The Impact of Protein in Post-Menopausal Women on Muscle Mass and Strength: A Narrative Review
Abstract
:1. Introduction
2. Hormone Changes during Menopause
2.1. Stages of Menopause
2.2. Estrogen
2.3. Progesterone
2.4. Follicular Stimulating Hormone (FSH) and Luteinising Hormone (LH)
2.5. Testosterone
2.6. Growth Hormone (GH) and Insulin-Like Growth Factor 1 (IGF-1)
2.7. Dehydroepiandrosterone (DHEA)
3. Menopause Health, Body Composition and Muscle Function
4. Protein Intake
4.1. Observational Cross-Sectional Studies
4.2. Intervention Studies
4.3. Timing
4.4. Type of Protein
4.5. Whey
4.6. Soy
4.6.1. Leucine
4.6.2. Vegetarian and Vegan Diets
4.7. Energy Restriction
5. Discussion
6. Conclusions
7. Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Rees, M.; Abernethy, K.; Bachmann, G.; Bretz, S.; Ceausu, I.; Durmusoglu, F.; Erkkola, R.; Fistonic, I.; Gambacciani, M.; Geukes, M.; et al. The essential menopause curriculum for healthcare professionals: A European Menopause and Andropause Society (EMAS) position statement. Maturitas 2022, 158, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Buckinx, F.; Aubertin-Leheudre, M. Sarcopenia in Menopausal Women: Current Perspectives. Int. J. Womens Health 2022, 14, 805–819. [Google Scholar] [CrossRef] [PubMed]
- El-Kateb, S.; Sridharan, S.; Farrington, K.; Fan, S.; Davenport, A. Comparison of equations of resting and total energy expenditure in peritoneal dialysis patients using body composition measurements determined by multi-frequency bioimpedance. Clin. Nutr. 2018, 37, 646–650. [Google Scholar] [CrossRef] [PubMed]
- Rannevik, G.; Jeppsson, S.; Johnell, O.; Bjerre, B.; Laurell-Borulf, Y.; Svanberg, L. A longitudinal study of the perimenopausal transition: Altered profiles of steroid and pituitary hormones, SHBG and bone mineral density. Maturitas 1995, 21, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Ahtiainen, M.; Pollanen, E.; Ronkainen, P.H.; Alen, M.; Puolakka, J.; Kaprio, J.; Sipila, S.; Kovanen, V. Age and estrogen-based hormone therapy affect systemic and local IL-6 and IGF-1 pathways in women. Age 2012, 34, 1249–1260. [Google Scholar] [CrossRef] [PubMed]
- Malutan, A.M.; Dan, M.; Nicolae, C.; Carmen, M. Proinflammatory and anti-inflammatory cytokine changes related to menopause. Prz. Menopauzalny 2014, 13, 162–168. [Google Scholar] [CrossRef]
- Randolph, J.F., Jr.; Sowers, M.; Bondarenko, I.V.; Harlow, S.D.; Luborsky, J.L.; Little, R.J. Change in estradiol and follicle-stimulating hormone across the early menopausal transition: Effects of ethnicity and age. J. Clin. Endocrinol. Metab. 2004, 89, 1555–1561. [Google Scholar] [CrossRef] [PubMed]
- Kawakita, T.; Yasui, T.; Yoshida, K.; Matsui, S.; Iwasa, T. Associations of LH and FSH with reproductive hormones depending on each stage of the menopausal transition. BMC Womens Health 2023, 23, 286. [Google Scholar] [CrossRef] [PubMed]
- Chanson, P.; Arnoux, A.; Mavromati, M.; Brailly-Tabard, S.; Massart, C.; Young, J.; Piketty, M.L.; Souberbielle, J.C.; Investigators, V. Reference Values for IGF-I Serum Concentrations: Comparison of Six Immunoassays. J. Clin. Endocrinol. Metab. 2016, 101, 3450–3458. [Google Scholar] [CrossRef] [PubMed]
- Romagnoli, E.; Minisola, S.; Carnevale, V.; Scarda, A.; Rosso, R.; Scarnecchia, L.; Pacitti, M.T.; Mazzuoli, G. Effect of estrogen deficiency on IGF-I plasma levels: Relationship with bone mineral density in perimenopausal women. Calcif. Tissue Int. 1993, 53, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Kalleinen, N.; Polo-Kantola, P.; Irjala, K.; Porkka-Heiskanen, T.; Vahlberg, T.; Virkki, A.; Polo, O. 24-hour serum levels of growth hormone, prolactin, and cortisol in pre- and postmenopausal women: The effect of combined estrogen and progestin treatment. J. Clin. Endocrinol. Metab. 2008, 93, 1655–1661. [Google Scholar] [CrossRef] [PubMed]
- Crawford, S.; Santoro, N.; Laughlin, G.A.; Sowers, M.F.; McConnell, D.; Sutton-Tyrrell, K.; Weiss, G.; Vuga, M.; Randolph, J.; Lasley, B. Circulating dehydroepiandrosterone sulfate concentrations during the menopausal transition. J. Clin. Endocrinol. Metab. 2009, 94, 2945–2951. [Google Scholar] [CrossRef] [PubMed]
- Harlow, S.D.; Gass, M.; Hall, J.E.; Lobo, R.; Maki, P.; Rebar, R.W.; Sherman, S.; Sluss, P.M.; de Villiers, T.J.; Group, S.C. Executive summary of the Stages of Reproductive Aging Workshop + 10: Addressing the unfinished agenda of staging reproductive aging. J. Clin. Endocrinol. Metab. 2012, 97, 1159–1168. [Google Scholar] [CrossRef] [PubMed]
- Geraci, A.; Calvani, R.; Ferri, E.; Marzetti, E.; Arosio, B.; Cesari, M. Sarcopenia and Menopause: The Role of Estradiol. Front. Endocrinol. 2021, 12, 682012. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [PubMed]
- La Colla, A.; Pronsato, L.; Milanesi, L.; Vasconsuelo, A. 17beta-Estradiol and testosterone in sarcopenia: Role of satellite cells. Ageing Res. Rev. 2015, 24 Pt B, 166–177. [Google Scholar] [CrossRef] [PubMed]
- Forcina, L.; Miano, C.; Pelosi, L.; Musarò, A. An Overview About the Biology of Skeletal Muscle Satellite Cells. Curr. Genom. 2019, 20, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Collins, B.C.; Arpke, R.W.; Larson, A.A.; Baumann, C.W.; Xie, N.; Cabelka, C.A.; Nash, N.L.; Juppi, H.K.; Laakkonen, E.K.; Sipila, S.; et al. Estrogen Regulates the Satellite Cell Compartment in Females. Cell Rep. 2019, 28, 368–381.e6. [Google Scholar] [CrossRef] [PubMed]
- Juppi, H.K.; Sipila, S.; Cronin, N.J.; Karvinen, S.; Karppinen, J.E.; Tammelin, T.H.; Aukee, P.; Kovanen, V.; Kujala, U.M.; Laakkonen, E.K. Role of Menopausal Transition and Physical Activity in Loss of Lean and Muscle Mass: A Follow-Up Study in Middle-Aged Finnish Women. J. Clin. Med. 2020, 9, 1588. [Google Scholar] [CrossRef]
- Willoughby, D.S.; Florez, C.; Davis, J.; Keratsopoulos, N.; Bisher, M.; Parra, M.; Taylor, L. Decreased Neuromuscular Function and Muscle Quality along with Increased Systemic Inflammation and Muscle Proteolysis Occurring in the Presence of Decreased Estradiol and Protein Intake in Early to Intermediate Post-Menopausal Women. Nutrients 2024, 16, 197. [Google Scholar] [CrossRef]
- Arthur, S.T.; Cooley, I.D. The effect of physiological stimuli on sarcopenia; impact of Notch and Wnt signaling on impaired aged skeletal muscle repair. Int. J. Biol. Sci. 2012, 8, 731–760. [Google Scholar] [CrossRef] [PubMed]
- Buford, T.W.; Anton, S.D.; Judge, A.R.; Marzetti, E.; Wohlgemuth, S.E.; Carter, C.S.; Leeuwenburgh, C.; Pahor, M.; Manini, T.M. Models of accelerated sarcopenia: Critical pieces for solving the puzzle of age-related muscle atrophy. Ageing Res. Rev. 2010, 9, 369–383. [Google Scholar] [CrossRef] [PubMed]
- Roth, S.M.; Metter, E.J.; Ling, S.; Ferrucci, L. Inflammatory factors in age-related muscle wasting. Curr. Opin. Rheumatol. 2006, 18, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Dobs, A.S.; Nguyen, T.; Pace, C.; Roberts, C.P. Differential effects of oral estrogen versus oral estrogen-androgen replacement therapy on body composition in postmenopausal women. J. Clin. Endocrinol. Metab. 2002, 87, 1509–1516. [Google Scholar] [CrossRef] [PubMed]
- Iannuzzi-Sucich, M.; Prestwood, K.M.; Kenny, A.M. Prevalence of sarcopenia and predictors of skeletal muscle mass in healthy, older men and women. J. Gerontol. A Biol. Sci. Med. Sci. 2002, 57, M772–M777. [Google Scholar] [CrossRef] [PubMed]
- Lambert, K.C.; Curran, E.M.; Judy, B.M.; Lubahn, D.B.; Estes, D.M. Estrogen receptor-alpha deficiency promotes increased TNF-alpha secretion and bacterial killing by murine macrophages in response to microbial stimuli in vitro. J. Leukoc. Biol. 2004, 75, 1166–1172. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.P.; Reid, M.B. NF-kappaB mediates the protein loss induced by TNF-alpha in differentiated skeletal muscle myotubes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000, 279, R1165–R1170. [Google Scholar] [CrossRef] [PubMed]
- Agostini, D.; Zeppa Donati, S.; Lucertini, F.; Annibalini, G.; Gervasi, M.; Ferri Marini, C.; Piccoli, G.; Stocchi, V.; Barbieri, E.; Sestili, P. Muscle and Bone Health in Postmenopausal Women: Role of Protein and Vitamin D Supplementation Combined with Exercise Training. Nutrients 2018, 10, 1103. [Google Scholar] [CrossRef] [PubMed]
- Ogilivie, M.; O’Sullivan, S.; Kyle, C. Reproductive Hormones: The Right Test, at the Right Time, for the Right Patient New Zealand BPAC. 2013. Available online: https://bpac.org.nz/BT/2013/February/02_hormones.aspx (accessed on 12 July 2024).
- Kim, Y.J.; Tamadon, A.; Park, H.T.; Kim, H.; Ku, S.Y. The role of sex steroid hormones in the pathophysiology and treatment of sarcopenia. Osteoporos. Sarcopenia 2016, 2, 140–155. [Google Scholar] [CrossRef] [PubMed]
- Shea, J.L.; Wong, P.Y.; Chen, Y. Free testosterone: Clinical utility and important analytical aspects of measurement. Adv. Clin. Chem. 2014, 63, 59–84. [Google Scholar] [CrossRef] [PubMed]
- Stanikova, D.; Zsido, R.G.; Luck, T.; Pabst, A.; Enzenbach, C.; Bae, Y.J.; Thiery, J.; Ceglarek, U.; Engel, C.; Wirkner, K.; et al. Testosterone imbalance may link depression and increased body weight in premenopausal women. Transl. Psychiatry 2019, 9, 160. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.E.; McArdle, A.; Griffiths, R.D. The role of hormones, cytokines and heat shock proteins during age-related muscle loss. Clin. Nutr. 2007, 26, 524–534. [Google Scholar] [CrossRef] [PubMed]
- Fanciulli, G.; Delitala, A.; Delitala, G. Growth hormone, menopause and ageing: No definite evidence for ‘rejuvenation’ with growth hormone. Hum. Reprod. Update 2009, 15, 341–358. [Google Scholar] [CrossRef] [PubMed]
- Baulieu, E.E. Dehydroepiandrosterone (DHEA): A fountain of youth? J. Clin. Endocrinol. Metab. 1996, 81, 3147–3151. [Google Scholar] [CrossRef] [PubMed]
- Greendale, G.A.; Sternfeld, B.; Huang, M.; Han, W.; Karvonen-Gutierrez, C.; Ruppert, K.; Cauley, J.A.; Finkelstein, J.S.; Jiang, S.F.; Karlamangla, A.S. Changes in body composition and weight during the menopause transition. JCI Insight 2019, 4, 124865. [Google Scholar] [CrossRef] [PubMed]
- Monterrosa-Castro, A.; Ortiz-Banquez, M.; Mercado-Lara, M. Prevalence of sarcopenia and associated factors in climacteric women of the Colombian Caribbean. Menopause 2019, 26, 1038–1044. [Google Scholar] [CrossRef] [PubMed]
- Walston, J.D. Sarcopenia in older adults. Curr. Opin. Rheumatol. 2012, 24, 623–627. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyere, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31, Erratum in Age Ageing 2019, 48, 601. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef] [PubMed]
- Muscaritoli, M.; Anker, S.D.; Argiles, J.; Aversa, Z.; Bauer, J.M.; Biolo, G.; Boirie, Y.; Bosaeus, I.; Cederholm, T.; Costelli, P.; et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: Joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin. Nutr. 2010, 29, 154–159. [Google Scholar] [CrossRef]
- Fielding, R.A.; Vellas, B.; Evans, W.J.; Bhasin, S.; Morley, J.E.; Newman, A.B.; Abellan van Kan, G.; Andrieu, S.; Bauer, J.; Breuille, D.; et al. Sarcopenia: An undiagnosed condition in older adults. Current consensus definition: Prevalence, etiology, and consequences. International working group on sarcopenia. J. Am. Med. Dir. Assoc. 2011, 12, 249–256. [Google Scholar] [CrossRef] [PubMed]
- American College of Sports Medicine. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med. Sci. Sports Exerc. 2009, 41, 687–708. [Google Scholar] [CrossRef] [PubMed]
- Law, T.D.; Clark, L.A.; Clark, B.C. Resistance Exercise to Prevent and Manage Sarcopenia and Dynapenia. Annu. Rev. Gerontol. Geriatr. 2016, 36, 205–228. [Google Scholar] [CrossRef] [PubMed]
- Morton, R.W.; Murphy, K.T.; McKellar, S.R.; Schoenfeld, B.J.; Henselmans, M.; Helms, E.; Aragon, A.A.; Devries, M.C.; Banfield, L.; Krieger, J.W.; et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br. J. Sports Med. 2018, 52, 376–384. [Google Scholar] [CrossRef]
- Nabuco, H.C.G.; Tomeleri, C.M.; Sugihara, P.J.; Fernandes, R.R.; Cavalcante, E.F.; Dos Santos, L.; Silva, A.M.; Sardinha, L.B.; Cyrino, E.S. Effect of whey protein supplementation combined with resistance training on cellular health in pre-conditioned older women: A randomized, double-blind, placebo-controlled trial. Arch. Gerontol. Geriatr. 2019, 82, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Whaikid, P.; Piaseu, N. The effectiveness of protein supplementation combined with resistance exercise programs among community-dwelling older adults with sarcopenia: A systematic review and meta-analysis. Epidemiol. Health 2024, 46, e2024030. [Google Scholar] [CrossRef] [PubMed]
- Volpi, E.; Ferrando, A.A.; Yeckel, C.W.; Tipton, K.D.; Wolfe, R.R. Exogenous amino acids stimulate net muscle protein synthesis in the elderly. J. Clin. Investig. 1998, 101, 2000–2007. [Google Scholar] [CrossRef] [PubMed]
- Dillon, E.L.; Sheffield-Moore, M.; Paddon-Jones, D.; Gilkison, C.; Sanford, A.P.; Casperson, S.L.; Jiang, J.; Chinkes, D.L.; Urban, R.J. Amino acid supplementation increases lean body mass, basal muscle protein synthesis, and insulin-like growth factor-I expression in older women. J. Clin. Endocrinol. Metab. 2009, 94, 1630–1637. [Google Scholar] [CrossRef] [PubMed]
- Castaneda, C.; Gordon, P.L.; Fielding, R.A.; Evans, W.J.; Crim, M.C. Marginal protein intake results in reduced plasma IGF-I levels and skeletal muscle fiber atrophy in elderly women. J. Nutr. Health Aging 2000, 4, 85–90. [Google Scholar] [PubMed]
- Stokes, T.; Hector, A.J.; Morton, R.W.; McGlory, C.; Phillips, S.M. Recent Perspectives Regarding the Role of Dietary Protein for the Promotion of Muscle Hypertrophy with Resistance Exercise Training. Nutrients 2018, 10, 180. [Google Scholar] [CrossRef] [PubMed]
- Maltais, M.L.; Desroches, J.; Dionne, I.J. Changes in muscle mass and strength after menopause. J. Musculoskelet. Neuronal Interact. 2009, 9, 186–197. [Google Scholar] [PubMed]
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. American College of Sports Medicine Joint Position Statement. Nutrition and Athletic Performance. Med. Sci. Sports Exerc. 2016, 48, 543–568. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.; Stehle, P.; Teta, D.; et al. Evidence-based recommendations for optimal dietary protein intake in older people: A position paper from the PROT-AGE Study Group. J. Am. Med. Dir. Assoc. 2013, 14, 542–559. [Google Scholar] [CrossRef] [PubMed]
- Burd, N.A.; Gorissen, S.H.; van Loon, L.J. Anabolic resistance of muscle protein synthesis with aging. Exerc. Sport. Sci. Rev. 2013, 41, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Moreau, K.; Walrand, S.; Boirie, Y. Protein redistribution from skeletal muscle to splanchnic tissue on fasting and refeeding in young and older healthy individuals. J. Am. Med. Dir. Assoc. 2013, 14, 696–704. [Google Scholar] [CrossRef] [PubMed]
- Fulgoni, V.L., 3rd. Current protein intake in America: Analysis of the National Health and Nutrition Examination Survey, 2003–2004. Am. J. Clin. Nutr. 2008, 87, 1554S–1557S. [Google Scholar] [CrossRef] [PubMed]
- Kohanmoo, A.; Faghih, S.; Akhlaghi, M. Effect of short- and long-term protein consumption on appetite and appetite-regulating gastrointestinal hormones, a systematic review and meta-analysis of randomized controlled trials. Physiol. Behav. 2020, 226, 113123. [Google Scholar] [CrossRef]
- Abdulnour, J.; Doucet, E.; Brochu, M.; Lavoie, J.M.; Strychar, I.; Rabasa-Lhoret, R.; Prud’homme, D. The effect of the menopausal transition on body composition and cardiometabolic risk factors: A Montreal-Ottawa New Emerging Team group study. Menopause 2012, 19, 760–767. [Google Scholar] [CrossRef] [PubMed]
- Gregorio, L.; Brindisi, J.; Kleppinger, A.; Sullivan, R.; Mangano, K.M.; Bihuniak, J.D.; Kenny, A.M.; Kerstetter, J.E.; Insogna, K.L. Adequate dietary protein is associated with better physical performance among post-menopausal women 60–90 years. J. Nutr. Health Aging 2014, 18, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Silva, T.R.; Spritzer, P.M. Skeletal muscle mass is associated with higher dietary protein intake and lower body fat in postmenopausal women: A cross-sectional study. Menopause 2017, 24, 502–509. [Google Scholar] [CrossRef]
- Alkerwi, A.; Vernier, C.; Sauvageot, N.; Crichton, G.E.; Elias, M.F. Demographic and socioeconomic disparity in nutrition: Application of a novel Correlated Component Regression approach. BMJ Open 2015, 5, e006814. [Google Scholar] [CrossRef] [PubMed]
- Gidlow, C.; Johnston, L.; Crone, D.; Ellis, N.; James, D. A systematic review of the relationship between socio-economic position and physical activity. Health Educ. J. 2016, 65, 338–367. [Google Scholar] [CrossRef]
- Dalstra, J.A.; Kunst, A.E.; Borrell, C.; Breeze, E.; Cambois, E.; Costa, G.; Geurts, J.J.; Lahelma, E.; Van Oyen, H.; Rasmussen, N.K.; et al. Socioeconomic differences in the prevalence of common chronic diseases: An overview of eight European countries. Int. J. Epidemiol. 2005, 34, 316–326. [Google Scholar] [CrossRef] [PubMed]
- Isanejad, M.; Mursu, J.; Sirola, J.; Kroger, H.; Rikkonen, T.; Tuppurainen, M.; Erkkila, A.T. Dietary protein intake is associated with better physical function and muscle strength among elderly women. Br. J. Nutr. 2016, 115, 1281–1291. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Zhu, K.; Devine, A.; Kerr, D.A.; Binns, C.W.; Prince, R.L. A 5-Year Cohort Study of the Effects of High Protein Intake on Lean Mass and BMC in Elderly Postmenopausal Women. J. Bone Miner. Res. 2009, 24, 1827–1834. [Google Scholar] [CrossRef] [PubMed]
- Beasley, J.M.; LaCroix, A.Z.; Neuhouser, M.L.; Huang, Y.; Tinker, L.; Woods, N.; Michael, Y.; Curb, J.D.; Prentice, R.L. Protein intake and incident frailty in the Women’s Health Initiative observational study. J. Am. Geriatr. Soc. 2010, 58, 1063–1071. [Google Scholar] [CrossRef] [PubMed]
- Ten Haaf, D.S.M.; Nuijten, M.A.H.; Maessen, M.F.H.; Horstman, A.M.H.; Eijsvogels, T.M.H.; Hopman, M.T.E. Effects of protein supplementation on lean body mass, muscle strength, and physical performance in nonfrail community-dwelling older adults: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2018, 108, 1043–1059. [Google Scholar] [CrossRef] [PubMed]
- Castaneda, C.; Charnley, J.M.; Evans, W.J.; Crim, M.C. Elderly women accommodate to a low-protein diet with losses of body cell mass, muscle function, and immune response. Am. J. Clin. Nutr. 1995, 62, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Rossato, L.T.; Nahas, P.C.; de Branco, F.M.S.; Martins, F.M.; Souza, A.P.; Carneiro, M.A.S.; Orsatti, F.L.; de Oliveira, E.P. Higher Protein Intake Does Not Improve Lean Mass Gain When Compared with RDA Recommendation in Postmenopausal Women Following Resistance Exercise Protocol: A Randomized Clinical Trial. Nutrients 2017, 12, 1007. [Google Scholar] [CrossRef] [PubMed]
- Silva, T.R.; Lago, S.C.; Yavorivski, A.; Ferreira, L.L.; Fighera, T.M.; Spritzer, P.M. Effects of high protein, low-glycemic index diet on lean body mass, strength, and physical performance in late postmenopausal women: A randomized controlled trial. Menopause 2020, 28, 307–317. [Google Scholar] [CrossRef]
- Nahas, P.C.; Rossato, L.T.; Martins, F.M.; Souza, A.P.; de Branco, F.M.S.; Carneiro, M.A.S.; Teixeira, K.R.C.; Orsatti, F.L.; de Oliveira, E.P. Moderate Increase in Protein Intake Promotes a Small Additional Improvement in Functional Capacity, But Not in Muscle Strength and Lean Mass Quality, in Postmenopausal Women Following Resistance Exercise: A Randomized Clinical Trial. Nutrients 2019, 11, 1323. [Google Scholar] [CrossRef] [PubMed]
- Englert, I.; Bosy-Westphal, A.; Bischoff, S.C.; Kohlenberg-Muller, K. Impact of Protein Intake during Weight Loss on Preservation of Fat-Free Mass, Resting Energy Expenditure, and Physical Function in Overweight Postmenopausal Women: A Randomized Controlled Trial. Obes. Facts 2021, 14, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Cintineo, H.P.; Arent, M.A.; Antonio, J.; Arent, S.M. Effects of Protein Supplementation on Performance and Recovery in Resistance and Endurance Training. Front. Nutr. 2018, 5, 83. [Google Scholar] [CrossRef] [PubMed]
- Simpson, S.J.; Raubenheimer, D.; Black, K.I.; Conigrave, A.D. Weight gain during the menopause transition: Evidence for a mechanism dependent on protein leverage. BJOG 2023, 130, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.R.; Areta, J.; Coffey, V.G.; Stellingwerff, T.; Phillips, S.M.; Burke, L.M.; Cleroux, M.; Godin, J.P.; Hawley, J.A. Daytime pattern of post-exercise protein intake affects whole-body protein turnover in resistance-trained males. Nutr. Metab. 2012, 9, 91. [Google Scholar] [CrossRef]
- Loenneke, J.P.; Loprinzi, P.D.; Murphy, C.H.; Phillips, S.M. Per meal dose and frequency of protein consumption is associated with lean mass and muscle performance. Clin. Nutr. 2016, 35, 1506–1511. [Google Scholar] [CrossRef] [PubMed]
- Hudson, J.L.; Iii, R.E.B.; Campbell, W.W. Protein Distribution and Muscle-Related Outcomes: Does the Evidence Support the Concept? Nutrients 2020, 12, 1441. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.R.; Churchward-Venne, T.A.; Witard, O.; Breen, L.; Burd, N.A.; Tipton, K.D.; Phillips, S.M. Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men. J. Gerontol. A Biol. Sci. Med. Sci. 2015, 70, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Breen, L.; Phillips, S.M. Interactions between exercise and nutrition to prevent muscle waste during ageing. Br. J. Clin. Pharmacol. 2013, 75, 708–715. [Google Scholar] [CrossRef] [PubMed]
- De Branco, F.M.S.; Carneiro, M.A.S.; Rossato, L.T.; Nahas, P.C.; Teixeira, K.R.C.; de Oliveira, G.N., Jr.; Orsatti, F.L.; de Oliveira, E.P. Protein timing has no effect on lean mass, strength and functional capacity gains induced by resistance exercise in postmenopausal women: A randomized clinical trial. Clin. Nutr. 2020, 39, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Norton, C.; Toomey, C.; McCormack, W.G.; Francis, P.; Saunders, J.; Kerin, E.; Jakeman, P. Protein Supplementation at Breakfast and Lunch for 24 Weeks beyond Habitual Intakes Increases Whole-Body Lean Tissue Mass in Healthy Older Adults. J. Nutr. 2016, 146, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Draganidis, D.; Karagounis, L.G.; Athanailidis, I.; Chatzinikolaou, A.; Jamurtas, A.Z.; Fatouros, I.G. Inflammaging and Skeletal Muscle: Can Protein Intake Make a Difference? J. Nutr. 2016, 146, 1940–1952. [Google Scholar] [CrossRef] [PubMed]
- Devries, M.C.; Phillips, S.M. Supplemental protein in support of muscle mass and health: Advantage whey. J. Food Sci. 2015, 80 (Suppl. S1), A8–A15. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.Y.; Chang, H.Y.; Huang, Y.C.; Liu, C.W. Effect of Whey Protein Supplementation in Postmenopausal Women: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 4210. [Google Scholar] [CrossRef] [PubMed]
- Cano, A.; Garcia-Perez, M.A.; Tarin, J.J. Isoflavones and cardiovascular disease. Maturitas 2010, 67, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Franco, O.H.; Chowdhury, R.; Troup, J.; Voortman, T.; Kunutsor, S.; Kavousi, M.; Oliver-Williams, C.; Muka, T. Use of Plant-Based Therapies and Menopausal Symptoms: A Systematic Review and Meta-analysis. JAMA 2016, 315, 2554–2563. [Google Scholar] [CrossRef] [PubMed]
- Aubertin-Leheudre, M.; Lord, C.; Khalil, A.; Dionne, I.J. Six months of isoflavone supplement increases fat-free mass in obese-sarcopenic postmenopausal women: A randomized double-blind controlled trial. Eur. J. Clin. Nutr. 2007, 61, 1442–1444. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.B.; Chen, W.H.; Guo, J.J.; Fu, Z.H.; Yi, C.; Zhang, M.; Na, X.L. Soy isoflavone supplementation could reduce body weight and improve glucose metabolism in non-Asian postmenopausal women-a meta-analysis. Nutrition 2012, 29, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Glisic, M.; Kastrati, N.; Musa, J.; Milic, J.; Asllanaj, E.; Portilla Fernandez, E.; Nano, J.; Ochoa Rosales, C.; Amiri, M.; Kraja, B.; et al. Phytoestrogen supplementation and body composition in postmenopausal women: A systematic review and meta-analysis of randomized controlled trials. Maturitas 2018, 115, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Orsatti, F.L.; Maesta, N.; de Oliveira, E.P.; Nahas Neto, J.; Burini, R.C.; Nunes, P.R.P.; Souza, A.P.; Martins, F.M.; Nahas, E.P. Adding Soy Protein to Milk Enhances the Effect of Resistance Training on Muscle Strength in Postmenopausal Women. J. Diet. Suppl. 2018, 15, 140–152. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Arnau, F.M.; Fonfria-Vivas, R.; Cauli, O. Beneficial Effects of Leucine Supplementation on Criteria for Sarcopenia: A Systematic Review. Nutrients 2019, 11, 2504. [Google Scholar] [CrossRef] [PubMed]
- Funderburk, L.K.; Beretich, K.N.; Chen, M.D.; Willoughby, D.S. Efficacy of L-leucine Supplementation Coupled With Resistance Training in Untrained Midlife Women. J. Am. Coll. Nutr. 2020, 39, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Funderburk, L.; Heileson, J.; Peterson, M.; Willoughby, D.S. Efficacy of L-Leucine Supplementation Coupled with a Calorie-Restricted Diet to Promote Weight Loss in Mid-Life Women. J. Am. Coll. Nutr. 2021, 40, 699–707. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.; Rockstrom, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, N.S.; Jaceldo-Siegl, K.; Sabate, J.; Fraser, G.E. Nutrient profiles of vegetarian and nonvegetarian dietary patterns. J. Acad. Nutr. Diet. 2013, 113, 1610–1619. [Google Scholar] [CrossRef] [PubMed]
- Van Vliet, S.; Burd, N.A.; van Loon, L.J. The Skeletal Muscle Anabolic Response to Plant- versus Animal-Based Protein Consumption. J. Nutr. 2015, 145, 1981–1991. [Google Scholar] [CrossRef] [PubMed]
- Pinckaers, P.J.M.; Trommelen, J.; Snijders, T.; van Loon, L.J.C. The Anabolic Response to Plant-Based Protein Ingestion. Sports Med. 2021, 51, 59–74. [Google Scholar] [CrossRef] [PubMed]
- Gorissen, S.H.; Horstman, A.M.; Franssen, R.; Crombag, J.J.; Langer, H.; Bierau, J.; Respondek, F.; van Loon, L.J. Ingestion of Wheat Protein Increases In Vivo Muscle Protein Synthesis Rates in Healthy Older Men in a Randomized Trial. J. Nutr. 2016, 146, 1651–1659. [Google Scholar] [CrossRef]
- Stoodley, I.L.; Williams, L.M.; Wood, L.G. Effects of Plant-Based Protein Interventions, with and without an Exercise Component, on Body Composition, Strength and Physical Function in Older Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2023, 15, 4060. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.W.; Jian, Z.H.; Chang, H.C.; Nfor, O.N.; Ko, P.C.; Lung, C.C.; Lin, L.Y.; Ho, C.C.; Chiang, Y.C.; Liaw, Y.P. Vegan diet and blood lipid profiles: A cross-sectional study of pre and postmenopausal women. BMC Womens Health 2014, 14, 55. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.H.; Yang, C.C.; Lin, C.L.; Kuo, T.B. Alteration of cardiovascular autonomic functions by vegetarian diets in postmenopausal women is related to LDL cholesterol levels. Chin. J. Physiol. 2008, 51, 100–105. [Google Scholar] [PubMed]
- Fu, C.H.; Yang, C.C.; Lin, C.L.; Kuo, T.B. Effects of long-term vegetarian diets on cardiovascular autonomic functions in healthy postmenopausal women. Am. J. Cardiol. 2006, 97, 380–383. [Google Scholar] [CrossRef] [PubMed]
- Boutot, M.E.; Purdue-Smithe, A.; Whitcomb, B.W.; Szegda, K.L.; Manson, J.E.; Hankinson, S.E.; Rosner, B.A.; Bertone-Johnson, E.R. Dietary Protein Intake and Early Menopause in the Nurses’ Health Study II. Am. J. Epidemiol. 2018, 187, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.G.; Zhang, Q.L.; Liu, X.L.; Wu, H.; Zheng, J.L.; Xiang, Y.B. Dietary protein intake and risk of type 2 diabetes: A dose-response meta-analysis of prospective studies. Eur. J. Nutr. 2019, 58, 1351–1367. [Google Scholar] [CrossRef] [PubMed]
- Cava, E.; Yeat, N.C.; Mittendorfer, B. Preserving Healthy Muscle during Weight Loss. Adv. Nutr. 2017, 8, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Bopp, M.J.; Houston, D.K.; Lenchik, L.; Easter, L.; Kritchevsky, S.B.; Nicklas, B.J. Lean mass loss is associated with low protein intake during dietary-induced weight loss in postmenopausal women. J. Am. Diet. Assoc. 2008, 108, 1216–1220. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.I.; Yoshino, J.; Kelly, S.C.; Reeds, D.N.; Okunade, A.; Patterson, B.W.; Klein, S.; Mittendorfer, B. High-Protein Intake during Weight Loss Therapy Eliminates the Weight-Loss-Induced Improvement in Insulin Action in Obese Postmenopausal Women. Cell Rep. 2016, 17, 849–861. [Google Scholar] [CrossRef] [PubMed]
- Longland, T.M.; Oikawa, S.Y.; Mitchell, C.J.; Devries, M.C.; Phillips, S.M. Higher compared with lower dietary protein during an energy deficit combined with intense exercise promotes greater lean mass gain and fat mass loss: A randomized trial. Am. J. Clin. Nutr. 2016, 103, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Larsen, M.S.; Witard, O.C.; Holm, L.; Scaife, P.; Hansen, R.; Smith, K.; Tipton, K.D.; Mose, M.; Bengtsen, M.B.; Lauritsen, K.M.; et al. Dose-Response of Myofibrillar Protein Synthesis To Ingested Whey Protein During Energy Restriction in Overweight Postmenopausal Women: A Randomized, Controlled Trial. J. Nutr. 2023, 153, 3173–3184. [Google Scholar] [CrossRef] [PubMed]
- Hector, A.J.; Marcotte, G.R.; Churchward-Venne, T.A.; Murphy, C.H.; Breen, L.; von Allmen, M.; Baker, S.K.; Phillips, S.M. Whey protein supplementation preserves postprandial myofibrillar protein synthesis during short-term energy restriction in overweight and obese adults. J. Nutr. 2015, 145, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Hulshof, K.F.; Brussaard, J.H.; Kruizinga, A.G.; Telman, J.; Lowik, M.R. Socio-economic status, dietary intake and 10 y trends: The Dutch National Food Consumption Survey. Eur. J. Clin. Nutr. 2003, 57, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Lawlor, D.A.; Ebrahim, S.; Smith, G.D. The association of socio-economic position across the life course and age at menopause: The British Women’s Heart and Health Study. Int. J. Obstet. Gynaecol. 2003, 110, 1078–1087. [Google Scholar]
- Tiidus, P.M. Benefits of estrogen replacement for skeletal muscle mass and function in post-menopausal females: Evidence from human and animal studies. Eurasian J. Med. 2011, 43, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Neu, A.; Behret, F.; Braun, R.; Herrlich, S.; Liebrich, F.; Loesch-Binder, M.; Schneider, A.; Schweizer, R. Higher glucose concentrations following protein- and fat-rich meals—The Tuebingen Grill Study: A pilot study in adolescents with type 1 diabetes. Pediatr. Diabetes 2015, 16, 587–591. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, F.; Lavigne, C.; Jacques, H.; Marette, A. Role of dietary proteins and amino acids in the pathogenesis of insulin resistance. Annu. Rev. Nutr. 2007, 27, 293–310. [Google Scholar] [CrossRef] [PubMed]
Hormone | Pre-Menopause | Peri-Menopause | Post-Menopause |
---|---|---|---|
Estrone (E1) | 299 ± 171 [4] | 216 ± 104 pmol.L−1 3 years: 148 pmol.L−1 [4] | |
Estradiol (E2) | 75.0 ± 1.7 pg.mL−1 [7] | Early 73.6 ± 1.9 pg.mL−1 Late: 51.8 ± 6.0 pg.mL−1 [7] | 40.2 ± 6.5 pg.mL−1 [7] |
Progesterone | 27.3 ± 9.95 nmol.L−1 [4]. | 22.4 ± 15.1 nmol.L−1 [4]. | ≤2 nmol.L−1 [4]. |
Follicular Stimulating Hormone (FSH) | 19.5 ± 0.4 IU.L−1 [7] | Early: 30.5 ± 0.8 IU.L−1 Late 87.2 ± 4.9 IU.L−1 [7] | 109.7 ± 5.3 IU.L−1 [7] |
Luteinising Hormone (LH) | 3.7 mIU.L−1 Range 2.83–5.90 mIU.mL−1 [8] | Early: 7.2 mIU.L−1 Range: 4.05–13.28 mIU.mL−1 Late: 8.8 mIU.L−1 Range: 7.7–26.3 mIU.mL−1 [8] | Very Early: 30.05 mIU.L−1 Range 17.48–35.78 mIU.L−1 Early: 33.30 mIU.L−1 Range: 20.80–43.90 mIU.L−1 Late: 30.55 mIU.L−1 Range: 23.5–38.48 mIU.mL−1 [8] |
Testosterone | 25–30 months pre: 1.5 ± 0.48 nmol.L−1 [4] | 1–6 months pre: 1.7 ± 0.5 nmol.L−1 [4] | 13–24 months post: 1.4 ± 0.47 nmol.L−1 85–96 months post: 1.2± 0.38 nmol.L−1 [4] |
IGF-1 | Normative data 95% CI females 21–23: 144–541 ng.mL−1 [9] | 166.07 ± 6.63 ng.mL−1 [10] * | 138.89 ± 7.85 ng.mL−1 [10] |
GH | 1.8 ± 0.8 mU.L−1 [11] * | 1.0 ± 0.6 mU.L−1 [11] | |
DHEAS | 109 ug.dL−1 [12] ƚ | Early: 108 ug.dL−1 Late: 112 ug.dL−1 [12] ƚ | Early: 112 ug.dL−1 Late: 108 ug.dL−1 [12] ƚ |
Reference | Participants | Protein Intakes | Outcome |
---|---|---|---|
Xingqiong et al. (2009) [66] |
| Compared with those in the lowest tertile of protein intake (<66 g/d), women in the top tertile (>87 g/d) had 5.4–6.0% higher whole body and appendicular lean mass | Association between protein intake and lean mass. high protein intake is associated with long-term beneficial effects on muscle mass and size. |
Beasley et al. (2010) [67] |
| After adjustment for confounders, a 20% increase in uncalibrated protein intake (%kcal) was associated with a 12% (95% confidence interval (CI) = 8–16%) lower risk of frailty, and a 20% increase in calibrated protein intake was associated with a 32% (95% CI = 23–50%) lower risk of frailty. | A larger proportion of total energy intake from protein was associated with a reduced risk of frailty in a dose-dependent manner. |
Gregorio et al. (2014) [60] |
| Lower <0.8 g·kg−1·d−1 Higher ≥0.8 g·kg−1·d−1 | The higher protein group had lower body mass, and fat-to-lean ratio lower-protein (p < 0.001). Composite scores of upper and lower extremity strength were impaired in the low protein group. |
Silva et al. (2017) [61] |
| Low ≤0.93 g·kg−1·d−1, Moderate 0.94–1.29 g·kg−1·d−1, High ≥1.3 g·kg−1·d−1 | The lowest-intake group had the lowest skeletal muscle mass index and highest % body fat. |
Isanejad et al. (2016) [65] |
| Low ≤ 0·8 g·kg−1·d−1 High ≥ 1·2 g·kg−1·d−1 | High protein had better muscle strength, lower body fat, and higher lean mass. |
Reference | Participants | Protein Intervention | Resistance Exercise | Outcome |
---|---|---|---|---|
Castaneda, Charnley, Evans, & Crim (1995) [69] |
| Low 0.45 g·kg−1·d−1 Adequate 0.92 g·kg−1·d−1 | No | Low protein intake lost lean mass Adequate protein maintained lean mass. |
Rossato et al. (2017) [70] |
| RDA: ~0.8 g·kg−1·d−1 High: ~1.2 g·kg−1·d−1 10 weeks | Yes, 3 times per week | No significant differences between groups. |
Nahas et al. (2019) [72] |
| RDA: ~0.8 g·kg−1·d−1 High: ~1.2 g·kg−1·d−1 10 weeks | Yes, 3 times per week | Both groups increased functional capacity. Higher protein had minor additional improvements in functional capacity. |
Silva et al. (2020) [71] |
| RDA: 0.8 g·kg−1·d−1 Twice RDA: 1.6 g·kg−1·d−1 6 months | No | No difference between groups. |
Englert, Bosy-Westphal, Bischoff, & Kohlenberg-Muller (2021) [73] |
| RDA: 0.8 g·kg−1·d−1 High: 1.5 g·kg−1·d−1 12 weeks | No | No significant effects on lean mass loss. Muscle strength may have been preserved with higher protein intakes. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Black, K.E.; Matkin-Hussey, P. The Impact of Protein in Post-Menopausal Women on Muscle Mass and Strength: A Narrative Review. Physiologia 2024, 4, 266-285. https://doi.org/10.3390/physiologia4030016
Black KE, Matkin-Hussey P. The Impact of Protein in Post-Menopausal Women on Muscle Mass and Strength: A Narrative Review. Physiologia. 2024; 4(3):266-285. https://doi.org/10.3390/physiologia4030016
Chicago/Turabian StyleBlack, Katherine Elizabeth, and Penelope Matkin-Hussey. 2024. "The Impact of Protein in Post-Menopausal Women on Muscle Mass and Strength: A Narrative Review" Physiologia 4, no. 3: 266-285. https://doi.org/10.3390/physiologia4030016
APA StyleBlack, K. E., & Matkin-Hussey, P. (2024). The Impact of Protein in Post-Menopausal Women on Muscle Mass and Strength: A Narrative Review. Physiologia, 4(3), 266-285. https://doi.org/10.3390/physiologia4030016