroethane [23] | −260.5 | −305.6 | −45.1 | 62.6 | −110.62 | 13 |
1,1,1-Triphenyl-3,3-difluoropropane [23] | −157.6 | −191.1 | −33.5 | 51.0 | −31.99 | 12 |
1,1,1-Triphenyl-2,2,2-trifluoroethane [23] | −364.9 | −386.0 | −21.1 | 73.6 | −8.85 | 17 |
1,2-Diphenyl-1,1,2-trifluoroethane [23] | −462.2 | −521.5 | −59.3 | 90.8 | −169.30 | 18 |
1,2-Diphenyl-1,1,2,2-tetrafluoroethane [23] | −689.0 | −751.0 | −62.0 | 125.0 | −195.84 | 19 |
Nitro Compounds | Exp. [27] | Model dHf | Model-Exp | ABS (Model-Exp) | ABS (Model-Exp + Corr.) |
---|---|---|---|---|---|
Mononitrile Alkanes | |||||
Nitromethane | −71.5 | −80.36 | −8.86 | ||
Nitroethane | −102.4 | −100.99 | 1.41 | 1.41 | |
1-Nitropropane | −124.4 | −121.62 | 2.78 | 2.78 | |
2-Nitropropane | −140 | −138.72 | 1.28 | 1.28 | |
1-Nitrobutane | −145 | −142.25 | 2.75 | 2.75 | |
2-Nitrobutane | −163 | −159.35 | 3.65 | 3.65 | |
1-Nitropentane | −165 | −162.88 | 2.12 | 2.12 | |
2-Nitrodecane | −278.1 | −283.13 | −5.03 | 5.03 | |
1,3-Dinitropropane | −135.5 | −137.89 | −2.39 | 2.39 | |
1,4-Dinitrobutane | −155.6 | −158.52 | −2.92 | 2.92 | |
Nitrocyclohexane | −159.2 | −156.75 | 2.45 | 2.45 | |
2-Me-2-nitropropane | −186.1 | −182.28 | 3.82 | 3.82 | |
Averaged absolute difference | 2.78 | ||||
2,4,4-Trimethyl-2-nitropentane | −249.4 | −279.73 | −30.33 | 30.33 | |
Dinitro alkanes | |||||
Dinitromethane | −38.4 | −80 | −41.6 | 41.6 | 6.6 |
1,1-Dinitroethane | −87.2 | −122.36 | −35.16 | 35.16 | 0.16 |
1,1-Dinitropropane | −109.5 | −142.99 | −33.49 | 33.49 | 1.51 |
1,1-Dinitrobutane | −132.1 | −163.62 | −31.52 | 31.52 | 3.48 |
1,1-Dinitropentane | −147.8 | −184.25 | −36.45 | 36.45 | 1.45 |
2,2-Dinitropropane | −135 | −185.72 | −50.72 | 50.72 | |
1,2-Dinitroethane | −96.7 | −117.26 | −20.56 | 20.56 | |
2,3-Dimethyl-2,3-dinitrobutane | −226.2 | −271.44 | −45.24 | 45.24 |
1,3-Dioxolanes | Experimental Value [29] | Model | ABS (Model-Exp) | ABS (ICAS23-Exp) | ABS (Joback and Reid-Exp) |
---|---|---|---|---|---|
1,3-Dioxolane | −301.6 | 0 | 6.2 | 13.2 | |
2-Me-1,3-dioxolane | −344.1 | −343.96 | 0.14 | 14.8 | 14.7 |
2-nPr-1,3-dioxolane | −386.8 | −385.22 | 1.58 | 11 | 16.1 |
2,2-di-Me-1,3-dioxolane | −389.4 | −386.32 | 3.08 | 33.2 | 54.6 |
2-Me-2-Et-1,3-dioxolane | −409.7 | −406.95 | 2.75 | 28.9 | 54.2 |
2-Me-2-nPr-1,3-dioxolane | −429.2 | −427.58 | 1.62 | 27.8 | 53.1 |
2-Me-2-nPe-1,3-dioxolane | −468.8 | −468.84 | 0.04 | 26 | 51.4 |
2-Me-2-iPr-1,3-dioxolane | −421.9 | −417.78 | 4.12 | 40.3 | 40.5 |
2,2-di-iPr-1,3-dioxolane | −456 | −449.24 | 6.76 | 48.9 | 28.1 |
Averaged absolute difference | 2.51 | 28.86 | 39.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meier, R.J. Group Contribution Revisited: The Enthalpy of Formation of Organic Compounds with “Chemical Accuracy” Part III. AppliedChem 2022, 2, 213-228. https://doi.org/10.3390/appliedchem2040015
Meier RJ. Group Contribution Revisited: The Enthalpy of Formation of Organic Compounds with “Chemical Accuracy” Part III. AppliedChem. 2022; 2(4):213-228. https://doi.org/10.3390/appliedchem2040015
Chicago/Turabian StyleMeier, Robert J. 2022. "Group Contribution Revisited: The Enthalpy of Formation of Organic Compounds with “Chemical Accuracy” Part III" AppliedChem 2, no. 4: 213-228. https://doi.org/10.3390/appliedchem2040015
APA StyleMeier, R. J. (2022). Group Contribution Revisited: The Enthalpy of Formation of Organic Compounds with “Chemical Accuracy” Part III. AppliedChem, 2(4), 213-228. https://doi.org/10.3390/appliedchem2040015