Physiological Key Determinants of Elite Open-Water Swimmers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Approach to the Problem
2.2. Participants
2.3. Procedures
2.4. Statistics
3. Results
3.1. Performance
3.2. Relationships between Physiological Capacities and Performance
3.3. Relationships between Critical Velocity and Performance
3.4. Relationships between Critical Velocity and Threshold Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, A.M.; Carter, H. The effect of endurance training on parameters of aerobic fitness. Sports Med. 2000, 29, 373–386. [Google Scholar] [CrossRef] [PubMed]
- Baldassarre, R.; Bonifazi, M.; Zamparo, P.; Piacentini, M.F. Characteristics and Challenges of Open-Water Swimming Performance: A Review. Int. J. Sports Physiol. Perform. 2017, 12, 1275–1284. [Google Scholar] [CrossRef]
- Baldassarre, R.; Pennacchi, M.; La Torre, A.; Bonifazi, M.; Piacentini, M.F. Do the Fastest Open-Water Swimmers have A Higher Speed in Middle- and Long-Distance Pool Swimming Events? J. Funct. Morphol. Kinesiol. 2019, 4, 15. [Google Scholar] [CrossRef] [PubMed]
- Veiga, S.; Rodriguez, L.; González-Frutos, P.; Navandar, A. Race Strategies of Open Water Swimmers in the 5-km, 10-km, and 25-km Races of the 2017 FINA World Swimming Championships. Front. Psychol. 2019, 10, 654. [Google Scholar] [CrossRef] [PubMed]
- Zacca, R.; Neves, V.; da Silva Oliveira, T.; Soares, S.; Rama, L.M.P.L.; de Souza Castro, F.A.; Vilas-Boas, J.P.; Pyne, D.B.; Fernandes, R.J. 5 km front crawl in pool and open water swimming: Breath-by-breath energy expenditure and kinematic analysis. Eur. J. Appl. Physiol. 2020, 120, 2005–2018. [Google Scholar] [CrossRef]
- López-Belmonte, Ó.; Gay, A.; Ruiz-Navarro, J.J.; Cuenca-Fernández, F.; Cejuela, R.; Arellano, R. Open Water Swimming in Elite Triathletes: Physiological and Biomechanical Determinants. Int. J. Sports Med. 2024, 45, 598–607. [Google Scholar] [CrossRef]
- Ieno, C.; Baldassarre, R.; Quagliarotti, C.; Bonifazi, M.; Piacentini, M.F. Session RPE Breakpoints Corresponding to Intensity Thresholds in Elite Open Water Swimmers. J. Funct. Morphol. Kinesiol. 2020, 5, 21. [Google Scholar] [CrossRef]
- Olbrecht, J.; Madsen, O.; Mader, A.; Liesen, H.; Hollmann, W. Relationship between swimming velocity and lactic concentration during continuous and intermittent training exercises. Int. J. Sports Med. 1985, 6, 74–77. [Google Scholar] [CrossRef]
- Fernandes, R.J.; Sousa, M.; Pinheiro, A.; Vilar, S.; Colaço, P.; Vilas-Boas, J.P. Assessment of individual anaerobic threshold and stroking parameters in swimmers aged 10–11 years. Eur. J. Sport. Sci. 2010, 10, 311–317. [Google Scholar] [CrossRef]
- Pyne, D.B.; Lee, H.; Swanwick, K.M. Monitoring the lactate threshold in world-ranked swimmers. Med. Sci. Sports Exerc. 2001, 33, 291–297. [Google Scholar] [CrossRef]
- Anderson, M.E.; Hopkins, W.G.; Roberts, A.D.; Pyne, D.B. Monitoring seasonal and long-term changes in test performance in elite swimmers. Eur. J. Sport. Sci. 2006, 6, 145–154. [Google Scholar] [CrossRef]
- Pla, R.; Aubry, A.; Resseguier, N.; Merino, M.; Toussaint, J.-F.; Hellard, P. Training Organization, Physiological Profile and Heart Rate Variability Changes in an Open-water World Champion. Int. J. Sports Med. 2019, 40, 519–527. [Google Scholar] [CrossRef]
- Faude, O.; Kindermann, W.; Meyer, T. Lactate Threshold Concepts. Sports Med. 2009, 39, 469–490. [Google Scholar] [CrossRef] [PubMed]
- Wasserman, K. The anaerobic threshold: Definition, physiological significance and identification. Adv. Cardiol. 1986, 35, 1–23. [Google Scholar]
- Chaverri, D.; Schuller, T.; Iglesias, X.; Hoffmann, U.; Rodríguez, F.A. A New Model for Estimating Peak Oxygen Uptake Based on Postexercise Measurements in Swimming. Int. J. Sports Physiol. Perform. 2016, 11, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Maglischo, E.W.; Maglischo, C.W.; Bishop, R.A. Lactate testing for training pace. Swim. Tech. 1982, 19, 31–37. [Google Scholar]
- Espada, M.C.; Alves, F.B.; Curto, D.; Ferreira, C.C.; Santos, F.J.; Pessôa-Filho, D.M.; Reis, J.F. Can an Incremental Step Test Be Used for Maximal Lactate Steady State Determination in Swimming? Clues for Practice. Int. J. Environ. Res. Public Health 2021, 18, 477. [Google Scholar] [CrossRef]
- Fernandes, R.J.; Sousa, M.; Machado, L.; Vilas-Boas, J.P. Step length and individual anaerobic threshold assessment in swimming. Int. J. Sports Med. 2011, 32, 940–946. [Google Scholar] [CrossRef]
- Anderson, M.; Hopkins, W.; Roberts, A.; Pyne, D. Ability of test measures to predict competitive performance in elite swimmers. J. Sports Sci. 2008, 26, 123–130. [Google Scholar] [CrossRef]
- di Prampero, P.E.; Dekerle, J.; Capelli, C.; Zamparo, P. The critical velocity in swimming. Eur. J. Appl. Physiol. 2008, 102, 165–171. [Google Scholar] [CrossRef]
- Toubekis, A.G.; Tokmakidis, S.P. Metabolic responses at various intensities relative to critical swimming velocity. J. Strength. Cond. Res. 2013, 27, 1731–1741. [Google Scholar] [CrossRef] [PubMed]
- Wakayoshi, K.; Ikuta, K.; Yoshida, T.; Udo, M.; Moritani, T.; Mutoh, Y.; Miyashita, M. Determination and validity of critical velocity as an index of swimming performance in the competitive swimmer. Eur. J. Appl. Physiol. 1992, 64, 153–157. [Google Scholar] [CrossRef]
- Toubekis, A.G.; Tsami, A.P.; Tokmakidis, S.P. Critical velocity and lactate threshold in young swimmers. Int. J. Sports Med. 2006, 27, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Mujika, I.; Chatard, J.-C.; Busso, T.; Geyssant, A.; Barale, F.; Lacoste, L. Effects of Effects of training on performance in competitive swimming. Can. J. Appl. Physiol. 1995, 20, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.; Kuipers, H.; Snyder, A.C.; Keizer, H.A.; Jeukendrup, A.; Hesselink, M. A new approach for the determination of ventilatory and lactate thresholds. Int. J. Sports Med. 1992, 13, 518–522. [Google Scholar] [CrossRef]
- Mader, A.; Heck, H.; Hollman, W. Evaluation of lactic acid anaerobic energy contribution by determination of postex-ercise lactic acid concentration of ear capillary blood in middle-distance runners and swimmers. In The International Congress of Physical Acitivity Sciences 1976; Landry., F., Orban, W.A.R., Eds.; Exercise Physiology, Symposia Specialists Incorporated: Miami, FL, USA, 1978; pp. 187–200. [Google Scholar]
- Bourdon, P. Blood lactate transition thresholds: Concepts and controversies. In Physiological Tests for Elite Athletes; Gore, C.J., Ed.; Human Kinetics: Champaign, IL, USA, 2000; pp. 55–65. [Google Scholar]
- Bishop, D.; Jenkins, D.G.; Mackinnon, L.T. The relationship between plasma lactate parameters, Wpeak and 1-h cycling performance in women. Med. Sci. Sports Exerc. 1998, 30, 1270–1275. [Google Scholar] [CrossRef]
- Pla, R.; Le Meur, Y.; Aubry, A.; Toussaint, J.-F.; Hellard, P. Effects of a 6-Week Period of Polarized or Threshold Training on Performance and Fatigue in Elite Swimmers. Int. J. Sports Physiol. Perform. 2019, 14, 183–189. [Google Scholar] [CrossRef]
- Altimari, J.M.; Altimari, L.R.; Gulak, A.; Traina Chacon-Mikahil, M.P. Correlações entre protocolos de determinação do limiar anaeróbio e o desempenho aeróbio em nadadores adolescentes. Rev. Bras. Med. Esporte 2007, 13, 245–250. [Google Scholar] [CrossRef]
- VanHeest, J.L.; Mahoney, C.E.; Herr, L. Characteristics of elite open-water swimmers. J. Strength. Cond. Res. 2004, 18, 302–305. [Google Scholar] [CrossRef]
- Purdom, T.; Kravitz, L.; Dokladny, K.; Mermier, C. Understanding the factors that effect maximal fat oxidation. J. Int. Soc. Sports Nutr. 2018, 15, 3. [Google Scholar] [CrossRef]
- Stefanetti, R.J.; Lamon, S.; Wallace, M.; Vendelbo, M.H.; Russell, A.P.; Vissing, K. Regulation of ubiquitin proteasome pathway molecular markers in response to endurance and resistance exercise and training. Pflug. Arch. Eur. J. Physiol. 2015, 467, 1523–1537. [Google Scholar] [CrossRef] [PubMed]
- Seiler, S. What is best practice for training intensity and duration distribution in endurance athletes? Int. J. Sports Physiol. Perform. 2010, 5, 276–291. [Google Scholar] [CrossRef] [PubMed]
- Nikitakis, I.S.; Toubekis, A.G. Lactate Threshold Evaluation in Swimmers: The Importance of Age and Method. Int. J. Sports Med. 2021, 42, 818–824. [Google Scholar] [CrossRef] [PubMed]
- Wakayoshi, K.; Yoshida, T.; Udo, M.; Harada, T.; Moritani, T.; Mutoh, Y.; Miyashita, M. Does critical swimming velocity represent exercise intensity at maximal lactate steady state? Eur. J. Appl. Physiol. 1993, 66, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Dekerle, J. The use of critical velocity in swimming: A place for critical stroke rate? Port. J. Sport. Sciences. Biomech. Med. Swim. X 2006, 6, 201–205. Available online: http://www.fcdef.up.pt/rpcd/_arquivo/artigos_soltos/vol.6_supl.2/04.evaluation.pdf (accessed on 1 July 2020).
- Dekerle, J.; Pelayo, P.; Clipet, B.; Depretz, S.; Lefevre, T.; Sidney, M. Critical swimming speed does not represent the speed at maximal lactate steady state. Int. J. Sports Med. 2005, 26, 524–530. [Google Scholar] [CrossRef]
- Valenzuela, P.L.; Alejo, L.B.; Montalvo-Pérez, A.; Gil-Cabrera, J.; Talavera, E.; Lucia, A.; Barranco-Gil, D. Relationship Between Critical Power and Different Lactate Threshold Markers in Recreational Cyclists. Front. Physiol. 2021, 12, 676484. [Google Scholar] [CrossRef]
Performances Times (s) | ||||||||
SB200 | SB400 | SB800 | SB1500 | PB200 | PB400 | PB800 | PB1500 | |
n = 15 | 1:56:78 ± 00:02:86 | 04:00:74 ± 00:04:47 | 08:15:81 ± 00:09:31 | 15:47:99 ± 00:14:77 | 01:55:86 ± 00:02:99 | 03:59:20 ± 00:05:04 | 08:13:35 ± 00:10:33 | 15:41:76 ± 00:20:28 |
Performances Times (m/s) | ||||||||
SB200 | SB400 | SB800 | SB1500 | PB200 | PB400 | PB800 | PB1500 | |
1.71 ± 0.04 | 1.66 ± 0.03 | 1.61 ± 0.03 | 1.58 ± 0.02 | 1.73 ± 0.04 | 1.67 ± 0.03 | 1.62 ± 0.03 | 1.59 ± 0.03 | |
Physiological Variables | ||||||||
VO2peak (mL/min/kg) | Lapeak (mmol/L) | HRmax (bpm) | MAS (m/s) | LT1 (mmol/L) | LT2 (mmol/L) | Dmax (mmol/L) | ||
n = 15 | 70.8 ± 7.6 | 9.1 ± 2.4 | 190 ± 9 | 1.70 ± 0.04 | 2.0 ± 0.6 | 3.5 ± 1.0 | 2.7 ± 0.8 | |
Physiological Variables (Lactate Measurements in m/s) | ||||||||
V2mmol/L | V4mmol/L | VLT1 | VLT2 | VDmax | ||||
n = 15 | 1.54 ± 0.04 | 1.62 ± 0.04 | 1.52 ± 0.05 | 1.59 ± 0.05 | 1.57 ± 0.03 | |||
Critical Velocities (m/s) | ||||||||
CV200/400 | CV400/800 | CV800/1500 | CV200/800 | CV200/1500 | CV200/400/800 | CV400/800/1500 | CV200/400/800/1500 | |
n = 15 | 1.61 ± 0.05 | 1.57 ± 0.03 | 1.55 ± 0.03 | 1.58 ± 0.04 | 1.56 ± 0.03 | 1.58 ± 0.04 | 1.55 ± 0.03 | 1.56 ± 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pla, R.; Raineteau, Y.; Barbier, X.; Aubry, A. Physiological Key Determinants of Elite Open-Water Swimmers. Physiologia 2024, 4, 305-316. https://doi.org/10.3390/physiologia4030018
Pla R, Raineteau Y, Barbier X, Aubry A. Physiological Key Determinants of Elite Open-Water Swimmers. Physiologia. 2024; 4(3):305-316. https://doi.org/10.3390/physiologia4030018
Chicago/Turabian StylePla, Robin, Yannis Raineteau, Xavier Barbier, and Anaël Aubry. 2024. "Physiological Key Determinants of Elite Open-Water Swimmers" Physiologia 4, no. 3: 305-316. https://doi.org/10.3390/physiologia4030018
APA StylePla, R., Raineteau, Y., Barbier, X., & Aubry, A. (2024). Physiological Key Determinants of Elite Open-Water Swimmers. Physiologia, 4(3), 305-316. https://doi.org/10.3390/physiologia4030018