Reliability of the 15-s Maximal Lactate Accumulation Rate (VLamax) Test for Cycling
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. Limitations
3.2. Practical Applications and Recommendations
4. Materials and Methods
4.1. Participants and Ethics Approval
4.2. Study Overview
4.3. Additional Preparation for Non-Cyclists
4.4. Sprint Sessions
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Subj # | Sex | Wgt | Session | HLa-1 | Pk BLC | Time to Pk | VLamax | Talac | Peak 15 s Watts | Peak W/kg | AVG 15 s | Avg W/kg | kJ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | M | 71.1 | 1 | 0.9 | 11.6 | 5 | 0.973 | 4 | 851 | 12.0 | 793 | 11.2 | 12 |
1 | M | 71.1 | 2 | 1 | 9.7 | 1 | 0.870 | 5 | 864 | 12.2 | 771 | 10.8 | 12 |
2 | M | 62.7 | 1 | 1.3 | 12.9 | 1 | 1.055 | 4 | 771 | 12.3 | 688 | 11.0 | 10 |
2 | M | 62.7 | 2 | 1.6 | 11.1 | 3 | 0.864 | 4 | 796 | 12.7 | 697 | 11.1 | 11 |
3 | M | 65.9 | 1 | 0.8 | 7.3 | 7 | 0.500 | 2 | 892 | 13.5 | 720 | 10.9 | 11 |
3 | M | 65.9 | 2 | 1.7 | 8.2 | 3 | 0.542 | 3 | 878 | 13.3 | 706 | 10.7 | 11 |
4 | M | 92.6 | 1 | 2.6 | 7.7 | 1 | 0.510 | 5 | 1217 | 13.1 | 1017 | 11.0 | 15 |
4 | M | 92.6 | 2 | 3.9 | 9.5 | 3 | 0.700 | 7 | 1182 | 12.8 | 1046 | 11.3 | 16 |
5 | M | 65.6 | 1 | 1.4 | 9.4 | 3 | 0.615 | 2 | 799 | 12.2 | 740 | 11.3 | 11 |
5 | M | 65.6 | 2 | 3.2 | 8.1 | 7 | 0.377 | 2 | 812 | 12.4 | 713 | 10.9 | 11 |
6 | M | 70.7 | 1 | 2.6 | 13.8 | 1 | 1.120 | 5 | 964 | 13.6 | 870 | 12.3 | 13 |
6 | M | 70.7 | 2 | 1.4 | 11.3 | 1 | 0.990 | 5 | 782 | 11.1 | 748 | 10.6 | 11 |
7 | M | 103.5 | 1 | 2.1 | 10.3 | 5 | 0.586 | 1 | 1222 | 11.8 | 1036 | 10.0 | 16 |
7 | M | 103.5 | 2 | 1.6 | 7.4 | 5 | 0.446 | 2 | 1124 | 10.9 | 935 | 9.0 | 14 |
8 | M | 76.7 | 1 | 3 | 10.4 | 1 | 0.617 | 3 | 972 | 12.7 | 814 | 10.6 | 12 |
8 | M | 76.7 | 2 | 2.1 | 9 | 3 | 0.531 | 2 | 923 | 12.0 | 809 | 10.5 | 12 |
9 | M | 73 | 1 | 1.9 | 10 | 3 | 0.623 | 2 | 667 | 9.1 | 579 | 7.9 | 9 |
9 | M | 73 | 2 | 1.5 | 7.1 | 1 | 0.467 | 3 | 808 | 11.1 | 700 | 9.6 | 11 |
10 | M | 76.7 | 1 | 1.9 | 9.6 | 5 | 0.856 | 6 | 792 | 10.3 | 660 | 8.6 | 10 |
10 | M | 76.7 | 2 | 1.5 | 10.9 | 1 | 1.044 | 6 | 727 | 9.5 | 603 | 7.9 | 9 |
11 | M | 56.7 | 1 | 2.3 | 11.3 | 1 | 0.692 | 2 | 739 | 13.0 | 635 | 11.2 | 10 |
11 | M | 56.7 | 2 | 2.4 | 10.8 | 5 | 0.764 | 4 | 891 | 15.7 | 710 | 12.5 | 11 |
12 | M | 68.3 | 1 | 2.6 | 7.2 | 5 | 0.511 | 6 | 634 | 9.3 | 585 | 8.6 | 9 |
12 | M | 68.3 | 2 | 1.8 | 5.8 | 5 | 0.444 | 6 | 600 | 8.8 | 546 | 8.0 | 8 |
13 | M | 67.1 | 1 | 1.3 | 5.9 | 3 | 0.418 | 4 | 787 | 11.7 | 664 | 9.9 | 10 |
13 | M | 67.1 | 2 | 1.4 | 5.3 | 3 | 0.325 | 3 | 851 | 12.7 | 737 | 11.0 | 11 |
14 | M | 80.1 | 1 | 0.8 | 7.6 | 3 | 0.756 | 6 | 784 | 9.8 | 663 | 8.3 | 10 |
14 | M | 80.1 | 2 | 0.5 | 8.5 | 3 | 0.667 | 3 | 765 | 9.6 | 665 | 8.3 | 10 |
15 | M | 70.5 | 1 | 1.7 | 9.6 | 1 | 0.564 | 1 | 929 | 13.2 | 744 | 10.6 | 11 |
15 | M | 70.5 | 2 | 0.7 | 11.6 | 1 | 0.779 | 1 | 899 | 12.8 | 675 | 9.6 | 10 |
16 | M | 122.8 | 1 | 2.1 | 9.5 | 7 | 0.740 | 5 | 1232 | 10.0 | 959 | 7.8 | 14 |
16 | M | 122.8 | 2 | 1.7 | 9.7 | 7 | 0.667 | 3 | 1110 | 9.0 | 873 | 7.1 | 13 |
17 | M | 81.2 | 1 | 2.9 | 13.1 | 3 | 1.275 | 7 | 1179 | 14.5 | 1005 | 12.4 | 15 |
17 | M | 81.2 | 2 | 3.2 | 10.3 | 3 | 0.789 | 6 | 1122 | 13.8 | 1005 | 12.4 | 15 |
18 | M | 88.6 | 1 | 4.3 | 7.5 | 3 | 0.291 | 4 | 907 | 10.2 | 743 | 8.4 | 11 |
18 | M | 88.6 | 2 | 1.2 | 7.4 | 3 | 0.564 | 4 | 864 | 9.8 | 710 | 8.0 | 11 |
19 | F | 71.3 | 1 | 1.6 | 10.4 | 5 | 0.880 | 5 | 592 | 8.3 | 411 | 5.8 | 6 |
19 | F | 71.3 | 2 | 1.1 | 13.2 | 5 | 1.210 | 5 | 394 | 5.5 | 312 | 4.4 | 5 |
20 | F | 54.8 | 1 | 2.8 | 11.8 | 3 | 0.750 | 3 | 461 | 8.4 | 374 | 6.8 | 6 |
20 | F | 54.8 | 2 | 2.1 | 11.7 | 3 | 0.873 | 4 | 471 | 8.6 | 390 | 7.1 | 6 |
21 | F | 66.2 | 1 | 3 | 7.9 | 3 | 0.408 | 3 | 555 | 8.4 | 323 | 4.9 | 5 |
21 | F | 66.2 | 2 | 3 | 5.8 | 1 | 0.255 | 4 | 506 | 7.6 | 321 | 4.8 | 5 |
22 | F | 103.8 | 1 | 1.5 | 8.3 | 5 | 0.618 | 4 | 634 | 6.1 | 441 | 4.2 | 7 |
22 | F | 103.8 | 2 | 1.8 | 6.8 | 5 | 0.417 | 3 | 540 | 5.2 | 232 | 2.2 | 3 |
23 | F | 100.6 | 1 | 3.3 | 10.8 | 5 | 0.833 | 6 | 658 | 6.5 | 482 | 4.8 | 7 |
23 | F | 100.6 | 2 | 1.8 | 8.3 | 3 | 0.650 | 5 | 589 | 5.9 | 473 | 4.7 | 7 |
24 | F | 58.7 | 1 | 2 | 6.5 | 5 | 0.375 | 3 | 452 | 7.7 | 316 | 5.4 | 5 |
24 | F | 58.7 | 2 | 2.8 | 8 | 5 | 0.520 | 5 | 434 | 7.4 | 339 | 5.8 | 5 |
25 | F | 61 | 1 | 1.9 | 8.1 | 9 | 0.689 | 6 | 468 | 7.7 | 371 | 6.1 | 6 |
25 | F | 61 | 2 | 1.6 | 8.3 | 5 | 0.609 | 4 | 544 | 8.9 | 404 | 6.6 | 6 |
26 | F | 63.9 | 1 | 1 | 8.7 | 7 | 0.642 | 3 | 615 | 9.6 | 439 | 6.9 | 7 |
26 | F | 63.9 | 2 | 1.3 | 10.8 | 3 | 0.864 | 4 | 599 | 9.4 | 473 | 7.4 | 7 |
27 | F | 58.2 | 1 | 1.1 | 8.4 | 5 | 0.562 | 2 | 477 | 8.2 | 388 | 6.7 | 6 |
27 | F | 58.2 | 2 | 3.7 | 7.8 | 7 | 0.373 | 4 | 536 | 9.2 | 471 | 8.1 | 7 |
28 | F | 50.9 | 1 | 2.8 | 9.8 | 1 | 0.636 | 4 | 637 | 12.5 | 511 | 10.0 | 8 |
28 | F | 50.9 | 2 | 3.4 | 7 | 1 | 0.300 | 3 | 539 | 10.6 | 497 | 9.8 | 7 |
29 | F | 64.1 | 1 | 1.2 | 6 | 1 | 0.480 | 5 | 706 | 11.0 | 624 | 9.7 | 9 |
29 | F | 64.1 | 2 | 1.5 | 6.3 | 3 | 0.480 | 5 | 670 | 10.5 | 607 | 9.5 | 9 |
30 | F | 60.9 | 1 | 0.6 | 6.1 | 3 | 0.611 | 6 | 569 | 9.3 | 539 | 8.8 | 8 |
30 | F | 60.9 | 2 | 0.9 | 6.2 | 1 | 0.663 | 7 | 572 | 9.4 | 541 | 8.9 | 8 |
References
- Joyner, M.J.; Coyle, E.F. Endurance exercise performance: The physiology of champions: Factors that make champions. J. Physiol. 2008, 586, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Bassett, D.R.; Howley, E.T. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med. Sci. Sports Exerc. 2000, 32, 70–84. [Google Scholar] [CrossRef] [PubMed]
- Faude, O.; Kindermann, W.; Meyer, T. Lactate Threshold Concepts: How Valid are They? Sports Med. 2009, 39, 469–490. [Google Scholar] [CrossRef] [PubMed]
- Harnish, C.R.; Swensen, T.C.; Pate, R.R. Methods for estimating the maximal lactate steady state in trained cyclists. Med. Sci. Sports Exerc. 2001, 33, 1052–1055. [Google Scholar] [CrossRef] [PubMed]
- Hoogeveen, A.R.; Hoogsteen, J.; Schep, G. The Maximal Lactate Steady State in Elite Endurance Athletes. Jpn. J. Physiol. 1997, 47, 481–485. [Google Scholar] [CrossRef] [PubMed]
- Beneke, R.; Leithäuser, R.M.; Ochentel, O. Blood lactate diagnostics in exercise testing and training. Int. J. Sports Physiol. Perform. 2011, 6, 8–24. [Google Scholar] [CrossRef]
- Jacobs, I. Blood lactate: Implications for training and sports performance. Sports Med. 1986, 3, 10–25. [Google Scholar] [CrossRef]
- Olbrecht, J. Triathlon: Swimming for winning. J. Hum. Sport Exerc. 2011, 6, 233–246. [Google Scholar] [CrossRef]
- Casado, A.; Foster, C.; Bakken, M.; Tjelta, L.I. Does Lactate-Guided Threshold Interval Training within a High-Volume Low-Intensity Approach Represent the “Next Step” in the Evolution of Distance Running Training? Int. J. Environ. Res. Public Health 2023, 20, 3782. [Google Scholar] [CrossRef]
- Mader, A. Glycolysis and oxidative phosphorylation as a function of cytosolic phosphorylation state and power output of the muscle cell. Eur. J. Appl. Physiol. 2003, 88, 317–338. [Google Scholar] [CrossRef]
- Brooks, G.A.; Arevalo, J.A.; Osmond, A.D.; Leija, R.G.; Curl, C.C.; Tovar, A.P. Lactate in contemporary biology: A phoenix risen. J. Physiol. 2022, 600, 1229–1251. [Google Scholar] [CrossRef] [PubMed]
- San-Millán, I.; Brooks, G.A. Assessment of metabolic flexibility by means of measuring blood lactate, fat, and carbohydrate oxidation responses to exercise in professional endurance athletes and less-fit individuals. Sports Med. 2018, 48, 467–479. [Google Scholar] [CrossRef] [PubMed]
- Wackerhage, H.; Gehlert, S.; Schulz, H.; Weber, S.; Ring-Dimitriou, S.; Heine, O. Lactate thresholds and the simulation of human energy metabolism: Contributions by the cologne sports medicine group in the 1970s and 1980s. Front. Physiol. 2022, 13, 899670. [Google Scholar] [CrossRef] [PubMed]
- Hauser, T.; Adam, J.; Schulz, H. Comparison of calculated and experimental power in maximal lactate-steady state during cycling. Theor. Biol. Med. Model. 2014, 11, 1. [Google Scholar] [CrossRef] [PubMed]
- Niessen, M.; Hartmann, U.; Beneke, R. Estimation of Maximum Glycolytic Rate from Capillary Blood at Running Sprints of Different Durations: 2827 Board #142 May 29, 2: 00 PM-3: 30 PM. Med. Sci. Sports Exerc. 2015, 47, 769. [Google Scholar] [CrossRef]
- Nitzsche, N.; Baumgärtel, L.; Schulz, H. Comparison of Maximum Lactate Formation Rates in Ergometer Sprint and Maximum Strength Loads. Ger. J. Sports Med./Dtsch. Z. Sportmed. 2018, 69, 13–18. [Google Scholar] [CrossRef]
- Podlogar, T.; Cirnski, S.; Bokal, Š.; Kogoj, T. Utility of INSCYD athletic performance software to determine Maximal Lactate Steady State and Maximal Oxygen Uptake in cyclists. J. Sci. Cycl. 2022, 11, 30–38. [Google Scholar] [CrossRef]
- Yang, W.-H.; Park, S.-Y.; Kim, T.; Jeon, H.-J.; Heine, O.; Gehlert, S. A modified formula using energy system contributions to calculate pure maximal rate of lactate accumulation during a maximal sprint cycling test. Front. Physiol. 2023, 14, 1147321. [Google Scholar] [CrossRef]
- Hauser, T.; Bartsch, D.; Baumgärtel, L.; Schulz, H. Reliability of Maximal Lactate-Steady-State. Int. J. Sports Med. 2012, 34, 196–199. [Google Scholar] [CrossRef]
- Faude, O.; Hecksteden, A.; Hammes, D.; Schumacher, F.; Besenius, E.; Sperlich, B.; Meyer, T. Reliability of time-to-exhaustion and selected psycho-physiological variables during constant-load cycling at the maximal lactate steady-state. Appl. Physiol. Nutr. Metab. 2017, 42, 142–147. [Google Scholar] [CrossRef]
- Pallarés, J.G.; Morán-Navarro, R.; Ortega, J.F.; Fernández-Elías, V.E.; Mora-Rodriguez, R. Validity and Reliability of Ventilatory and Blood Lactate Thresholds in Well-Trained Cyclists. PLoS ONE 2016, 11, e0163389. [Google Scholar] [CrossRef] [PubMed]
- Quittmann, O.J.; Schwarz, Y.M.; Mester, J.; Foitschik, T.; Abel, T.; Strüder, H.K. Maximal Lactate Accumulation Rate in All-out Exercise Differs between Cycling and Running. Int. J. Sports Med. 2021, 42, 314–322. [Google Scholar] [CrossRef]
- Mader, A.; Heck, H. A theory of the metabolic origin of “anaerobic threshold”. Int. J. Sports Med. 1986, 7 (Suppl. S1), 45–65. [Google Scholar] [CrossRef] [PubMed]
- Olbrecht, J. The Science of Winning: Planning, Periodizing and Optimizing Swim Training. Available online: https://books.google.co.jp/books/about/The_Science_of_Winning.html?id=GbiKHAAACAAJ&redir_esc=y (accessed on 15 August 2023).
- Olbrecht, J.; Madsen, O.; Mader, A.; Liesen, H.; Hollmann, W. Relationship between swimming velocity and lactic concentration during continuous and intermittent training exercises. Int. J. Sports Med. 1985, 6, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Dunst, A.K.; Hesse, C.; Feldmann, A.; Holmberg, H.C. A Novel Approach to Determining the Alactic Time Span in Connection with Assessment of the Maximal Rate of Lactate Accumulation in Elite Track Cyclists. Int. J. Sports Physiol. Perform. 2023, 18, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Schünemann, F.; Park, S.-Y.; Wawer, C.; Theis, C.; Yang, W.-H.; Gehlert, S. Diagnostics of νLa.max and Glycolytic Energy Contribution Indicate Individual Characteristics of Anaerobic Glycolytic Energy Metabolism Contributing to Rowing Performance. Metabolites 2023, 13, 317. [Google Scholar] [CrossRef]
- Quittmann, O.J.; Appelhans, D.; Abel, T.; Strüder, H.K. Evaluation of a sport-specific field test to determine maximal lactate accumulation rate and sprint performance parameters in running. J. Sci. Med. Sport 2020, 23, 27–34. [Google Scholar] [CrossRef]
- Mavroudi, M.; Kabasakalis, A.; Petridou, A.; Mougios, V. Blood Lactate and Maximal Lactate Accumulation Rate at Three Sprint Swimming Distances in Highly Trained and Elite Swimmers. Sports 2023, 11, 87. [Google Scholar] [CrossRef]
- Yapici-Oksuzoglu, A.; Egesoy, H. The effect of menstrual cycle on anaerobic power and jumping performance. Pedagog. Phys. Cult. Sports 2021, 25, 367–372. [Google Scholar] [CrossRef]
- Smekal, G.; Von Duvillard, S.P.; Frigo, P.; Tegelhofer, T.; Pokan, R.; Hofmann, P.; Tschan, H.; Baron, R.; Wonisch, M.; Renezeder, K.; et al. Menstrual cycle: No effect on exercise cardiorespiratory variables or blood lactate concentration. Med. Sci. Sports Exerc. 2007, 39, 1098–1106. [Google Scholar] [CrossRef]
- McCracken, M.; Ainsworth, B.; Hackney, A.C. Effects of the menstrual cycle phase on the blood lactate responses to exercise. Eur. J. Appl. Physiol. Occup. Physiol. 1994, 69, 174–175. [Google Scholar] [CrossRef] [PubMed]
- Hoon, M.W.; Michael, S.W.; Patton, R.L.; Chapman, P.G.; Areta, J.L. A Comparison of the Accuracy and Reliability of the Wahoo KICKR and SRM Power Meter. J. Sci. Cycl. 2015, 5, 11–15. [Google Scholar]
- Hart, S.; Drevets, K.; Alford, M.; Salacinski, A.; Hunt, B.E. A method-comparison study regarding the validity and reliability of the Lactate Plus analyzer. BMJ Open 2013, 3, e001899. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Measuring agreement in method comparison studies. Stat. Methods Med. Res. 1999, 8, 135–160. [Google Scholar] [CrossRef] [PubMed]
Men | Women | Overall | p-Value | |
---|---|---|---|---|
N | 18 | 12 | 30 | |
Age (y) | 32.6 ± 9.7 | 26.0 ± 9.0 | 29.9 ± 9.8 | 0.0731 |
Height (cm) | 180.3 ± 6.3 | 165.5 ± 8.6 | 174.4 ± 10.3 | <0.0001 |
Weight (kg) | 77.4 ± 16.0 | 67.9 ± 16.9 | 73.6 ± 16.8 | 0.1284 |
Peak 15 s (W) | 907.7 ± 190.9 | 568.7 ± 86.5 | 746.4 ± 218.1 | <0.0001 |
Mean 15 s (W) | 846.4 ± 147.7 | 434.9 ± 91.4 | 623.6 ± 206.4 | <0.0001 |
Pre-BLC (mM) | 2.0 + 0.9 | 1.9 ± 0.9 | 1.9 ± 0.8 | 0.7050 |
Peak BLC (mM) | 9.7 ± 2.2 | 8.6 ± 1.9 | 8.7 ± 2.1 | 0.1569 |
Time to Peak BLC (s) | 3.2 ± 2.0 | 4.3 ± 2.3 | 3.3 ± 1.9 | 0.1770 |
Talac (s) | 3.8 ± 1.9 | 4.2 ± 1.4 | 4.1 ± 1.5 | 0.6012 |
VLamax (mM·L−1·s−1) | 0.71 ± 0.26 | 0.62 ± 0.15 | 0.63 ± 0.24 | 0.3352 |
Test 1 | Test 2 | p-Value | Mean CV | |
---|---|---|---|---|
Pre-BLC (mM) | 2.0 ± 0.9 | 1.9 ± 0.9 | 0.7837 | 45.6% |
Peak BLC (mM) | 9.3 ± 2.1 | 8.7 ± 2.1 | 0.3428 | 23.3% |
Talac (s) | 4.0 ± 1.7 | 4.1 ± 1.5 | 0.8073 | 38.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harnish, C.R.; Swensen, T.C.; King, D. Reliability of the 15-s Maximal Lactate Accumulation Rate (VLamax) Test for Cycling. Physiologia 2023, 3, 542-551. https://doi.org/10.3390/physiologia3040040
Harnish CR, Swensen TC, King D. Reliability of the 15-s Maximal Lactate Accumulation Rate (VLamax) Test for Cycling. Physiologia. 2023; 3(4):542-551. https://doi.org/10.3390/physiologia3040040
Chicago/Turabian StyleHarnish, Christopher R., Thomas C. Swensen, and Deborah King. 2023. "Reliability of the 15-s Maximal Lactate Accumulation Rate (VLamax) Test for Cycling" Physiologia 3, no. 4: 542-551. https://doi.org/10.3390/physiologia3040040
APA StyleHarnish, C. R., Swensen, T. C., & King, D. (2023). Reliability of the 15-s Maximal Lactate Accumulation Rate (VLamax) Test for Cycling. Physiologia, 3(4), 542-551. https://doi.org/10.3390/physiologia3040040