Effects of Selenite on Growth and Selenium Accumulation in Three Terrestrial Microalgae with Application Potential in Food and Agriculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Algal Strains and Cultivation
2.2. Selenite Treatment
2.3. Growth Determination
2.4. Biomass Collection
2.5. Se Content Determination
2.6. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schiavon, M.; Ertani, A.; Parrasia, S.; Vecchia, F.D. Selenium accumulation and metabolism in algae. Aquat. Toxicol. 2017, 189, 1–8. [Google Scholar] [CrossRef]
- Rayman, M.P. Selenium and human health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef] [PubMed]
- Bao, B.; Kang, Z.; Zhang, Y.; Li, K.; Xu, R.; Guo, M. Selenium deficiency leads to reduced skeletal muscle cell differentiation by oxidative stress in mice. Biol. Trace Elem. Res. 2023, 201, 1878–1887. [Google Scholar] [CrossRef] [PubMed]
- Van Hoewyk, D. A tale of two toxicities: Malformed selenoproteins and oxidative stress both contribute to selenium stress in plants. Ann. Bot. 2013, 112, 965–972. [Google Scholar] [CrossRef]
- Lv, Q.; Liang, X.; Nong, K.; Gong, Z.; Qin, T.; Qin, X.; Wang, D.; Zhu, Y. Advances in research on the toxicological effects of selenium. Bull. Environ. Contam. Toxicol. 2021, 106, 715–726. [Google Scholar] [CrossRef]
- Somagattu, P.; Chinnannan, K.; Yammanuru, H.; Reddy, U.K.; Nimmakayala, P. Selenium dynamics in plants: Uptake, transport, toxicity, and sustainable management strategies. Sci. Total Environ. 2024, 949, 175033. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, X.; Zhang, B.; Han, Z.; Wang, W.; Chi, Q.; Zhou, J.; Nie, L.; Xu, S.; Liu, D. Concentration and distribution of selenium in soils of mainland China, and implications for human health. J. Geochem. Explor. 2021, 220, 106654. [Google Scholar] [CrossRef]
- Passarelli, S.; Free, C.M.; Shepon, A.; Beal, T.; Batis, C.; Golden, C.D. Global estimation of dietary micronutrient inadequacies: A modelling analysis. Lancet Glob. Health 2024, 12, e1590–e1599. [Google Scholar] [CrossRef] [PubMed]
- Reshma, R.; Arumugam, M. Organic selenium fortification in edible marine microalga Nannochloropsis oceanica CASA CC201 for food and feed applications. Algal Res. 2022, 66, 102787. [Google Scholar] [CrossRef]
- Zdziebłowska, S.; Zajda, J.; Ruzik, L. Microalgae enriched in selenium as a good source of micronutrients. Food Biosci. 2024, 59, 103908. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Z.; Gong, P.; Yao, W.; Ba, Q.; Wang, H. Review on the health-promoting effect of adequate selenium status. Front Nutr. 2023, 10, 1136458. [Google Scholar] [CrossRef]
- Cao, T.N.D.; Mukhtar, H.; Le, L.T.; Tran, D.P.H.; Ngo, M.T.T.; Nguyen, T.B.; Bui, X.T. Roles of microalgae-based biofertilizer in sustainability of green agriculture and food-water-energy security nexus. Sci. Total Environ. 2023, 870, 161927. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lens, P.N.; Ferrer, I.; Laing, G.D. Evaluation of selenium-enriched microalgae produced on domestic wastewater as biostimulant and biofertilizer for growth of selenium-enriched crops. J. Appl. Phycol. 2021, 33, 3027–3039. [Google Scholar] [CrossRef]
- Saadaoui, I.; Rasheed, R.; Aguilar, A.; Cherif, M.; Al Jabri, H.; Sayadi, S.; Manning, S.R. Microalgal-based feed: Promising alternative feedstocks for livestock and poultry production. J. Anim. Sci. Biotechnol. 2021, 12, 76. [Google Scholar] [CrossRef]
- Gojkovic, Ž.; Garbayo, I.; Ariza, J.L.G.; Márová, I.; Vílchez, C. Selenium bioaccumulation and toxicity in cultures of green microalgae. Algal Res. 2015, 7, 106–116. [Google Scholar] [CrossRef]
- Schiavon, M.; Vecchia, F.D. Selenium and algae: Accumulation, tolerance mechanisms and dietary perspectives. In Selenium in Plants. Plant Ecophysiology; Pilon-Smits, E., Winkel, L., Lin, Z.Q., Eds.; Springer: Cham, Switzerland, 2017; Volume 11, pp. 69–77. [Google Scholar]
- Vriens, B.; Behra, R.; Voegelin, A.; Zupanic, A.; Winkel, L.H. Selenium uptake and methylation by the microalga Chlamydomonas reinhardtii. Environ. Sci. Technol. 2016, 50, 711–720. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Z.; Tao, M.; Li, J.; Hu, Z. Effects of selenite on green microalga Haematococcus pluvialis: Bioaccumulation of selenium and enhancement of astaxanthin production. Aquat. Toxicol. 2017, 183, 21–27. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, J.; Xu, L.; Ma, A.; Zhuang, G.; Huo, S.; Zou, B.; Qian, J.; Cui, Y. Selenium volatilization in plants, microalgae, and microorganisms. Heliyon 2024, 10, e26023. [Google Scholar] [CrossRef]
- Guimarães, B.O.; de Boer, K.; Gremmen, P.; Drinkwaard, A.; Wieggers, R.; Wijffels, R.H.; Barbosa, M.J.; D’Adamo, S. Selenium enrichment in the marine microalga Nannochloropsis oceanica. Algal Res. 2021, 59, 102427. [Google Scholar] [CrossRef]
- Zhong, Y.; Cheng, J.J. Effects of selenite on unicellular green microalga Chlorella pyrenoidosa: Bioaccumulation of selenium, enhancement of photosynthetic pigments, and amino acid production. J. Agr. Food Chem. 2017, 65, 10875–10883. [Google Scholar] [CrossRef]
- Singh, P.; Singh, S.; Maurya, P.; Mohanta, A.; Dubey, H.; Khadim, S.R.; Singh, A.K.; Pandey, A.K.; Singh, A.K.; Asthana, R.K. Bioaccumulation of selenium in halotolerant microalga Dunaliella salina and its impact on photosynthesis, reactive oxygen species, antioxidativeenzymes, and neutral lipids. Mar. Pollut. Bull. 2023, 190, 114842. [Google Scholar] [CrossRef]
- Wang, F.; Li, Y.; Yang, R.; Zhang, N.; Li, S.; Zhu, Z. Effects of sodium selenite on the growth, biochemical composition and selenium biotransformation of the filamentous microalga Tribonema minus. Bioresour. Technol. 2023, 384, 129313. [Google Scholar] [CrossRef]
- She, Y.; Gao, X.; Jing, X.; Wang, J.; Dong, Y.; Cui, J.; Xue, H.; Li, Z.; Zhu, D. Effects of nitrogen source and NaCl stress on oil production in Vischeria sp. WL1 (Eustigmatophyceae) isolated from dryland biological soil crusts in China. J. Appl. Phycol. 2022, 34, 1281–1291. [Google Scholar] [CrossRef]
- Zhu, D.; Li, Z.; She, Y.; Jing, X.; Wang, M.; Gao, X. Lipidomic investigation reveals ddistinct lipid metabolite patterning of an oil-producing microalga (Vischeria sp. WL1) cultured by different nitrogen nutrients. J. Appl. Phycol. 2023, 35, 91–98. [Google Scholar] [CrossRef]
- Gao, X.; Yang, Y.; Ai, Y.; Luo, H.; Qiu, B. Quality evaluation of the edible blue-green alga Nostoc flagelliforme using a chlorophyll fluorescence parameter and several biochemical markers. Food Chem. 2014, 143, 307–312. [Google Scholar] [CrossRef]
- Yuan, X.L.; Gao, X.; Liu, W.; She, Y.; Zheng, T.; Xue, H.D. Investigations of solid culture-induced acquisition of desiccation tolerance in liquid suspension culture of Nostoc flagelliforme. J. Appl. Phycol. 2021, 33, 3657–3669. [Google Scholar] [CrossRef]
- Chen, X.; Jia, S.; Wang, Y.; Wang, N. Biological crust of Nostoc flagelliforme (Cyanobacteria) on sand bed materials. J. Appl. Phycol. 2011, 23, 67–71. [Google Scholar] [CrossRef]
- Gao, X.; Xu, H.; Ye, S.; Liang, W. A proposal on the restoration of Nostoc flagelliforme for sustainable improvement in the ecology of arid steppes in China. Environments 2016, 3, 14. [Google Scholar] [CrossRef]
- Bito, T.; Okumura, E.; Fujishima, M.; Watanabe, F. Potential of Chlorella as a dietary supplement to promote human health. Nutrients 2020, 12, 2524. [Google Scholar] [CrossRef]
- Al-Hammadi, M.; Güngörmüşler, M. New insights into Chlorella vulgaris applications. Biotechnol. Bioeng. 2024, 121, 1486–1502. [Google Scholar] [CrossRef]
- Gao, X.; Yuan, X.; Zheng, T.; Ji, B. Promoting efficient production of scytonemin in cell culture of Nostoc flagelliforme by periodic short-term solar irradiation. Bioresour. Technol. 2023, 21, 101352. [Google Scholar] [CrossRef]
- Miyahara, H.; Iwai, T.; Kaburaki, Y.; Kozuma, T.; Shigeta, K.; Okino, A. A new air-cooled argon/helium-compatible inductively coupled plasma torch. Anal. Sci. 2014, 30, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Mylenko, M.; Vu, D.L.; Kuta, J.; Ranglová, K.; Kubáč, D.; Lakatos, G.; Grivalský, T.; Caporgno, M.P.; Da Câmara Manoel, J.A.; Kopecký, J.; et al. Selenium incorporation to amino acids in Chlorella cultures grown in phototrophic and heterotrophic regimes. J. Agric. Food Chem. 2020, 68, 1654–1665. [Google Scholar] [CrossRef]
- Morlon, H.; Fortin, C.; Floriani, M.; Adam, C.; Garnier-Laplace, J.; Boudou, A. toxicity of selenite in the unicellular green alga Chlamydomonas reinhardtii: Comparison between effects at the population and sub-cellular level. Aquat. Toxicol. 2005, 73, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Gómez, J.V.; Navarro, R.F.; Garbayo, N.I.; Vílchez, L.C.; Borrego, A.A.; García, B.T. In vitro selenium bioaccessibility combined with in vivo bioavailability and bioactivity in se-enriched microalga (Chlorella sorokiniana) to be used as functional food. J. Funct. Foods 2020, 66, 103817. [Google Scholar] [CrossRef]
- Kumar, A.; Ramamoorthy, D.; Verma, D.K.; Kumar, A.; Kumar, N.; Kanak, K.R.; Marwein, B.M.; Mohan, K. Antioxidant and phytonutrient activities of Spirulina platensis. Energy Nexus 2022, 6, 100070. [Google Scholar] [CrossRef]
- Vítová, M.; Bišová, K.; Hlavová, M.; Zachleder, V.; Rucki, M.; Čížková, M. Glutathione peroxidase activity in the selenium-treated alga Scenedesmus quadricauda. Aquat. Toxicol. 2011, 102, 87–94. [Google Scholar] [CrossRef]
- Li, Z.Y.; Guo, S.Y.; Li, L. Bioeffects of selenite on the growth of Spirulina platensis and its biotransformation. Bioresour. Technol. 2003, 89, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Huang, G.; Chen, F.; Huang, H. Extraction/synthesis and biological activities of selenopolysaccharide. Trends Food Sci. Technol. 2021, 109, 211–218. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, H.; Ma, L.; Zhang, H.; Ren, D.F. Preparation and characterization of selenium nanoparticles decorated by Spirulina platensis polysaccharide. J. Food Biochem. 2020, 44, e13363. [Google Scholar] [CrossRef] [PubMed]
- Zhou, N.; Long, H.; Wang, C.; Zhu, Z.; Yu, L.; Yang, W.; Ren, X.; Liu, X. Characterization of selenium-containing polysaccharide from Spirulina platensis and its protective role against Cd-Induced toxicity. Int. J. Biol. Macromol. 2020, 164, 2465–2476. [Google Scholar] [CrossRef]
Microalgal Strains | Na2SeO3 | Total Se Accumulation | References |
---|---|---|---|
Dunaliella salina | 50 mg/L | 65 μg/g DW | [22] |
Dunaliella salina | 25 mg/L | 52 μg/g DW | [22] |
Haematococcus pluvialis | 13 mg/L | 646 μg/g DW | [18] |
Chlorella pyrenoidosa | 50 mg/L | 435 μg/g DW | [21] |
Chlorella sorokiniana | 50 mg/L | 964.7 μg/g DW | [36] |
Chlorella vulgaris R117 | 8 mg/g DW | 10,000 μg/g DW | [34] |
Tribonema minus | 8 mg/L | 964.7 μg/g DW | [23] |
Nannochloropsis oceanica | 30 mg/L | 131 μg/g DW | [20] |
Scenedesmus quadricauda | 50 mg/L | 1430 μg/g DW (in presence of 4 mM SO42−) | [38] |
Chlamydomonas reinhardtii | 3.16 mg/L | 1960 μg/g DW | [35] |
Spirulina platensis | 40 mg/L | <50 μg/g DW | [39] |
Spirulina platensis | 400 mg/L | 219 μg/g DW | [39] |
Vischeria sp. WL1 | 40 mg/L | 3331 μg/g DW | This study |
Chlorella sp. WL1 | 40 mg/L | 740 μg/g DW | This study |
Nostoc flagelliforme | 40 mg/L | 5648 μg/g DW | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Gao, X.; Zhou, S.; Zeng, Q.; Liu, K.; Li, Z. Effects of Selenite on Growth and Selenium Accumulation in Three Terrestrial Microalgae with Application Potential in Food and Agriculture. Phycology 2024, 4, 621-628. https://doi.org/10.3390/phycology4040034
Li J, Gao X, Zhou S, Zeng Q, Liu K, Li Z. Effects of Selenite on Growth and Selenium Accumulation in Three Terrestrial Microalgae with Application Potential in Food and Agriculture. Phycology. 2024; 4(4):621-628. https://doi.org/10.3390/phycology4040034
Chicago/Turabian StyleLi, Jiahong, Xiang Gao, Shucheng Zhou, Qiao Zeng, Kai Liu, and Zhengke Li. 2024. "Effects of Selenite on Growth and Selenium Accumulation in Three Terrestrial Microalgae with Application Potential in Food and Agriculture" Phycology 4, no. 4: 621-628. https://doi.org/10.3390/phycology4040034
APA StyleLi, J., Gao, X., Zhou, S., Zeng, Q., Liu, K., & Li, Z. (2024). Effects of Selenite on Growth and Selenium Accumulation in Three Terrestrial Microalgae with Application Potential in Food and Agriculture. Phycology, 4(4), 621-628. https://doi.org/10.3390/phycology4040034