Physiochemical Changes to TTCF Ensilication Investigated Using Time-Resolved SAXS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tetanus Toxin C Fragment
2.2. Time-Resolved SAXS at ID02 Beamline ESRF
2.3. TTCF Ensilication Ratios
2.4. TTCF Ensilication at pH 6 and 8
2.5. SAXS Data Fitting
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brandau, D.T.; Jones, L.S.; Wiethoff, C.M.; Rexroad, J.; Middaugh, C.R. Thermal stability of vaccines. J. Pharm. Sci. 2003, 92, 218–231. [Google Scholar] [CrossRef]
- WHO Expanded Programme on Immunization. WHO Policy Statement: The Use of Opened Vials of Vaccine in Subsequent Immunization Sessions. World Health Organization, 1995. Available online: https://apps.who.int/iris/handle/10665/58887 (accessed on 2 August 2021).
- Nema, S.; Avis, K.E. Freeze-thaw studies of a model protein, lactate dehydrogenase, in the presence of cryoprotectants. J. Parenter. Sci. Technol. 1993, 47, 76–83. [Google Scholar]
- Dimayuga, R.; Scheifele, D.; Bell, A. Effects of freezing on DPT and DPT-IPV vaccines, adsorbed. Can. Commun. Dis. Rep. 1995, 21, 101–103. [Google Scholar] [PubMed]
- Matthias, D.M.; Robertson, J.; Garrison, M.M.; Newland, S.; Nelson, C. Freezing temperatures in the vaccine cold chain: A systematic literature review. Vaccine 2007, 25, 3980–3986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Techathawat, S.; Varinsathien, P.; Rasdjarmrearnsook, A.; Tharmaphornpilas, P. Exposure to heat and freezing in the vaccine cold chain in Thailand. Vaccine 2007, 25, 1328–1333. [Google Scholar] [CrossRef]
- Hanson, C.M.; George, A.M.; Sawadogo, A.; Schreiber, B. Is freezing in the vaccine cold chain an ongoing issue? A literature review. Vaccine 2017, 35, 2127–2133. [Google Scholar] [CrossRef]
- Montoya, N.A.; Barr, K.E.; Morales, S.V.; Umana, J.E.; Ny, C.; Roth, R.E.; Reyes, E.J.; Kirchhoff, B.C.; Hartman, E.R.; Higgins, L.L.; et al. Protein Stabilization and Delivery: A Case Study of Invasion Plasmid Antigen D Adsorbed on Porous Silica. Langmuir 2020, 36, 14276–14287. [Google Scholar] [CrossRef]
- Turvey, M.E.; Uppu, D.S.; Sharif, A.R.M.; Bidet, K.; Alonso, S.; Ooi, E.E.; Hammond, P.T. Microneedle-based intradermal delivery of stabilized dengue virus. Bioeng. Transl. Med. 2019, 4, e10127. [Google Scholar] [CrossRef] [PubMed]
- Tzeng, S.Y.; Guarecuco, R.; McHugh, K.J.; Rose, S.; Rosenberg, E.M.; Zeng, Y.; Langer, R.; Jaklenec, A. Thermostabilization of inactivated polio vaccine in PLGA-based microspheres for pulsatile release. J. Control. Release 2016, 233, 101–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.; Cao, R.-Y.; Chen, R.; Mo, L.; Han, J.-F.; Wang, X.; Xu, X.; Jiang, T.; Deng, Y.-Q.; Lyu, K.; et al. Rational design of thermostable vaccines by engineered peptide-induced virus self-biomineralization under physiological conditions. Proc. Natl. Acad. Sci. USA 2013, 110, 7619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearson, F.E.; McNeilly, C.L.; Crichton, M.L.; Primiero, C.A.; Yukiko, S.R.; Fernando, G.J.P.; Chen, X.; Gilbert, S.C.; Hill, A.V.S.; Kendall, M.A.F. Dry-Coated Live Viral Vector Vaccines Delivered by Nanopatch Microprojections Retain Long-Term Thermostability and Induce Transgene-Specific T Cell Responses in Mice. PLoS ONE 2013, 8, e67888. [Google Scholar] [CrossRef] [Green Version]
- Bui-Le, L.; Brogan, A.P.S.; Hallett, J.P. Solvent-free liquid avidin as a step toward cold chain elimination. Biotechnol. Bioeng. 2021, 118, 592–600. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Dulal, P.; Zhou, X.; Xiang, Z.; Goharriz, H.; Banyard, A.; Green, N.; Brunner, L.; Ventura, R.; Collin, N.; et al. A simian-adenovirus-vectored rabies vaccine suitable for thermostabilisation and clinical development for low-cost single-dose pre-exposure prophylaxis. PLoS Negl. Trop. Dis. 2018, 12, e0006870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.; Zhou, H.; Nian, Q.-G.; Yang, Y.; Qin, C.-F.; Tang, R. Robust vaccine formulation produced by assembling a hybrid coating of polyethyleneimine–silica. Chem. Sci. 2016, 7, 1753–1759. [Google Scholar] [CrossRef] [Green Version]
- Orr, M.T.; Kramer, R.M.; Barnes, L.; Dowling, Q.M.; Desbien, A.L.; Beebe, E.A.; Laurance, J.D.; Fox, C.B.; Reed, S.G.; Coler, R.N.; et al. Elimination of the cold-chain dependence of a nanoemulsion adjuvanted vaccine against tuberculosis by lyophilization. J. Control. Release Off. J. Control. Release Soc. 2014, 177, 20–26. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.C.; Smith, T.; Hicks, R.H.; Doekhie, A.; Koumanov, F.; Wells, S.A.; Edler, K.J.; van den Elsen, J.; Holman, G.D.; Marchbank, K.J.; et al. Thermal stability, storage and release of proteins with tailored fit in silica. Sci. Rep. 2017, 7, 46568. [Google Scholar] [CrossRef] [Green Version]
- Doekhie, A.; Dattani, R.; Chen, Y.C.; Yang, Y.; Smith, A.; Silve, A.P.; Koumanov, F.; Wells, S.A.; Edler, K.J.; Marchbank, K.J.; et al. Ensilicated tetanus antigen retains immunogenicity: In vivo study and time-resolved SAXS characterization. Sci. Rep. 2020, 10, 9243. [Google Scholar] [CrossRef] [PubMed]
- Wahid, A.A.; Doekhie, A.; Sartbaeva, A.; van den Elsen, J.M.H. Ensilication Improves the Thermal Stability of the Tuberculosis Antigen Ag85b and an Sbi-Ag85b Vaccine Conjugate. Sci. Rep. 2019, 9, 11409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doekhie, A.; Slade, M.N.; Cliff, L.; Weaver, L.; Castaing, R.; Paulin, J.; Chen, Y.C.; Edler, K.J.; Koumanov, F.; Marchbank, K.J.; et al. Thermal resilience of ensilicated lysozyme via calorimetric and In Vivo analysis. RSC Adv. 2020, 10, 29789–29796. [Google Scholar] [CrossRef]
- Brinker, J.C.; Scherer, G.W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing; Academic Press: Boston, MA, USA, 1990; 908p. [Google Scholar]
- Hewitt, E.W.; Treumann, A.; Morrice, N.; Tatnell, P.J.; Kay, J.; Watts, C. Natural processing sites for human cathepsin E and cathepsin D in tetanus toxin: Implications for T cell epitope generation. J. Immunol. 1997, 159, 4693–4699. [Google Scholar] [PubMed]
- Narayanan, T.; Sztucki, M.; Van Vaerenbergh, P.; Leonardon, J.; Gorini, J.; Claustre, L.; Sever, F.; Morse, J.; Boesecke, P. A multipurpose instrument for time-resolved ultra-small-angle and coherent X-ray scattering. J. Appl. Crystallogr. 2018, 51, 1511–1524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doucet, M.; Cho, J.H.; Alina, G.; Bakker, J.; Bouwman, W.; Butler, P.; Campbell, K.; Gonzales, M.; Heenan, R.; Jackson, R.; et al. SasView: Small Angle Scattering Software, Version 4.0; Zenodo: Geneve, Switzerland, 2017. [Google Scholar] [CrossRef]
- Feigin, L.A.; Svergun, D.I. Structure Analysis by Small-Angle X-ray and Neutron Scattering; Springer: New York, NY, USA, 1987; 335p. [Google Scholar] [CrossRef]
- Mable, C.J.; Derry, M.J.; Thompson, K.L.; Fielding, L.A.; Mykhaylyk, O.O.; Armes, S.P. Time-Resolved SAXS Studies of the Kinetics of Thermally Triggered Release of Encapsulated Silica Nanoparticles from Block Copolymer Vesicles. Macromolecules 2017, 50, 4465–4473. [Google Scholar] [CrossRef] [PubMed]
- Mildner, D.F.R.; Hall, P.L. Small-angle scattering from porous solids with fractal geometry. J. Phys. D Appl. Phys. 1986, 19, 1535. [Google Scholar] [CrossRef]
- Doekhie, A. Dataset for “Physiochemical Changes to TTCF Ensilication Investigated Using Time-Resolved SAXS”. Bath: University of Bath Research Data Archive. 2021. Available online: https://doi.org/10.15125/BATH-01058 (accessed on 5 August 2021).
SAXS TTCF | Standard Conditions | |||||||
---|---|---|---|---|---|---|---|---|
Beamline | ID02 | i22 | ID02 | ID02 | ||||
Ratio | 1:20 | 1:50 | 1:50 | 1:100 | ||||
Time (min) | 0–60 | 0–2 | 2–60 | 0–60 | 0–120 | |||
pH | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 8 |
Stage | III | I | II | II | III | I | II | I |
Fractal dim. | 1.5–2.0 | 1.1 | 1.1 | 1.1 | 1.6–1.9 | - | - | 1.0–1.5 |
Equatorial R | - | 25–50 | - | - | - | 22–28 | - | 40–55 |
Polar R | - | 50–165 −50 | - | - | - | 60–120–90 | - | 120–175 |
Cut-Off | 14–69 | 10–600 | 165–20 | 12 | 20–80 | >1 | >1 | 50–300 |
Chi2 | >1 | 3.0–12 | 5.0–12 | >1 | >1 | >1 | >1 | >1 |
Lorentz | - | - | 54–48 | 42–33 | - | - | 40–30 | - |
Fractal R | 5 | 4.4–4.9 | 5.1–7.4 | 7.1–10 | 5.5–7.1 | 7.5–9.3 | 9.5–12 | 7.6–9.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doekhie, A.; Dattani, R.; Chen, Y.-C.; Koumanov, F.; Edler, K.J.; van den Elsen, J.M.H.; Sartbaeva, A. Physiochemical Changes to TTCF Ensilication Investigated Using Time-Resolved SAXS. AppliedChem 2021, 1, 4-13. https://doi.org/10.3390/appliedchem1010002
Doekhie A, Dattani R, Chen Y-C, Koumanov F, Edler KJ, van den Elsen JMH, Sartbaeva A. Physiochemical Changes to TTCF Ensilication Investigated Using Time-Resolved SAXS. AppliedChem. 2021; 1(1):4-13. https://doi.org/10.3390/appliedchem1010002
Chicago/Turabian StyleDoekhie, Aswin, Rajeev Dattani, Yun-Chu Chen, Francoise Koumanov, Karen J. Edler, Jean M. H. van den Elsen, and Asel Sartbaeva. 2021. "Physiochemical Changes to TTCF Ensilication Investigated Using Time-Resolved SAXS" AppliedChem 1, no. 1: 4-13. https://doi.org/10.3390/appliedchem1010002