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Abstract: Successful eradication or control of prevailing infectious diseases is linked to vaccine
efficacy, stability, and distribution. The majority of protein-based vaccines are transported at fridge
(2–8 ◦C) temperatures, cold chain, to retain potency. However, this has been shown to be problem-
atic. Proteins are inherently susceptible to thermal fluctuations, occurring during transportation,
causing them to denature. This leads to ineffective vaccines and an increase in vaccine-preventable
diseases, especially in low-income countries. Our research utilises silica to preserve vaccines at
room temperature, removing the need for cold chain logistics. The methodology is based upon
sol–gel chemistry in which soluble silica is employed to encapsulate and ensilicate vaccine proteins.
This yields a protein-loaded silica nanoparticle powder which is stored at room temperature and
subsequently released using a fast chemical process. We have previously shown that tetanus toxin C
fragment (TTCF) ensilication is a diffusion-limited cluster aggregation (DLCA)-based process using
time-resolved small-angle x-ray scattering (SAXS). Here, we present our expanded investigation on
the modularity of this system to further the understanding of ensilication via time-resolved SAXS.
Our results show that variations in the ensilication process could prove useful in the transition from
batch to in-flow manufacturing of ensilicated nanoparticles.
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1. Introduction

There is an urgent demand for thermostable vaccines [1,2]. Most of the adjuvant-
based protein vaccines are liquid formulated and have to be transported via the cold
chain infrastructure. This latter system is imperfect. It allows for problems to occur at
any stage [3–7]. To minimise the dependency on the cold chain, we have to enable room
temperature stable vaccines. There have been many attempts to stabilise vaccines, and
there are several strategies being explored [8–16].

Ensilication is one of these strategies with several successes in vitro with evidence
of its capacity in vivo [17–20]. This method enables room temperature storage and distri-
bution by encasing proteins in a silica shell which is electrostatically attached. The silica
source is tetraethyl orthosilicate (TEOS), which can be hydrolysed, subsequently condensed,
and polymerised under optimised conditions [21]. The process of ensilication requires
only a handful of reagents and produces a protein-loaded silica powder consisting of ag-
glomerated silica–protein nanoparticles. The material is resilient against heating/freezing
and does not require desiccation as many other methods do. The protein can be retrieved
with full retention of protein structure and functionality afterwards using a fast chemical
process [17–20].
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The current process of ensilication is carried out via batch production which, in a
diffusion-limited system, creates an agglomerated nanoparticulate material. In order to
obtain significant control in this system, we are exploring variations in the experimental
setup. Therefore, in this study, we expanded on the characterisation of the ensilication
process in solution. We have established that ensilication occurs in three stages in a previous
study [18]. Here, time-resolved SAXS was utilised to analyse the ensilication of tetanus
toxin C fragment (TTCF) at different silica-to-bulk volume ratios and different pH levels,
compared to our standard setting, 1:50 at pH 7. We applied mathematical modelling to the
SAXS data and present our interpretation of the outcomes.

2. Materials and Methods
2.1. Tetanus Toxin C Fragment

TTCF was produced in-house by recombinant expression in BL21(DE3) E. coli ac-
cording to a previously published protocol [22]. His-tag-purified TTCF was characterised
using sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS–PAGE), circular
dichroism, and enzyme-linked immunosorbent assay (ELISA) before use in this study as
shown in [18].

2.2. Time-Resolved SAXS at ID02 Beamline ESRF

Prehydrolysed TEOS was prepared by mixing TEOS and ultrapure H2O 1:1 and the
addition of HCl to catalyse the reaction. This was added to 10 mL of 1 mg/mL TTCF
solution, once both phases turned homogenous, at 1:50 ratio at pH 7 in a glass beaker.
Using a sterile syringe, 1 mL of sample was taken and injected into a quartz capillary.
SAXS measurements were performed on the time-resolved ultra-small-angle scattering
beamline ID02 at the European Synchrotron Research Facility (ESRF), Grenoble, France [23].
The incident X-ray energy was 12.46 keV and sample-detector distance was employed at
1.5 m. SAXS data were acquired using the Rayonix MX-170HS detector with exposure
times between 0.01 and 0.03 s. The measured 2D patterns after normalisation by incident
flux, sample transmission, and the solid angle were azimuthally averaged to obtain the
1D static scattering profiles as a function of the magnitude of scattering vector, q. Where
q is given by, q = 4π sinθ

λ , with λ the incident X-ray wavelength (=0.0996 nm) and θ the
scattering angle. This gave a q-range of 0.006 < q < 0.5 A−1. The scattering background in
each case was measured using a Tris buffer, and the normalised background-subtracted
data are represented by I(q).

2.3. TTCF Ensilication Ratios

Ensilication of TTCF at standard 1:50, (prehydrolysed) silica-to-bulk-volume, ratio oc-
curs rapidly in standard conditions; therefore, in this study, additional ratios of ensilication
were measured to investigate any differences in particle morphology and size. High, 1:20,
and low, 1:100, silica to volume ratios were chosen to assess as they will have significantly
different amounts of silica present in the solution. The procedure of measurement was the
same as the 1:50 ratio; once the hydrolysed silica was added to the TTCF solution, a sample
was injected into the capillary, and measurement was initiated.

2.4. TTCF Ensilication at pH 6 and 8

Ensilication is heavily influenced by pH affecting the ensilication process. pH 8 and
6, at a low silica ratio (1:100), were chosen to investigate whether these changes would
influence particle morphology, size, and the overall process.
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2.5. SAXS Data Fitting

The previous investigation via SAXS enabled us to categorise the ensilication process
into three distinct stages (Figure 1). We modelled the system, using the SasView software
package [24], according to a monodisperse particulate solution initially [25],

∆I(q) = N · I0 · ∆ρ2 ·V2
particle · P(q) · S(q)

to which we add silicic acid in the form of hydrolysed TEOS where I: intensity; N: num-
ber of particles; P(q): form factor; S(q): structure factor; ρ: scattering length density; V:
particle volume.
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Figure 1. Graphical definition of the TTCF ensilication process measured via time-resolved SAXS. At standard condi-
tions, the ensilication process rapidly transitions between three distinct stages, plotted in I(q) vs. q. TTCF protein (mesh)
has several positively charged residues on its surface. Upon addition of hydrolysed TEOS (silicic acid), these polymeric
associates are attracted by the positively charged regions (orange line, green circles, stage I). Polymerisation occurs after
addition (orange, dash-dotted circle) and moves to a broad peak system where the silica species and protein are overlapping
in size (green line, dotted circle, stage II). The final stage (III, blue line, blue circles) is the mass fractal growth (arrow) of
these silica oligomers which results in the protein–silica-loaded sediment that is collected and stored in dry powder form.
Adapted and modified with permission from [18].

The scattering length densities used for fitting are 9.44 × 10−6 A2 (solvent),
12.468 × 10−6 A2 (TTCF protein), and 17.5 × 10−6 A2 for (TEOS/SiOH4) [26].

Stage I fitting included the cumulative effect of an ellipsoid [18,25] (protein) form
factor P1(q), a mass fractal [27] (silica) model P2(q) · S2(q), and power law (to compensate
for low q upturn):

I(q) = scale · q−power + P1 + scale · P2(q) · S2(q) + background



AppliedChem 2021, 1 7

where:

P1(q, α) =

(
scale

V
· F2(q, α)

)
The ellipsoidal form factor includes the Fourier transform.

F(q,α) =
3∆ρV

(
sin
[
qr
(

Rp, Re,α
)]
− cos

[
qr
(

Rp, Re,α
)])[

qr
(

Rp, Re,α
)]3

where Rp: polar radius, Re: equatorial radius, ∆ρ: scattering length density (SLD) difference
between particle and solvent, α: axis angle, V: ellipsoid volume (V = (4/3)πRpR2

e ).
The mass fractal includes both a form and structure factor as follows:

P2(q) = F(qR)2 and S2(q) =

(
Γ
(

D f − 1
)
ζ
(D−f 1)

)
[
1 + (qζ)2

](D f−1)/2
·

(
sin
[(

D f − 1
)

tan−1(qζ)
])

q

where R: radius building block, Df: fractal dimension and ζ (zeta): cut-off length maximum
resolvable particle size.

Stage II fitting combined the effect of a broad peak (scattering inhomogeneities)
system with mass fractal as the process enters a heterogeneous particulate phase. The
former model has a power law built in; therefore, there was no need to include low q
interactions separately. Mathematically this model consists of the following:

I(q) =
A
qn +

C
1 + (|q− q0|Z)m + scale · P2(q)S2(q) + background

where A: Porod law scale factor; n: the Porod exponent; C: Lorentzian scale factor; m: the
exponent of q; Z: the screening length.

Stage III is the final stage of ensilication where the silica scattering is overtaking the
system. We modelled this using a combination of power law and the P2(q) · S2(q) equation.

I(q) = scale · q−power + scale · P2(q) · S2(q) + background

3. Results and Discussion

The standard ensilication condition (1:50) has been analysed in a previous study [18].
There, we found that ensilication is a three-staged diffusion-limited cluster aggregation
process (DLCA [21]) with each stage transitioning relatively rapidly, in order of seconds
to minutes (Figure 1). SAXS experiments on different ratios of silica in this study were
intended to provide more resolution on the influence of these conditions during ensilication.
The expected observations were based on the difference in rates of ensilication. From
earlier experiments, it was shown that higher levels of silica added to the reaction volume
increased the polymerisation rate and therefore speeds up ensilication. When there is
less silica, it takes more time for the polymer fragments to find each other by diffusion
and connect.

The time-resolved scattering data at a high ratio (1:20) showed a smoother interface
(Figure 2A), while the opposite was observed when using a significantly lower ratio of
silica, 1:100 (Figure 3A). There was a broad peak formation and some increase in scattering
at low q. There was visual turbidity which verified the process of ensilication; however,
this process was relatively slower (tens of minutes) than at 1:50 which happened in an
order of minutes.
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20 min. No changes are observed in fractal radius, and a linear growth of the cut-off length occurs on an order of tens of 
minutes. 

Figure 2. Time-resolved SAXS of high, 1:20 ratio, ensilication: (A) the 3D time-lapse perspective of SAXS data generated
during the experiment. Scattering vector intensity is I(q) over scattering vector Q with time in minutes on the x-axis;
(B) sliced perspective of SAXS data over time. Model fitting is overlaid on the measured scattering. Stage III fractal
modelling was applied to the high silica ratio ensilication; (C) parameter output from data fitting for high (1:20) ensilication,
stage III only. Fractal particle radius (rfrac) and cut-off length of polymeric associates are given in Å. Fractal dimension (Df)
and goodness of fit (chi2) are displayed on an arbitrary scale (right). Data show an early increase for Df with stabilisation
after 20 min. No changes are observed in fractal radius, and a linear growth of the cut-off length occurs on an order of tens
of minutes.

Observing the SAXS signal of this high silica ensilication indicated that only the third
stage of ensilication was proceeding. Therefore, the power law + mass fractal fit was
applied to these data. The output (Figure 2C) showed a similar trend comparable to the
1:50 data. The fractal dimension, Df, and cut-off length seem to behave similarly to Df ~ 2
(1:50 ratio Df ~ 1.8, Table 1) and cut-off increasing linearly.
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during the experiment. Scattering vector intensity is I(q) over scattering vector Q with time in minutes on the x-axis;
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display an increment until ~10 min where polar and equat combine with the fractal scattering, resulting in a Lorentzian
length (Lorentz), which indicates an elastic averaged length in a dynamic system. Cut-off length does not display changes
over time.

For the low silica ensilication, there is a slow transition (after 10 min) from the first
stage of the ensilication proceeding towards the second stage (Figure 3B). This is indicated
by the scattering moving towards a broad peak at mid q which slowly decreases over time
with the slope at low q increasing gently. These observations are supported by the overall
good fit for the models at each stage, I and II. The parameter output shows a similar trend
to the 1:50 data in the first two stages (Figure 3C). The increase in polar and equatorial radii,
the subsequent dip in these radii, and the following formation of an amorphous broad
peak (Lorentz length) are identical to the transitions occurring in the 1:50 ratio. There is a
difference in fractal dimension. However, after experimenting with different values for the
Df, there was no significant change in any of the associated parameters. Both fit models
have good agreement on the radius of fractal building blocks at 10 Å (Table 1). Overall,
the SAXS experiments on adjusting the ratio of hydrolysed TEOS to reaction volume show
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an increase of the ensilication speed with higher amounts of silica added. When lower
amounts are used, the opposite is seen with both experiments at neutral pH.

Table 1. SAXS ensilication parameter overview. Key parameters displayed are grouped according to ratio, pH, and
ensilication stages. Fractal dim: fractal dimension; Equatorial R; equatorial radius; Polar R: polar radius; Cut-off: static
protein and silica aggregates; Lorentz length: average particle radius; Fractal R: radius fractal particles; Chi2: goodness of fit.
Standard conditions adapted with permission from [18].

SAXS TTCF Standard Conditions

Beamline ID02 i22 ID02 ID02

Ratio 1:20 1:50 1:50 1:100

Time (min) 0–60 0–2 2–60 0–60 0–120

pH 7 7 7 7 7 7 7 8
Stage III I II II III I II I
Fractal dim. 1.5–2.0 1.1 1.1 1.1 1.6–1.9 - - 1.0–1.5
Equatorial R - 25–50 - - - 22–28 - 40–55
Polar R - 50–165 −50 - - - 60–120–90 - 120–175
Cut-Off 14–69 10–600 165–20 12 20–80 >1 >1 50–300
Chi2 >1 3.0–12 5.0–12 >1 >1 >1 >1 >1
Lorentz - - 54–48 42–33 - - 40–30 -
Fractal R 5 4.4–4.9 5.1–7.4 7.1–10 5.5–7.1 7.5–9.3 9.5–12 7.6–9.5

After establishing the fact that varying ratios of silica influence the rate of ensilication,
the following was to examine the effect of pH. As the 1:100 ratio already significantly slowed
the ensilication process, this ratio was utilised to provide a greater resolution. This decision
was based on the fast transition occurring during the 1:50 in situ flow experiment [18].

From the time-resolved scattering, it is apparent that no obvious transitions occur at
pH 6 in the experimental timescale (data not shown). However, there are two scattering
populations visible at pH 8 (Figure 4A). The visualised data showed a scattering of the
reaction time, 120 min, at pH 8. There was an increase in the signal present during the
initial moments of this run due to the introduction of silica to the system. These data were
subsequently fitted with the stage I model. The sliced view of the fitted data showed a
transition during the first 10 min of ensilication after which the solution stabilised. The
signal showed no transition towards stage II or III, as observed in the other experiments.
This suggested that the particles that are formed are stabilised in solution after adding
the hydrolysed TEOS, and that this stabilisation occurs after 10 min. The fitted model
provided several outputted parameters which helped to elucidate the effect of pH 8 on the
ensilication of TTCF (Figure 4C). The model distinguishes the two populations where the
low-mid q population is an ellipsoidal particle, representing the growing TTCF ensilicated
particle, and the high q population is the fractal scattering caused by the colloidal polymeric
silica particles. The radii for the ellipsoidal particle, polar, and equatorial displayed an
increase in size. Especially, the polar radius increased from 120 Å to 175 Å over time
(Table 1). The equatorial had a lower margin of growth but was still visible. The radius
associated with the building blocks of the fractal structure displayed growth; however, the
growth was only minimal. These parameters suggest that TTCF grows over its polar radius,
similar to the 1:50 experiment. However, the signal of the particle does not disappear in
the scattering signal and points towards the effect of pH.

For the low silica ensilication, there is a slow transition (after 10 min) from the first
stage of the ensilication proceeding towards the second stage (Figure 3B). This is indicated
by the scattering moving towards a broad peak at mid q which slowly decreases over time
with the slope at low q increasing gently. These observations are supported by the overall
good fit for the models at each stage, I and II. The parameter output shows a similar trend
to the 1:50 data in the first two stages (Figure 3C). The increase in polar and equatorial radii,
the subsequent dip in these radii, and the following formation of an amorphous broad
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peak (Lorentz length) are identical to the transitions occurring in the 1:50 ratio. There is a
difference in fractal dimension. However, after experimenting with different values for the
Df, there was no significant change in any of the associated parameters. Both fit models
have good agreement on the radius of fractal building blocks at 10 Å (Table 1). Overall,
the SAXS experiments on adjusting the ratio of hydrolysed TEOS to reaction volume show
an increase of the ensilication speed with higher amounts of silica added. When lower
amounts are used, the opposite is seen with both experiments at neutral pH.
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TTCF. The generated output of data fitting shows an increase in polar and equatorial radii with a small change in fractal
radius, rfrac, fractal dimension, df, and cut-off length stabilise over time.

4. Conclusions

This study investigated the effect of silica ratios and pH on the ensilication process
classified as a DLCA type. The observation indicated an effect on the rate of ensilication
while varying the added silica amounts. Additionally, the effect of pH demonstrated
protein–silica particle growth and stabilisation at pH 8, low silica ratio.
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The idea of individual stabilised TTCF–silica particles with a lower amount of silica
is beneficial to increase surface area for release and is also cost effective. More attempts
towards optimising the silica–protein ratio can identify the minimum concentration nec-
essary to ensilicate all proteins in solution and optimise the time needed for this process.
Fluctuating the pH indeed adds a layer of additional control in a diffusion-based system.
These batch-type analyses will allow this method to progress into a more sophisticated
means of nanoparticle synthesis using flow chemistry.

The effect of lower amounts of silica required will lead to a decreased cost in produc-
tion. Changes to pH exert more control of the nanoparticle formation and drug release
that; subsequently, a chemical release process might not be required. This further enhances
the applicability of ensilication to existing protein-based vaccines and will make it more
feasible to create thermostable vaccines that can be transported to regions in need of them.
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