Preprocessing and Leaching Methods for Extraction of REE from Permanent Magnets: A Scoping Review
Abstract
:1. Introduction
2. Research Methodology
2.1. Research Questions
2.2. Search String
2.3. Selection of Articles
3. State of the Art of REE Recovery Methods
4. Preprocessing and Hydrometallurgical Methods
4.1. Collection—Sorting
4.2. Preprocessing
4.2.1. NdFeB Permanent Magnets
4.2.2. SmCo Permanent Magnets
4.3. Hydrometallurgical Process for the Recovery of REE from Permanent Magnets
4.3.1. Recovery of REE from NdFeB Magnets
4.3.2. Recovery of Sm from SmCo Magnets
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Society for Mining, Metallurgy & Exploration. Rare Earth Elements; Professional Paper; Society for Mining, Metallurgy & Exploration: Englewood, CO, USA, 2021. [Google Scholar]
- Rare-Earth Element|Uses, Properties, & Facts|Britannica. Available online: https://www.britannica.com/science/rare-earth-element (accessed on 11 July 2022).
- Critical Raw Materials. Available online: https://www.sgu.se/en/mineral-resources/critical-raw-materials/ (accessed on 11 July 2022).
- Guyonnet, D.; Lefebvre, G.; Menad, N. Rare Earth Elements and High-Tech Products. Circ. Econ. Coalit. Eur. 2018, 1–11. Available online: https://www.cec4europe.eu/wp-content/uploads/2022/01/Chapter_3_3_Guyonnet_et_al_Rare_earth_elements_and_high_tech_products.pdf (accessed on 11 July 2022).
- Weshahy, A.R.; Gouda, A.A.; Atia, B.M.; Sakr, A.K.; Al-Otaibi, J.S.; Almuqrin, A.; Hanfi, M.Y.; Sayyed, M.I.; El Sheikh, R.; Radwan, H.A.; et al. Efficient Recovery of Rare Earth Elements and Zinc from Spent Ni–Metal Hydride Batteries: Statistical Studies. Nanomaterials 2022, 12, 2305. [Google Scholar] [CrossRef] [PubMed]
- Jha, M.; Choubey, P.; Dinkar, O.; Panda, R.; Jyothi, R.; Yoo, K.; Park, I. Recovery of Rare Earth Metals (REMs) from Nickel Metal Hydride Batteries of Electric Vehicles. Minerals 2021, 12, 34. [Google Scholar] [CrossRef]
- Espinoza, L.T.; Erdmann, L.; Hummen, T.; Langkau, S.; Marscheider-Weidemann, F. Rohstoffe für Zukunftstechnologien 2016. Available online: https://www.isi.fraunhofer.de/content/dam/isi/dokumente/ccn/2016/Studie_Zukunftstechnologien-2016.pdf (accessed on 11 July 2022).
- European Commission Joint Research Centre, Institute for Environment and Sustainability. Environmental Footprint and Material Efficiency Support for Product Policy: Analysis of Material Efficiency Requirements of Enterprise Servers; European Commission Publications Office: Luxembourg, 2015. [Google Scholar]
- EUR-Lex–52020DC0474–EN–EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0474 (accessed on 10 March 2021).
- EUR-Lex–52014DC0297–EN–EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52014DC0297 (accessed on 16 September 2022).
- Trump Has Exaggerated the Threat of China’s Monopoly on Rare Earths|World Politics Review. Available online: https://www.worldpoliticsreview.com/trump-has-exaggerated-the-threat-of-china-s-monopoly-on-rare-earths/ (accessed on 16 September 2022).
- After Japan, USA’s Big Rare Earth Push Will Snatch Another Monopoly from China. Available online: https://tfiglobalnews.com/2020/10/03/after-japan-usas-big-rare-earth-push-will-snatch-another-monopoly-from-china/ (accessed on 16 September 2022).
- Does El Salvador’s Metal Mining Ban Suggest a Global Trend? Available online: https://news.climate.columbia.edu/2017/05/02/does-el-salvadors-metal-mining-ban-suggest-a-global-trend/ (accessed on 16 September 2022).
- Xu, C.; Kynický, J.; Smith, M.P.; Kopriva, A.; Brtnický, M.; Urubek, T.; Yang, Y.; Zhao, Z.; He, C.; Song, W. Origin of Heavy Rare Earth Mineralization in South China. Nat. Commun. 2017, 8, 14598. [Google Scholar] [CrossRef] [Green Version]
- Global Chip Shortage Makes It Tough to Buy Certain Cars—Consumer Reports. Available online: https://www.consumerreports.org/buying-a-car/global-chip-shortage-makes-it-tough-to-buy-certain-cars-a8160576456/ (accessed on 16 September 2022).
- Permanent Magnet vs. Induction Motor: Torque, Losses, Material. Available online: https://www.horizontechnology.biz/blog/induction-vs-permanent-magnet-motor-efficiency-auto-electrification (accessed on 16 September 2022).
- Car Deliveries Face Significant Delays|eKathimerini.com. Available online: https://www.ekathimerini.com/economy/1166990/car-deliveries-face-significant-delays/ (accessed on 16 September 2022).
- Rare Earth Elements Facts. Available online: https://www.nrcan.gc.ca/our-natural-resources/minerals-mining/minerals-metals-facts/rare-earth-elements-facts/20522 (accessed on 16 September 2022).
- Gielen, D.; Lyons, M. Critical Materials for the Energy Transition: Rare Earth Elements; International Renewable Energy Agency: Abu Dhabi, UAE, 2022; Volume 48. [Google Scholar]
- Ormerod, J. Rare Earth Magnets: Yesterday, Today and Tomorrow; Magnet Applications, Inc.: Orlando, FL, USA, 2019. [Google Scholar]
- Dushyantha, N.; Batapola, N.; Ilankoon, I.M.; Rohitha, S.; Premasiri, R.; Abeysinghe, B.; Ratnayake, N.; Dissanayake, K. The Story of Rare Earth Elements (REEs): Occurrences, Global Distribution, Genesis, Geology, Mineralogy and Global Production. Ore Geol. Rev. 2020, 122, 103521. [Google Scholar] [CrossRef]
- Kobiela, J.; Grymek, S.; Wojanowska, M.; Łubniewski, M.; Makarewicz, W.; Dobrowolski, S.; Łachiński, A.J.; Śledziński, Z. Magnetic Instrumentation and Other Applications of Magnets in NOTES. Videosurgery Other Miniinvasive Tech. 2012, 2, 67–73. [Google Scholar] [CrossRef]
- Roskill: Rare Earth Magnet Applications to Account for ~40% of Total RE Demand by 2030, up from 29% in 2020—Green Car Congress. Available online: https://www.greencarcongress.com/2021/02/20210203-roskill.html (accessed on 16 September 2022).
- Rare Earths in EVs: Problems, Solutions and What Is Actually Happening|IDTechEx Research Article. Available online: https://www.idtechex.com/en/research-article/rare-earths-in-evs-problems-solutions-and-what-is-actually-happening/25071 (accessed on 16 September 2022).
- Rare Earth Magnet Market Outlook to 2035 (New Report)—Adamas Intelligence. Available online: https://www.adamasintel.com/report/rare-earth-magnet-market-outlook-to-2035/ (accessed on 16 September 2022).
- Dysprosium|Chemical Element|Britannica. Available online: https://www.britannica.com/science/dysprosium (accessed on 16 September 2022).
- Klemettinen, A.; Żak, A.; Chojnacka, I.; Matuska, S.; Leśniewicz, A.; Wełna, M.; Adamski, Z.; Klemettinen, L.; Rycerz, L. Leaching of Rare Earth Elements from NdFeB Magnets without Mechanical Pretreatment by Sulfuric (H2SO4) and Hydrochloric (HCl) Acids. Minerals 2021, 11, 1374. [Google Scholar] [CrossRef]
- Sinha, M.K.; Pramanik, S.; Kumari, A.; Sahu, S.K.; Prasad, L.B.; Jha, M.K.; Yoo, K.; Pandey, B.D. Recovery of Value Added Products of Sm and Co from Waste SmCo Magnet by Hydrometallurgical Route. Sep. Purif. Technol. 2017, 179, 1–12. [Google Scholar] [CrossRef]
- Bonin, M.; Fontaine, F.-G.; Larivière, D. Comparative Studies of Digestion Techniques for the Dissolution of Neodymium-Based Magnets. Metals 2021, 11, 1149. [Google Scholar] [CrossRef]
- Vander Hoogerstraete, T.; Blanpain, B.; Van Gerven, T.; Binnemans, K. From NdFeB Magnets towards the Rare-Earth Oxides: A Recycling Process Consuming Only Oxalic Acid. RSC Adv. 2014, 4, 64099–64111. [Google Scholar] [CrossRef] [Green Version]
- Gergoric, M.; Ravaux, C.; Steenari, B.-M.; Espegren, F.; Retegan, T. Leaching and Recovery of Rare-Earth Elements from Neodymium Magnet Waste Using Organic Acids. Metals 2018, 8, 721. [Google Scholar] [CrossRef]
- Ciro, E.; Alzate, A.; López, E.; Serna, C.; Gonzalez, O. Neodymium Recovery from Scrap Magnet Using Ammonium Persulfate. Hydrometallurgy 2019, 186, 226–234. [Google Scholar] [CrossRef]
- Xu, T.; Zhang, X.; Lin, Z.; Lü, B.; Ma, C.; Gao, X. Recovery of Rare Earth and Cobalt from Co-Based Magnetic Scraps. J. Rare Earths 2010, 28, 485–488. [Google Scholar] [CrossRef]
- Zhou, K.; Wang, A.; Zhang, D.; Zhang, X.; Yang, T. Sulfuric Acid Leaching of Sm Co Alloy Waste and Separation of Samarium from Cobalt. Hydrometallurgy 2017, 174, 66–70. [Google Scholar] [CrossRef]
- Firdaus, M.; Rhamdhani, M.A.; Durandet, Y.; Rankin, W.J.; McGregor, K. Review of High-Temperature Recovery of Rare Earth (Nd/Dy) from Magnet Waste. J. Sustain. Metall. 2016, 2, 276–295. [Google Scholar] [CrossRef] [Green Version]
- Saeki, T.; Akahori, T.; Miyamoto, Y.; Kyoi, M.; Okamoto, M.; Okabe, T.H.; Hiroshige, Y.; Nemoto, T. Environment-Friendly Recycling Process for Rare Earth Metals in End-of-Life Electric Products. In Rare Metal Technology 2014; Neelameggham, N.R., Alam, S., Oosterhof, H., Jha, A., Wang, S., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014; pp. 103–106. [Google Scholar] [CrossRef]
- Bian, Y.; Guo, S.; Jiang, L.; Tang, K.; Ding, W. Extraction of Rare Earth Elements from Permanent Magnet Scraps by FeO–B2O3 Flux Treatment. J. Sustain. Metall. 2015, 1, 151–160. [Google Scholar] [CrossRef] [Green Version]
- Zakotnik, M.; Harris, I.R.; Williams, A.J. Multiple Recycling of NdFeB-Type Sintered Magnets. J. Alloys Compd. 2009, 469, 314–321. [Google Scholar] [CrossRef]
- Itakura, T.; Sasai, R.; Itoh, H. Resource Recovery from Nd–Fe–B Sintered Magnet by Hydrothermal Treatment. J. Alloys Compd. 2006, 408–412, 1382–1385. [Google Scholar] [CrossRef]
- Erust, C.; Akcil, A.; Tuncuk, A.; Deveci, H.; Yazici, E.Y. A Multi-Stage Process for Recovery of Neodymium (Nd) and Dysprosium (Dy) from Spent Hard Disc Drives (HDDs). Miner. Process. Extr. Metall. Rev. 2021, 42, 90–101. [Google Scholar] [CrossRef]
- Itoh, M.; Miura, K.; Machida, K. Novel Rare Earth Recovery Process on Nd–Fe–B Magnet Scrap by Selective Chlorination Using NH4Cl. J. Alloys Compd. 2009, 477, 484–487. [Google Scholar] [CrossRef]
- Mossali, E.; Picone, N.; Gentilini, L.; Rodrìguez, O.; Pérez, J.M.; Colledani, M. Lithium-Ion Batteries towards Circular Economy: A Literature Review of Opportunities and Issues of Recycling Treatments. J. Environ. Manag. 2020, 264, 110500. [Google Scholar] [CrossRef]
- Jowitt, S.M.; Werner, T.T.; Weng, Z.; Mudd, G.M. Recycling of the Rare Earth Elements. Curr. Opin. Green Sustain. Chem. 2018, 13, 1–7. [Google Scholar] [CrossRef]
- Yang, Y.; Walton, A.; Sheridan, R.; Güth, K.; Gauß, R.; Gutfleisch, O.; Buchert, M.; Steenari, B.-M.; Van Gerven, T.; Jones, P.T.; et al. REE Recovery from End-of-Life NdFeB Permanent Magnet Scrap: A Critical Review. J. Sustain. Metall. 2017, 3, 122–149. [Google Scholar] [CrossRef]
- Rademaker, J.H.; Kleijn, R.; Yang, Y. Recycling as a Strategy against Rare Earth Element Criticality: A Systemic Evaluation of the Potential Yield of NdFeB Magnet Recycling. Environ. Sci. Technol. 2013, 47, 10129–10136. [Google Scholar] [CrossRef]
- Guyonnet, D.; Planchon, M.; Rollat, A.; Escalon, V.; Tuduri, J.; Charles, N.; Vaxelaire, S.; Dubois, D.; Fargier, H. Material Flow Analysis Applied to Rare Earth Elements in Europe. J. Clean. Prod. 2015, 107, 215–228. [Google Scholar] [CrossRef] [Green Version]
- Coelho, F.; Abrahami, S.; Yang, Y.; Sprecher, B.; Li, Z.; Menad, N.-E.; Bru, K.; Marcon, T.; Rado, C.; Saje, B.; et al. Upscaling of Permanent Magnet Dismantling and Recycling through VALOMAG Project. Mater. Proc. 2021, 5, 74. [Google Scholar] [CrossRef]
- Sun, Z.; Xiao, Y.; Agterhuis, H.; Sietsma, J.; Yang, Y. Recycling of Metals from Urban Mines—A Strategic Evaluation. J. Clean. Prod. 2016, 112, 2977–2987. [Google Scholar] [CrossRef]
- Kapustka, K.; Ziegmann, G.; Klimecka-Tatar, D.; Nakonczy, S. Process Management and Technological Challenges in the Aspect of Pernament Magnets Recycling—The Second Life of Neodymium Magnets. Manuf. Technol. 2020, 20, 617–624. [Google Scholar] [CrossRef]
- Poskovic, E.; Ferraris, L.; Franchini, F.; Grande, M.A.; Pallavicini, E. A Different Approach to Rare-Earth Magnet Recycling. In 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe); IEEE: Palermo, Italy, 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Coey, J.M.D. Perspective and Prospects for Rare Earth Permanent Magnets. Engineering 2020, 6, 119–131. [Google Scholar] [CrossRef]
- Gurrappa, I. The Corrosion Behaviour of SmCo5 Permanent Magnets in Different Environments. Mater. Chem. Phys. 2003, 78, 719–725. [Google Scholar] [CrossRef]
- Modern Magnets and Corrosion—Compotech. Available online: https://en.compotech.se/modern-magnets-and-corrosion/ (accessed on 14 July 2022).
- Zong, Y.; Yuan, G.; Zhang, X.; Mao, L.; Niu, J.; Ding, W. Comparison of Biodegradable Behaviors of AZ31 and Mg–Nd–Zn–Zr Alloys in Hank’s Physiological Solution. Mater. Sci. Eng. B 2012, 177, 395–401. [Google Scholar] [CrossRef]
- Mitroi, M.; Chiru, A. Neodymium Magnets Suspensions for Mechanical Systems of the Vehicle. Acta Tech. Corviniensis-Bull. Eng. 2016, 9, 39. [Google Scholar]
- Neacsu, E.I.; Constantin, V.; Yanushkevish, K.; Galyas, A.; Demidenko, O.; Calderon-Moreno, J.; Popescu, A.-M. Obtaining, Structural, Magnetic and Corrosive Properties of Nd–Fe–B Alloy Thin Films on Glass. Appl. Surf. Sci. 2014, 314, 30–39. [Google Scholar] [CrossRef]
- Drak, M.; Dobrzański, L.A. Corrosion of Nd-Fe-B Permanent Magnets. J. Achiev. Mater. Manuf. Eng. 2007, 20, 4. [Google Scholar]
- How to Prevent Corrosion in Neodymium Magnets. Available online: https://www.goudsmit.co.uk/neodymium-magnets-how-to-prevent-corrosion/ (accessed on 11 July 2022).
- Kitagawa, J.; Uemura, R. Rare Earth Extraction from NdFeB Magnet Using a Closed-Loop Acid Process. Sci. Rep. 2017, 7, 8039. [Google Scholar] [CrossRef] [Green Version]
- Kataoka, Y.; Ono, T.; Tsubota, M.; Kitagawa, J. Improved Room-Temperature-Selectivity between Nd and Fe in Nd Recovery from Nd-Fe-B Magnet. AIP Adv. 2015, 5, 117212. [Google Scholar] [CrossRef]
- Yoon, H.-S.; Kim, C.-J.; Chung, K.; Jeon, S.; Park, I.; Yoo, K.; Jha, M. The Effect of Grinding and Roasting Conditions on the Selective Leaching of Nd and Dy from NdFeB Magnet Scraps. Metals 2015, 5, 1306–1314. [Google Scholar] [CrossRef]
- Van Loy, S.; Önal, M.A.R.; Binnemans, K.; Van Gerven, T. Recovery of Valuable Metals from NdFeB Magnets by Mechanochemically Assisted Ferric Sulfate Leaching. Hydrometallurgy 2020, 191, 105154. [Google Scholar] [CrossRef]
- Behera, S.S.; Parhi, P.K. Leaching Kinetics Study of Neodymium from the Scrap Magnet Using Acetic Acid. Sep. Purif. Technol. 2016, 160, 59–66. [Google Scholar] [CrossRef]
- Orefice, M.; Audoor, H.; Li, Z.; Binnemans, K. Solvometallurgical Route for the Recovery of Sm, Co, Cu and Fe from SmCo Permanent Magnets. Sep. Purif. Technol. 2019, 219, 281–289. [Google Scholar] [CrossRef]
- Nicholas, D.M.; Barnfield, P.; Mendham, J. The Oxidation of the Alloy Co5Sm. Available online: https://ur.booksc.eu/book/6691396/0ff95e (accessed on 11 July 2022).
- Sahoo, K.; Nayak, A.K.; Ghosh, M.K.; Sarangi, K. Preparation of Sm2O3 and Co3O4 from SmCo Magnet Swarf by Hydrometallurgical Processing in Chloride Media. J. Rare Earths 2018, 36, 725–732. [Google Scholar] [CrossRef]
- Jha, M.K.; Kumari, A.; Panda, R.; Kumar, J.R.; Yoo, K.; Lee, J.Y. Review on Hydrometallurgical Recovery of Rare Earth Metals. Hydrometallurgy 2016, 165, 2–26. [Google Scholar] [CrossRef]
- Bridle, W.R.; Bellmann, C.; Loyola, V.; Mostafa, M.; Moerenhout, T. Driving Demand: Assessing the Impacts and Opportunities of the Electric Vehicle Revolution on Cobalt and Lithium Raw Material Production and Trade; Driving Demand 42; International Institute for Sustainable Development: Winnipeg, MB, Canada, 2021. [Google Scholar]
- Inman, G.; Prodius, D.; Nlebedim, I.C. Recent Advances in Acid-Free Dissolution and Separation of Rare Earth Elements from the Magnet Waste. Clean Technol. Recycl. 2021, 1, 112–123. [Google Scholar] [CrossRef]
Type of Magnet | Element | Range |
---|---|---|
NdFeB magnet | Nd | 22–31% |
Fe | 53–67% | |
B | 0.74–1.04% | |
Pr | 0.07–13% | |
Ni | 0.02–6.4% | |
Co | 0.54–4.2% | |
Dy | 0.77–4.2% | |
SmCo magnet | Sm | 22–40% |
Co | 50–66% | |
Fe | 0.02–16.04% |
Process | Source | Steps | Experimental Conditions | Reagents | Reference |
---|---|---|---|---|---|
Pyrometallurgical | Swarf/sludge | 1. Oxidation 2. Melting | 1300–1550 °C 1–16 h | O2, C, Ar | [36] |
Solid scrap | Hydrogen decrepitation 1. Hydrogenation 2. Vacuum desorption | 125–450 °C 270–1000 °C | H2 | [37,38] | |
Hydrometallurgy | Solid scrap | Leaching | 110 °C 6 h | HCl, oxalic acid | [39] |
Solid scrap | Leaching | 27 °C 15 min | H2SO4 | [40] | |
Chlorination | Solid scrap | Chlorination 1. Heating 2. Leaching | 300 °C 3 h | NH4Cl | [41] |
Method | Advantages | Disadvantages |
---|---|---|
Pyrometallurgical | No mechanical pretreatment High recovery efficiency Processing a wide range of materials independently of their composition | Operating at high temperature Using additional materials as collector Hazardous emission impact on the environment |
Hydrometallurgical | High recovery efficiency Mild conditions Conduction of low-grade materials Better control of co-products Simple stages | High water consumption High water wastes |
Source | Demagnetization Conditions | Milling Process | Additional Preprocessing Steps | Recovery of REE | Reference |
---|---|---|---|---|---|
Hydrogen decrepitated NdFeB powder | 400 °C, 90 min | <355 μm | - | 95% REE (Nd, Pr, Dy) | [31] |
NdFeB magnet from HDD | 400 °C, 45 min | <420 μm | - | 98% Nd | [32] |
NdFeB magnet | Demagnetized | Milled material | Mixing with 3% NaCl solution for 1 week | 97% Nd | [59,60] |
Magnets from Spent Hard Disc Drives (HDDs) | 350 °C, 30 min | <500 μm | - | 100% Nd, 80% Dy | [40] |
NdFeB magnet scraps | - | Adding NaOH solution, 30 min | Roasting at 400 °C, 120 min | 94% Nd, 93% Dy | [61] |
Nickel-coated magnet | nonmagnetic material | Adding Anhydrous iron (III) sulfate | - | 100% REE (Nd, Dy) | [62] |
NdFeB magnet from HDDs | 350 °C, 30 min | - | - | 98% REE (Nd, Pr, Dy, Tb) | [27] |
Scrap NdFeB permanent magnet | - | 106–150 μm | - | 100% Nd | [63] |
NdFeB magnet | 350 °C | <250 μm | - | 100% REE (Nd, Dy) | [29] |
NdFeB magnet | Demagnetized | <400 μm | Roasting at 800 °C, 60 min | 80% Nd, 20% Dy | [30] |
Source | Demagnetization Conditions | Milling Process | Additional Preprocessing Steps | Recovery of REE | Reference |
---|---|---|---|---|---|
SmCo magnet ring | 850 °C | <150 μm | - | 99.9% Sm | [64] |
Cobalt-based magnetic scrap | - | 74 μm | 95% Sm | [33] | |
Machined scrap SmCo5 magnet | - | 106–150 μm | - | 95% Sm | [66] |
Pretreatment | Leaching Medium | Leaching Conditions | Recovery |
---|---|---|---|
Demagnetization: (optional) Milling: p.s <400 μm | Organic Acids (Acetic Acid) | Acid Conc: 0.1–1 M, S/L: 1–5% w/v, 80–90 °C, 3–24 h | 93–99% REEs |
Demagnetization: (optional) Milling: p.s <400 μm | Inorganic Acid (HCl) | Acid Conc: 0.2–2 M, room temperature, S/L: 5–10% w/v, 2–3 h | >97% REEs |
Demagnetization: 350 °C, 30 min Milling: p.s <500 μm | Inorganic Acid (H2SO4) | Acid Conc: 2 M, room temperature S/L: 1–5% w/v, 15–60 min | >95% REEs |
Demagnetization:400 °C, 45 min Milling: p.s <420 μm | Inorganic salt (Ammonium persulfate) | Salt Conc: 1.3 M, S/L:2% w/v, 75 °C, 15 min | 97% Nd |
Milling with Anhydrous iron (III) sulfate | Water | S/L: 3.33% w/v, 200 rpm, 25 °C, 24 h | 100% REEs |
Chlorination NH4Cl at 500 °C for 3 h, N2 gas flow (50 mL/min) | Water | Soaking | 90% REEs (Nd, Dy) |
Pretreatment | Leaching Medium | Leaching Conditions | Recovery |
---|---|---|---|
Demagnetization: 850 °C (optional) Milling: <150 μm | Inorganic Acid (HCl) | Acid Conc: 3–5 M, S/L: 2–10% w/v, 80–95 °C, 1–2 h | 70–99% Sm |
Milling: <150 μm | Inorganic Acid (H2SO4) | Acid Conc: 2–4 M, S/L: 2–20% w/v, 60–80 °C, 1–2 h | 25–95% Sm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papagianni, S.; Moschovi, A.M.; Sakkas, K.M.; Chalaris, M.; Yakoumis, I. Preprocessing and Leaching Methods for Extraction of REE from Permanent Magnets: A Scoping Review. AppliedChem 2022, 2, 199-212. https://doi.org/10.3390/appliedchem2040014
Papagianni S, Moschovi AM, Sakkas KM, Chalaris M, Yakoumis I. Preprocessing and Leaching Methods for Extraction of REE from Permanent Magnets: A Scoping Review. AppliedChem. 2022; 2(4):199-212. https://doi.org/10.3390/appliedchem2040014
Chicago/Turabian StylePapagianni, Sotiria, Anastasia Maria Moschovi, Konstantinos Miltiadis Sakkas, Michail Chalaris, and Iakovos Yakoumis. 2022. "Preprocessing and Leaching Methods for Extraction of REE from Permanent Magnets: A Scoping Review" AppliedChem 2, no. 4: 199-212. https://doi.org/10.3390/appliedchem2040014
APA StylePapagianni, S., Moschovi, A. M., Sakkas, K. M., Chalaris, M., & Yakoumis, I. (2022). Preprocessing and Leaching Methods for Extraction of REE from Permanent Magnets: A Scoping Review. AppliedChem, 2(4), 199-212. https://doi.org/10.3390/appliedchem2040014