Isometric Fatigue Resistance of Lumbar Extensors and Cardiovascular Strain in Lower Back Pain Patients Are Associated with Angiotensin-Converting Enzyme and Tenascin-C Gene Polymorphisms
Abstract
:1. Introduction
2. Results
2.1. Subjects
2.2. Metabolic Characteristics of the Isometric Fatigue Test
2.3. Back Pain and Gene Polymorphisms Affect Fatigue Resistance during the Isometric Endurance Test
2.4. Group Effects on Metabolic Strain during the Isometric Endurance Test
2.5. Genotype × Group Effects on Metabolic Strain during the Isometric Endurance Test
2.6. Metabolic Strain during the Isometric Test Is Affected by Physical Activity and Genotype
2.7. Group Differences in Anthropometric Parameters According to Physical Activity and Genotype
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Demoulin, C.; Vanderthommen, M.; Duysens, C.; Crielaard, J.M. Spinal muscle evaluation using the Sorensen test: A critical appraisal of the literature. Jt. Bone Spine 2006, 73, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Steele, J.; Bruce-Low, S.; Smith, D. A reappraisal of the deconditioning hypothesis in low back pain: Review of evidence from a triumvirate of research methods on specific lumbar extensor deconditioning. Curr. Med. Res. Opin. 2014, 30, 865–911. [Google Scholar] [CrossRef] [PubMed]
- Danneels, L.A.; Coorevits, P.L.; Cools, A.M.; Vanderstraeten, G.G.; Cambier, D.C.; Witvrouw, E.E.; De, C.H. Differences in electromyographic activity in the multifidus muscle and the iliocostalis lumborum between healthy subjects and patients with sub-acute and chronic low back pain. Eur. Spine J. 2002, 11, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Duque, I.; Parra, J.H.; Duvallet, A. Maximal aerobic power in patients with chronic low back pain: A comparison with healthy subjects. Eur. Spine J. 2011, 20, 87–93. [Google Scholar] [CrossRef]
- Kell, R.T.; Bhambhani, Y. In vivo erector spinae muscle blood volume and oxygenation measures during repetitive incremental lifting and lowering in chronic low back pain participants. Spine 2006, 31, 2630–2637. [Google Scholar] [CrossRef]
- Olivier, N.; Thevenon, A.; Berthoin, S.; Prieur, F. An exercise therapy program can increase oxygenation and blood volume of the erector spinae muscle during exercise in chronic low back pain patients. Arch. Phys. Med. Rehabil. 2013, 94, 536–542. [Google Scholar] [CrossRef]
- Heneweer, H.; Staes, F.; Aufdemkampe, G.; van Rijn, M.; Vanhees, L. Physical activity and low back pain: A systematic review of recent literature. Eur. Spine J. 2011, 20, 826–845. [Google Scholar] [CrossRef] [PubMed]
- Langenfeld, A.; Wirth, B.; Scherer-Vrana, A.; Riner, F.; Gaehwiler, K.; Valdivieso, P.; Humphreys, B.K.; Scholkmann, F.; Flueck, M.; Schweinhardt, P. No alteration of back muscle oxygenation during isometric exercise in individuals with non-specific low back pain. Sci. Rep. 2022, 12, 8306. [Google Scholar] [CrossRef]
- Battie, M.C.; Videman, T.; Levalahti, E.; Gill, K.; Kaprio, J. Heritability of low back pain and the role of disc degeneration. Pain 2007, 131, 272–280. [Google Scholar] [CrossRef]
- Junqueira, D.R.; Ferreira, M.L.; Refshauge, K.; Maher, C.G.; Hopper, J.L.; Hancock, M.; Carvalho, M.G.; Ferreira, P.H. Heritability and lifestyle factors in chronic low back pain: Results of the Australian twin low back pain study (The AUTBACK study). Eur. J. Pain 2014, 18, 1410–1418. [Google Scholar] [CrossRef] [PubMed]
- Freidin, M.B.; Tsepilov, Y.A.; Palmer, M.; Karssen, L.C.; Suri, P.; Aulchenko, Y.S.; Williams, F.M.K.; Group, C.M.W. Insight into the genetic architecture of back pain and its risk factors from a study of 509,000 individuals. Pain 2019, 160, 1361–1373. [Google Scholar] [CrossRef] [PubMed]
- Valdivieso, P.; Franchi, M.V.; Gerber, C.; Fluck, M. Does a Better Perfusion of Deconditioned Muscle Tissue Release Chronic Low Back Pain? Front. Med. 2018, 5, 77. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, D.; Brogioli, M.; Maier, T.; White, A.; Waldron, S.; Rittweger, J.; Toigo, M.; Wettstein, J.; Laczko, E.; Fluck, M. The Angiotensin Converting Enzyme Insertion/Deletion Polymorphism Modifies Exercise-Induced Muscle Metabolism. PLoS ONE 2016, 11, e0149046. [Google Scholar] [CrossRef]
- Gasser, B.; Fluck, M.; Frey, W.O.; Valdivieso, P.; Sporri, J. Association of Gene Variants for Mechanical and Metabolic Muscle Quality with Cardiorespiratory and Muscular Variables Related to Performance in Skiing Athletes. Genes 2022, 13, 1798. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.J.; Kim, C.H.; Park, D.S.; Choi, S.Y.; Lee, D.H.; Nam, H.S.; Hur, J.G.; Woo, J.H. The Impacts of ACE Activity according to ACE I/D Polymorphisms on Muscular Functions of People Aged 65. Ann. Rehabil. Med. 2012, 36, 433–446. [Google Scholar] [CrossRef]
- Rigat, B.; Hubert, C.; Alhenc-Gelas, F.; Cambien, F.; Corvol, P.; Soubrier, F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J. Clin. Investig. 1990, 86, 1343–1346. [Google Scholar] [CrossRef] [PubMed]
- Valdivieso, P.; Vaughan, D.; Laczko, E.; Brogioli, M.; Waldron, S.; Rittweger, J.; Fluck, M. The Metabolic Response of Skeletal Muscle to Endurance Exercise Is Modified by the ACE-I/D Gene Polymorphism and Training State. Front. Physiol. 2017, 8, 993. [Google Scholar] [CrossRef] [PubMed]
- Griendling, K.K.; Ushio-Fukai, M.; Lassegue, B.; Alexander, R.W. Angiotensin II signaling in vascular smooth muscle. New concepts. Hypertension 1997, 29, 366–373. [Google Scholar] [CrossRef]
- Dostal, D.E.; Hunt, R.A.; Kule, C.E.; Bhat, G.J.; Karoor, V.; McWhinney, C.D.; Baker, K.M. Molecular mechanisms of angiotensin II in modulating cardiac function: Intracardiac effects and signal transduction pathways. J. Mol. Cell Cardiol. 1997, 29, 2893–2902. [Google Scholar] [CrossRef]
- Borsodi, K.; Balla, H.; Molnar, P.J.; Lenart, A.; Kenessey, I.; Horvath, A.; Keszthelyi, A.; Romics, M.; Majoros, A.; Nyirady, P.; et al. Signaling Pathways Mediating Bradykinin-Induced Contraction in Murine and Human Detrusor Muscle. Front. Med. 2021, 8, 745638. [Google Scholar] [CrossRef]
- Dell’Italia, L.J.; Oparil, S. Bradykinin in the heart: Friend or foe? Circulation 1999, 100, 2305–2307. [Google Scholar] [CrossRef]
- Koeppen, K.; Stanton, B.A. Glomerular Filtration and Renal Blood Flow. In Renal Physiology, 5th ed.; Mosby, Elsevier: Maryland Heights, MO, USA, 2013; pp. 27–43. [Google Scholar]
- Nurkiewicz, T.R.; Boegehold, M.A. Reinforcement of arteriolar myogenic activity by endogenous ANG II: Susceptibility to dietary salt. Am. J. Physiol. Heart Circ. Physiol. 2000, 279, H269–H278. [Google Scholar] [CrossRef]
- De Filippi, P.; Ravaglia, S.; Bembi, B.; Costa, A.; Moglia, A.; Piccolo, G.; Repetto, A.; Dardis, A.; Greco, G.; Ciana, G.; et al. The angiotensin-converting enzyme insertion/deletion polymorphism modifies the clinical outcome in patients with Pompe disease. Genet. Med. 2010, 12, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Shehab, D.K.; Al-Jarallah, K.F.; Al-Awadhi, A.M.; Al-Herz, A.; Nahar, I.; Haider, M.Z. Association of angiotensin-converting enzyme (ACE) gene insertion-deletion polymorphism with spondylarthropathies. J. Biomed. Sci. 2008, 15, 61–67. [Google Scholar] [CrossRef]
- Van Ginkel, S.; de Haan, A.; Woerdeman, J.; Vanhees, L.; Serne, E.; de Koning, J.; Fluck, M. Exercise intensity modulates capillary perfusion in correspondence with ACE I/D modulated serum angiotensin II levels. Appl. Transl. Genom. 2015, 4, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Gasser, B.; Frei, A.; Niederseer, D.; Catuogno, S.; Frey, W.O.; Fluck, M. Variability in the Aerobic Fitness-Related Dependence on Respiratory Processes During Muscle Work Is Associated With the ACE-I/D Genotype. Front. Sports Act. Living 2022, 4, 814974. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, D.; Huber-Abel, F.A.; Graber, F.; Hoppeler, H.; Fluck, M. The angiotensin converting enzyme insertion/deletion polymorphism alters the response of muscle energy supply lines to exercise. Eur. J. Appl. Physiol. 2013, 113, 1719–1729. [Google Scholar] [CrossRef] [PubMed]
- Gasser, B.; Franchi, M.V.; Ruoss, S.; Frei, A.; Popp, W.L.; Niederseer, D.; Catuogno, S.; Frey, W.O.; Fluck, M. Accelerated Muscle Deoxygenation in Aerobically Fit Subjects During Exhaustive Exercise Is Associated With the ACE Insertion Allele. Front. Sports Act. Living 2022, 4, 814975. [Google Scholar] [CrossRef]
- Ryan, T.E.; Brophy, P.; Lin, C.T.; Hickner, R.C.; Neufer, P.D. Assessment of in vivo skeletal muscle mitochondrial respiratory capacity in humans by near-infrared spectroscopy: A comparison with in situ measurements. J. Physiol. 2014, 592, 3231–3241. [Google Scholar] [CrossRef]
- Hernandez, D.; de la Rosa, A.; Barragan, A.; Barrios, Y.; Salido, E.; Torres, A.; Martin, B.; Laynez, I.; Duque, A.; De Vera, A.; et al. The ACE/DD genotype is associated with the extent of exercise-induced left ventricular growth in endurance athletes. J. Am. Coll. Cardiol. 2003, 42, 527–532. [Google Scholar] [CrossRef]
- Hagberg, J.M.; McCole, S.D.; Brown, M.D.; Ferrell, R.E.; Wilund, K.R.; Huberty, A.; Douglass, L.W.; Moore, G.E. ACE insertion/deletion polymorphism and submaximal exercise hemodynamics in postmenopausal women. J. Appl. Physiol. 2002, 92, 1083–1088. [Google Scholar] [CrossRef] [PubMed]
- Busjahn, A.; Voss, A.; Knoblauch, H.; Knoblauch, M.; Jeschke, E.; Wessel, N.; Bohlender, J.; McCarron, J.; Faulhaber, H.D.; Schuster, H.; et al. Angiotensin-converting enzyme and angiotensinogen gene polymorphisms and heart rate variability in twins. Am. J. Cardiol. 1998, 81, 755–760. [Google Scholar] [CrossRef] [PubMed]
- Gasser, B.; Niederseer, D.; Frey, W.O.; Catuogno, S.; Fluck, M. ACE-I/D Allele Modulates Improvements of Cardiorespiratory Function and Muscle Performance with Interval-Type Exercise. Genes 2023, 14, 1100. [Google Scholar] [CrossRef] [PubMed]
- Puthucheary, Z.; Skipworth, J.R.; Rawal, J.; Loosemore, M.; Van Someren, K.; Montgomery, H.E. The ACE gene and human performance: 12 years on. Sports Med. 2011, 41, 433–448. [Google Scholar] [CrossRef]
- Gasser, B.; Frey, W.O.; Valdivieso, P.; Scherr, J.; Sporri, J.; Fluck, M. Association of Gene Variants with Seasonal Variation in Muscle Strength and Aerobic Capacity in Elite Skiers. Genes 2023, 14, 1165. [Google Scholar] [CrossRef]
- Matsuda, A.; Hirota, T.; Akahoshi, M.; Shimizu, M.; Tamari, M.; Miyatake, A.; Takahashi, A.; Nakashima, K.; Takahashi, N.; Obara, K.; et al. Coding SNP in tenascin-C Fn-III-D domain associates with adult asthma. Hum. Mol. Genet. 2005, 14, 2779–2786. [Google Scholar] [CrossRef]
- Jarvinen, T.A.; Kannus, P.; Jarvinen, T.L.; Jozsa, L.; Kalimo, H.; Jarvinen, M. Tenascin-C in the pathobiology and healing process of musculoskeletal tissue injury. Scand. J. Med. Sci. Sports 2000, 10, 376–382. [Google Scholar] [CrossRef]
- Imanaka-Yoshida, K.; Aoki, H. Tenascin-C and mechanotransduction in the development and diseases of cardiovascular system. Front. Physiol. 2014, 5, 283. [Google Scholar] [CrossRef] [PubMed]
- Fluck, M.; Mund, S.I.; Schittny, J.C.; Klossner, S.; Durieux, A.C.; Giraud, M.N. Mechano-regulated tenascin-C orchestrates muscle repair. Proc. Natl. Acad. Sci. USA 2008, 105, 13662–13667. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, W.; Cai, G.; Ding, Y.; Wei, C.; Li, S.; Yang, Y.; Qin, J.; Liu, D.; Zhang, H.; et al. Myofiber necroptosis promotes muscle stem cell proliferation via releasing Tenascin-C during regeneration. Cell Res. 2020, 30, 1063–1077. [Google Scholar] [CrossRef]
- Matsumoto, K.I.; Aoki, H. The Roles of Tenascins in Cardiovascular, Inflammatory, and Heritable Connective Tissue Diseases. Front. Immunol. 2020, 11, 609752. [Google Scholar] [CrossRef] [PubMed]
- Valdivieso, P.; Toigo, M.; Hoppeler, H.; Fluck, M. T/T homozygosity of the tenascin-C gene polymorphism rs2104772 negatively influences exercise-induced angiogenesis. PLoS ONE 2017, 12, e0174864. [Google Scholar] [CrossRef]
- Fluck, M.; Kramer, M.; Fitze, D.P.; Kasper, S.; Franchi, M.V.; Valdivieso, P. Cellular Aspects of Muscle Specialization Demonstrate Genotype—Phenotype Interaction Effects in Athletes. Front. Physiol. 2019, 10, 526. [Google Scholar] [CrossRef]
- Green, H.J. Mechanisms of muscle fatigue in intense exercise. J. Sports Sci. 1997, 15, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Fluck, M.; Hoppeler, H. Molecular basis of skeletal muscle plasticity--from gene to form and function. Rev. Physiol. Biochem. Pharmacol. 2003, 146, 159–216. [Google Scholar] [CrossRef] [PubMed]
- Mathes, S.; van Ginkel, S.; Vaughan, D.; Valdivieso, P.; Flück, M. Gene-Pharmacologial Effects on Exercise-Induced Muscle Gene Expression in Healthy Men. Anat. Physiol. 2015, S5, 005. [Google Scholar] [CrossRef]
- Hoy, D.; March, L.; Brooks, P.; Blyth, F.; Woolf, A.; Bain, C.; Williams, G.; Smith, E.; Vos, T.; Barendregt, J.; et al. The global burden of low back pain: Estimates from the Global Burden of Disease 2010 study. Ann. Rheum. Dis. 2014, 73, 968–974. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yu, J.; Liu, N.; Liu, Z.; Wei, X.; Yan, F.; Yu, S. Low back pain among taxi drivers: A cross-sectional study. Occup. Med. 2017, 67, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Heuch, I.; Heuch, I.; Hagen, K.; Zwart, J.A. A Comparison of Anthropometric Measures for Assessing the Association between Body Size and Risk of Chronic Low Back Pain: The HUNT Study. PLoS ONE 2015, 10, e0141268. [Google Scholar] [CrossRef] [PubMed]
- Teodorczyk-Injeyan, J.A.; Triano, J.J.; Injeyan, H.S. Nonspecific Low Back Pain: Inflammatory Profiles of Patients With Acute and Chronic Pain. Clin. J. Pain 2019, 35, 818–825. [Google Scholar] [CrossRef]
- Russo, M.; Deckers, K.; Eldabe, S.; Kiesel, K.; Gilligan, C.; Vieceli, J.; Crosby, P. Muscle Control and Non-specific Chronic Low Back Pain. Neuromodulation 2018, 21, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bray, M.S.; Hagberg, J.M.; Perusse, L.; Rankinen, T.; Roth, S.M.; Wolfarth, B.; Bouchard, C. The human gene map for performance and health-related fitness phenotypes: The 2006–2007 update. Med. Sci. Sports Exerc. 2009, 41, 35–73. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, Y.; Matsudaira, K.; Sawada, S.S.; Gando, Y.; Kawakami, R.; Sloan, R.A.; Kinugawa, C.; Okamoto, T.; Tsukamoto, K.; Miyachi, M.; et al. Association between objectively measured physical activity and body mass index with low back pain: A large-scale cross-sectional study of Japanese men. BMC Public Health 2018, 18, 341. [Google Scholar] [CrossRef]
- Joyner, M.J.; Casey, D.P. Regulation of increased blood flow (hyperemia) to muscles during exercise: A hierarchy of competing physiological needs. Physiol. Rev. 2015, 95, 549–601. [Google Scholar] [CrossRef] [PubMed]
- Schmutz, S.; Dapp, C.; Wittwer, M.; Durieux, A.C.; Mueller, M.; Weinstein, F.; Vogt, M.; Hoppeler, H.; Fluck, M. A hypoxia complement differentiates the muscle response to endurance exercise. Exp. Physiol. 2010, 95, 723–735. [Google Scholar] [CrossRef]
- Sierra, A.P.R.; Lima, G.H.O.; da Silva, E.D.; Maciel, J.F.S.; Benetti, M.P.; de Oliveira, R.A.; Martins, P.F.O.; Kiss, M.A.P.; Ghorayeb, N.; Newsholme, P.; et al. Angiotensin-Converting Enzyme Related-Polymorphisms on Inflammation, Muscle and Myocardial Damage after a Marathon Race. Front. Genet. 2019, 10, 984. [Google Scholar] [CrossRef]
- Imanaka-Yoshida, K. Tenascin-C in Heart Diseases-The Role of Inflammation. Int. J. Mol. Sci. 2021, 22, 5828. [Google Scholar] [CrossRef] [PubMed]
- Saunders, C.J.; van der Merwe, L.; Posthumus, M.; Cook, J.; Handley, C.J.; Collins, M.; September, A.V. Investigation of variants within the COL27A1 and TNC genes and Achilles tendinopathy in two populations. J. Orthop. Res. 2013, 31, 632–637. [Google Scholar] [CrossRef]
- Nemoto, W.; Yamagata, R.; Nakagawasai, O.; Tan-No, K. Angiotensin-Related Peptides and Their Role in Pain Regulation. Biology 2023, 12, 755. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.R.; Hwang, I.W.; Kim, H.J.; Kang, Y.D.; Park, J.W.; Jin, H.J. Genetic Association of Angiotensin-Converting Enzyme (ACE) Gene I/D Polymorphism with Preterm Birth in Korean Women: Case-Control Study and Meta-Analysis. Medicina 2019, 55, 264. [Google Scholar] [CrossRef] [PubMed]
- Pilotto, A.M.; Adami, A.; Mazzolari, R.; Brocca, L.; Crea, E.; Zuccarelli, L.; Pellegrino, M.A.; Bottinelli, R.; Grassi, B.; Rossiter, H.B.; et al. Near-infrared spectroscopy estimation of combined skeletal muscle oxidative capacity and O2 diffusion capacity in humans. J. Physiol. 2022, 600, 4153–4168. [Google Scholar] [CrossRef]
- Gordon, R.; Bloxham, S. A Systematic Review of the Effects of Exercise and Physical Activity on Non-Specific Chronic Low Back Pain. Healthcare 2016, 4, 22. [Google Scholar] [CrossRef] [PubMed]
- Keshari, K.R.; Lotz, J.C.; Link, T.M.; Hu, S.; Majumdar, S.; Kurhanewicz, J. Lactic acid and proteoglycans as metabolic markers for discogenic back pain. Spine 2008, 33, 312–317. [Google Scholar] [CrossRef]
- Liang, C.Z.; Li, H.; Tao, Y.Q.; Zhou, X.P.; Yang, Z.R.; Li, F.C.; Chen, Q.X. The relationship between low pH in intervertebral discs and low back pain: A systematic review. Arch. Med. Sci. 2012, 8, 952–956. [Google Scholar] [CrossRef]
- Imanaka-Yoshida, K.; Yoshida, T.; Miyagawa-Tomita, S. Tenascin-C in development and disease of blood vessels. Anat. Rec. 2014, 297, 1747–1757. [Google Scholar] [CrossRef]
- Imanaka-Yoshida, K.; Tawara, I.; Yoshida, T. Tenascin-C in cardiac disease: A sophisticated controller of inflammation, repair, and fibrosis. Am. J. Physiol. Cell Physiol. 2020, 319, C781–C796. [Google Scholar] [CrossRef] [PubMed]
- Satta, J.; Melkko, J.; Pollanen, R.; Tuukkanen, J.; Paakko, P.; Ohtonen, P.; Mennander, A.; Soini, Y. Progression of human aortic valve stenosis is associated with tenascin-C expression. J. Am. Coll. Cardiol. 2002, 39, 96–101. [Google Scholar] [CrossRef]
- Imanaka-Yoshida, K. Tenascin-C in cardiovascular tissue remodeling: From development to inflammation and repair. Circ. J. 2012, 76, 2513–2520. [Google Scholar] [CrossRef] [PubMed]
- Bruneau, M., Jr.; Angelopoulos, T.J.; Gordon, P.; Moyna, N.; Visich, P.; Zoeller, R.; Seip, R.; Bilbie, S.; Thompson, P.; Devaney, J.; et al. The angiotensin-converting enzyme insertion/deletion polymorphism rs4340 associates with habitual physical activity among European American adults. Mol. Genet. Genomic Med. 2017, 5, 524–530. [Google Scholar] [CrossRef]
- Nitecki, M.; Shapiro, G.; Orr, O.; Levitin, E.; Sharshevsky, H.; Tzur, D.; Twig, G.; Shapira, S. Association Between Body Mass Index and Nonspecific Recurrent Low Back Pain in Over 600,000 Healthy Young Adults. Am. J. Epidemiol. 2023, 192, 1371–1378. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Li, J.; Ni, H.; Shi, H.; Qi, Z.; Zhu, S.; Hao, C.; Xie, Q.; Luo, X.; Xie, K. Tenascin C: A Potential Biomarker for Predicting the Severity of Coronary Atherosclerosis. J. Atheroscler. Thromb. 2019, 26, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Vrana, A.; Scholkmann, F.; Wirth, B.; Flueck, M.; Humphreys, B.K. Changes in Spinal Muscle Oxygenation and Perfusion During the Biering-Sorensen Test: Preliminary Results of a Study Employing NIRS-Based Muscle Oximetry. Adv. Exp. Med. Biol. 2018, 1072, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef] [PubMed]
- Glickman, M.E.; Rao, S.R.; Schultz, M.R. False discovery rate control is a recommended alternative to Bonferroni-type adjustments in health studies. J. Clin. Epidemiol. 2014, 67, 850–857. [Google Scholar] [CrossRef] [PubMed]
- Fluck, M.; Ruoss, S.; Mohl, C.B.; Valdivieso, P.; Benn, M.C.; von Rechenberg, B.; Laczko, E.; Hu, J.; Wieser, K.; Meyer, D.C.; et al. Genomic and lipidomic actions of nandrolone on detached rotator cuff muscle in sheep. J. Steroid Biochem. Mol. Biol. 2017, 165 Pt B, 382–395. [Google Scholar] [CrossRef]
Group | Age [Years] | Height [cm] | BMI [kg m−2] |
---|---|---|---|
Control | 33.1 ± 12.9 | 171.3 ± 9.0 | 23.3 ± 3.0 |
Patient | 34.1 ± 12.4 | 169.8 ± 10.1 | 23.3 ± 3.1 |
p-value | 0.621 | 0.437 | 0.677 |
Group | muscle fat [cm] | PA [score 2–5] | handgrip strength [kg] |
Control | 7.6 ± 2.6 | 3.0 ± 0.8 | 39.2 ± 13.2 |
Patient | 8.8 ± 3.0 | 3.0 ± 0.9 | 36.6 ± 11.2 |
p-value | 0.113 | 0.907 | 0.332 |
PERFORMANCE | |
holding time [s] | maximal HR [bpm] |
171.8 ± 50.4 [42.0–240.0] | 144.0 ± 25.1 [93.0–195.0] |
AEROBIC STRAIN TO M. LONGISSIMUS | |
accrued | |
AUC ΔSmO2 [% s] | |
−6393 ± 5235 [−19,149–122] | |
baseline lactate [mM] | Δlactate [mM] |
1.42 ± 0.57 [0.80–3.10] | 1.32 ± 1.43 [−1.50–5.00] |
average | |
AUC ΔSmO2/time [%] | |
−34.5 ± 25.9 [−79.8–0.5] | |
CARDIOVASCULAR STRAIN | |
accrued | |
AUC ΔMAP [mm Hg s] | AUC ΔHR [beats] |
2355 ± 1551 [−309–6357] | 84.8 ± 49.2 [−41.1–236.8] |
AUC ΔPP [mm Hg s] | AUC ΔPP/time [mm Hg] |
2184 ± 2285 [−921–10,665] | 12.2 ± 11.6 [−4.6–54.4] |
AUC ΔtHb [g dL−1 s] | |
−32.6 ± 52.3 [−179.2–86.0] | |
average | |
AUC ΔMAP/time [mm Hg] | AUC ΔHR/time [bpm] |
13.4 ± 7.6 [−3.1–42.1] | 28.4 ± 13.0 [−15.4–59.2] |
AUC ΔtHb/time [g dL−1] | |
−0.18 ± 0.28 [−0.87–0.44] | |
RECOVERY | |
Trec_tHb [s] | Trec_SmO2 [s] |
45.2 ± 23.0 [15.5–96.3] | −34.5 ± 25.9 [−79.8–0.5] |
rs1799752 | rs1799752 x | rs2104772 | rs2104772 x | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Group | Group | Group | ||||||||
p | η2 | p | η2 | p | η2 | p | η2 | p | η2 | |
holding time [s] | 0.002 | 0.120 | 0.689 | 0.010 | 0.005 | 0.131 | 0.606 | 0.013 | 0.097 | 0.060 |
AUC ΔSmO2/time [%] | 0.579 | 0.006 | 0.836 | 0.007 | 0.454 | 0.028 | 0.616 | 0.017 | 0.330 | 0.040 |
AUC ΔtHb/time [g dL−1] | 0.234 | 0.027 | 0.226 | 0.052 | 0.605 | 0.018 | 0.832 | 0.007 | 0.437 | 0.029 |
AUC ΔMAP/time [mm Hg] | 0.491 | 0.010 | 0.834 | 0.006 | 0.819 | 0.006 | 0.358 | 0.032 | 0.028 | 0.108 |
AUC ΔHR/time [beats] | 0.646 | 0.003 | 0.728 | 0.008 | 0.461 | 0.020 | 0.890 | 0.003 | 0.065 | 0.070 |
baseline lactate [mM] | 0.591 | 0.008 | 0.376 | 0.051 | 0.342 | 0.056 | 0.005 | 0.245 | 0.211 | 0.081 |
Δlactate [mM] | 0.022 | 0.147 | 0.974 | 0.001 | 0.330 | 0.058 | 0.514 | 0.035 | 0.588 | 0.028 |
Trec_tHb [s] | 0.015 | 0.585 | 0.215 | 0.240 | 0.166 | 0.021 | 0.250 | 0.425 | 0.003 | 0.907 |
Trec_SmO2 [s] | 0.367 | 0.021 | 0.681 | 0.018 | 0.689 | 0.019 | 0.700 | 0.020 | 0.670 | 0.023 |
rs1799752 x | rs2104772 x | |||||
---|---|---|---|---|---|---|
PA | PA | PA | ||||
p | η2 | p | η2 | p | η2 | |
holding time [s] | 0.407 | 0.038 | 0.144 | 0.102 | 0.452 | 0.060 |
AUC ΔSmO2/time [%] | 0.041 | 0.141 | 0.583 | 0.065 | 0.010 | 0.236 |
AUC ΔtHb/time [g dL−1] | 0.735 | 0.022 | 0.608 | 0.061 | 0.210 | 0.117 |
AUC ΔMAP/time [mm Hg] | 0.438 | 0.044 | 0.233 | 0.083 | 0.944 | 0.012 |
AUC ΔHR/time [beats] | 0.799 | 0.013 | 0.912 | 0.02 | 0.981 | 0.009 |
baseline lactate [mM] | 0.436 | 0.073 | 0.138 | 0.195 | 0.042 | 0.259 |
Δlactate [mM] | 0.045 | 0.196 | 0.194 | 0.175 | 0.325 | 0.140 |
Trec_tHb [s] | 0.262 | 0.473 | 0.025 | 0.381 | 0.004 | 0.931 |
Trec_SmO2 [s] | 0.811 | 0.025 | 0.727 | 0.069 | 0.623 | 0.092 |
rs1799752 x | rs2104772 x | |||||
group x | group x | group x | ||||
PA | PA | PA | ||||
p | η2 | p | η2 | p | η2 | |
holding time [s] | 0.350 | 0.043 | 0.855 | 0.017 | 0.133 | 0.089 |
AUC ΔSmO2/time [%] | 0.898 | 0.009 | 0.858 | 0.014 | 0.574 | 0.035 |
AUC ΔtHb/time [g dL−1] | 0.703 | 0.025 | 0.561 | 0.036 | 0.778 | 0.019 |
AUC ΔMAP/time [mm Hg] | 0.335 | 0.053 | 0.286 | 0.075 | 0.257 | 0.080 |
AUC ΔHR/time [beats] | 0.909 | 0.007 | 0.908 | 0.006 | 0.451 | 0.047 |
baseline lactate [mM] | 0.044 | 0.181 | 0.441 | 0.069 | 0.211 | 0.113 |
Δlactate [mM] | 0.665 | 0.026 | 0.598 | 0.049 | 0.127 | 0.141 |
Trec_tHb [s] | 0.158 | 0.389 | 0.453 | 0.002 | 0.002 | 0.869 |
Trec_SmO2 [s] | 0.311 | 0.102 | 0.870 | 0.001 | 0.199 | 0.154 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flück, M.; Valdivieso, P.; Giraud, M.-N.; Humphreys, B.K. Isometric Fatigue Resistance of Lumbar Extensors and Cardiovascular Strain in Lower Back Pain Patients Are Associated with Angiotensin-Converting Enzyme and Tenascin-C Gene Polymorphisms. Physiologia 2024, 4, 286-304. https://doi.org/10.3390/physiologia4030017
Flück M, Valdivieso P, Giraud M-N, Humphreys BK. Isometric Fatigue Resistance of Lumbar Extensors and Cardiovascular Strain in Lower Back Pain Patients Are Associated with Angiotensin-Converting Enzyme and Tenascin-C Gene Polymorphisms. Physiologia. 2024; 4(3):286-304. https://doi.org/10.3390/physiologia4030017
Chicago/Turabian StyleFlück, Martin, Paola Valdivieso, Marie-Noëlle Giraud, and Barry Kim Humphreys. 2024. "Isometric Fatigue Resistance of Lumbar Extensors and Cardiovascular Strain in Lower Back Pain Patients Are Associated with Angiotensin-Converting Enzyme and Tenascin-C Gene Polymorphisms" Physiologia 4, no. 3: 286-304. https://doi.org/10.3390/physiologia4030017
APA StyleFlück, M., Valdivieso, P., Giraud, M. -N., & Humphreys, B. K. (2024). Isometric Fatigue Resistance of Lumbar Extensors and Cardiovascular Strain in Lower Back Pain Patients Are Associated with Angiotensin-Converting Enzyme and Tenascin-C Gene Polymorphisms. Physiologia, 4(3), 286-304. https://doi.org/10.3390/physiologia4030017