A Global Bibliometric Analysis of Seaweed Biodiversity, Endemic Taxa, and Conservation (1992–2023)
Abstract
:1. Introduction
2. Methodology and Data Analysis
2.1. Criteria for Study
2.2. Network Visualization Analysis
3. Results
3.1. Seaweed Biodiversity Research
3.1.1. Most Active Countries in Seaweed Biodiversity Research—Global Scenario
3.1.2. Year-Wise Distribution of Publications
3.1.3. Citation Analysis of the Top Publications and Authors
Title | Affiliation | Source Title | Total Citations | References |
---|---|---|---|---|
“An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot” | University of Western Australia, Australia | Nature Climate Change | 762 | [23] |
“Bio-ORACLE: a global environmental dataset for marine species distribution modelling” | Ghent University, Ghent, Belgium | Global Ecology and Biogeography | 659 | [21] |
“Threats and knowledge gaps for ecosystem services provided by kelp forests: a northeast Atlantic perspective” | Marine Biological Association UK, England | Ecology and Evolution | 362 | [25] |
“Extreme climatic event drives range contraction of a habitat-forming species” | University of Western Australia, Australia | Proceedings of The Royal Society B-Biological Sciences | 356 | [24] |
“The role of kelp species as biogenic habitat formers in coastal marine ecosystems” | Marine Biological Association UK, England | Journal of Experimental Marine Biology and Ecology | 341 | [27] |
“Changes in algal, coral and fish assemblages along water quality gradients on the inshore Great Barrier Reef” | Australian Institute of Marine Science, Townsville, Australia | Marine Pollution Bulletin | 336 | [28] |
“Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming” | University of Western Australia, Australia | Journal of Experimental Marine Biology and Ecology | 311 | [22] |
“Seaweed communities in retreat from ocean warming” | University of Western Australia, Australia | Current Biology | 276 | [22] |
3.1.4. Top Productive Journals
3.1.5. Author Keyword Analysis
3.2. Endemic Seaweed Research
3.2.1. Most Active Countries in Endemic Seaweed Research—Global Scenario
3.2.2. Year-Wise Distribution of Publications
3.2.3. Citation Analysis of the Top Publications and Authors
3.2.4. Top Productive Journals
3.2.5. Author Keyword Analysis
3.3. Conservation of Seaweed
3.3.1. Most Active Countries in the Conservation of Seaweed—Global Scenario
3.3.2. Year-Wise Distribution of Publications
3.3.3. Citation Analysis of the Top Publications and Authors
3.3.4. Top Productive Journals
3.3.5. Author Keyword Analysis
3.4. Extensively Studied Seaweed Species Across Various Countries for Seaweed Biodiversity Research, Endemism, and Conservation Efforts
3.5. Drivers of Biodiversity Loss
4. Discussion
5. Scientific Opinions
- Countries: Inter-institutional collaborations were more prevalent than international collaborations. Moreover, collaborative works drew more citations than single-country or single-institution publications [61]. The scientific outputs were related to economic developments, as fully developed and fast-developing countries were among the productive countries. Countries with broad coastal areas need awareness through academic institutions in the research field to conserve coastal habitats. Developed countries should support countries with less productivity in the scientific field, which will trigger countries’ research productivity. Scientometrics studies are required to understand the country’s current position or productivity at the global level.
- Journals: Several regional institutions are introducing journals of their own. These journals publish good papers, but their works do not have a wider readership [77]. The core journals should accept multidisciplinary subject papers in their journals. Further, journals should accept publications in narrow and broader subject areas that can help increase the readership. The publishing houses should take the initiative to make publications available to users through open-access platforms and should start subject-specific repositories. Creating a worldwide database of authors’ contributions on a single portal will help end users avoid the chaos of several scientific search platforms, namely Google Scholar, ResearchGate, Web of Science, Scopus, etc.
- Author: The type of collaboration can help estimate the author’s productivity through subcategories like mentoring given, mentoring received through collaboration with colleagues, and collaboration as feedback during the writing process [78]. Awareness is necessary for graduate students to increase their contribution to research. College/university mentors can encourage graduate students to participate and present their work in national and international conferences and workshops for knowledge sharing; this might increase author contribution. Displaying the top author’s contributions at the designated journal repositories can improve the author’s productivity. There is a need to encourage the research community to contribute their research findings in local scientific journals to overcome the language barrier; this will lead to increased authorship as well as the productivity of journals. As conventionally considered, fewer citations cannot be the criterion for an author’s productivity due to emerging fields or less focused research areas.
- Organizational productivity: Organizational variables like freedom in work can influence or increase publication productivity in the research field. Organizational focus on a particular field can influence publication productivity. This directly relates to the thought process and convictions shaped by leadership, which may prioritize specific outputs, such as patents, reports, or documents, over traditional publications.
- Funding agencies: Increased funds, facilities, and recognition for research may be especially essential for those scientists of high potential who cannot obtain funding as easily [79]. National funding agencies and much tacit knowledge strongly influence interdisciplinary research programs and projects. Thus, funding agencies have critical roles, especially in shaping large-scale interdisciplinary initiatives [80]. The funding agencies should collaborate with journals or publishers to promote the author’s contributions in research areas and support open access.
6. Recommendations
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lovejoy, T.E. Biodiversity: What is it? In Biodiversity II; Reaka-Kudla, M.L., Wilson, D.E., Wilson, E.O., Eds.; Joseph Henry Press: Washington, DC, USA, 1996; pp. 7–14. [Google Scholar]
- Swingland, I.R. Biodiversity, definition of. Encycl. Biodivers. 2001, 1, 377–391. [Google Scholar]
- DeLong, D.C. Defining biodiversity. Wildl. Soc. Bull. 1996, 24, 738–749. [Google Scholar]
- Schmeller, D.S.; Bridgewater, P. The Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES): Progress and next steps. Biodivers. Conserv. 2016, 25, 801–805. [Google Scholar] [CrossRef]
- Díaz, S.M.; Settele, J.; Brondízio, E.; Ngo, H.; Guèze, M.; Agard, J.; Arneth, A.; Balvanera, P.; Brauman, K.; Butchart, S.; et al. The global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Summary for Policy Makers; IPBES Secretariat: Bonn, Germany, 2019; p. 56. Available online: https://ipbes.net/global-assessment (accessed on 6 October 2024).
- O’Hara, C.C.; Villaseñor-Derbez, J.C.; Ralph, G.M.; Halpern, B.S. Mapping status and conservation of global at-risk marine biodiversity. Conserv. Lett. 2019, 12, e12651. [Google Scholar] [CrossRef]
- Chopin, T. Marine biodiversity monitoring: Protocol for monitoring of seaweeds. In A report by the Marine Biodiversity Monitoring Committee (Atlantic Maritime Ecological Science Co-Operative, Huntsman Marine Science Center) to the Ecological Monitoring and Assessment Network of Environment Canada; University of New Brunswick, Centre for Coastal Studies and Aquaculture: St. Andrews, NB, Canada, 1997; pp. 1–31. [Google Scholar]
- Cai, J.; Lovatelli, A.; Aguilar-Manjarrez, J.; Cornish, L.; Dabbadie, L.; Desrochers, A.; Diffey, S.; Garrido-Gamarro, E.; Geehan, J.; Hurtado, A.; et al. Seaweeds and Microalgae: An Overview for Unlocking Their Potential in Global Aquaculture Development; FAO Fisheries and Aquaculture Circular No. 1229; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Guiry, M.D.; Guiry, G.M. AlgaeBase. World-Wide Electronic Publication, National University of Ireland, Galway. 2024. Available online: http://www.algaebase.org (accessed on 10 November 2024).
- Cheney, D. Toxic and Harmful Seaweeds. In Seaweed in Health and Disease Prevention; Fleurence, J., Levine, I., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 407–421. [Google Scholar]
- Food and Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture (SOFIA), Toward Blue Transformation. 2022. Available online: https://www.fao.org/publications/home/fao-flagship-publications/the-state-of-world-fisheries-and-aquaculture/en (accessed on 7 October 2024).
- Fonseca, L.M.; Domingues, J.P.; Dima, A.M. Mapping the sustainable development goals relationships. Sustainability 2020, 12, 3359. [Google Scholar] [CrossRef]
- Global Seaweed Coalition. Available online: https://www.safeseaweedcoalition.org/ (accessed on 26 December 2024).
- GlobalSeaweed-SUPERSTAR. Global Centre on Biodiversity for Climate. 2024. Available online: https://www.gcbc.org.uk/ (accessed on 26 December 2024).
- Mazaris, A.D.; Kallimanis, A.; Gissi, E.; Pipitone, C.; Danovaro, R.; Claudet, J.; Rilov, G.; Badalamenti, F.; Stelzenmüller, V.; Thiault, L.; et al. Threats to marine biodiversity in European protected areas. Sci. Total Environ. 2019, 677, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Marcoval, M.A.; Bazzini, S.M.; Vallina, M.V.; Marco, S. Coastal marine biodiversity: Challenges and threats. In Marine Ecology in a Changing World; Arias, A.H., Menendez, M.C., Eds.; CRC Press: Boca Raton, FL, USA, 2013; pp. 43–67. [Google Scholar]
- Mangubhai, S.; Erdmann, M.V.; Wilson, J.R.; Huffard, C.L.; Ballamu, F.; Hidayat, N.I.; Hitipeuw, C.; Lazuardi, M.E.; Pada, D.; Purba, G.; et al. Papuan Bird’s Head Seascape: Emerging threats and challenges in the global center of marine biodiversity. Mar. Pollut. Bull. 2012, 64, 2279–2295. [Google Scholar] [CrossRef]
- Msuya, F.E. Seaweed resources of Tanzania: Status, potential species, challenges and development potentials. Bot. Mar. 2020, 63, 371–380. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2009, 84, 523–538. [Google Scholar] [CrossRef]
- Norton, T.A.; Melkonian, M.; Andersen, R.A. Algal biodiversity. Phycologia 1996, 35, 308–326. [Google Scholar] [CrossRef]
- Tyberghein, L.; Verbruggen, H.; Pauly, K.; Troupin, C.; Mineur, F.; De Clerck, O. Bio-ORACLE: A global environmental dataset for marine species distribution modelling. Glob. Ecol. Biogeogr. 2012, 21, 272–281. [Google Scholar] [CrossRef]
- Wernberg, T.; Russell, B.D.; Thomsen, M.S.; Gurgel, C.F.D.; Bradshaw, C.J.; Poloczanska, E.S.; Connell, S.D. Seaweed communities in retreat from ocean warming. Curr. Biol. 2011, 21, 1828–1832. [Google Scholar] [CrossRef]
- Wernberg, T.; Smale, D.A.; Tuya, F.; Thomsen, M.S.; Langlois, T.J.; De Bettignies, T.; Bennett, S.; Rousseaux, C.S. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change. 2013, 3, 78–82. [Google Scholar] [CrossRef]
- Smale, D.A.; Wernberg, T. Extreme climatic event drives range contraction of a habitat-forming species. Proc. R. Soc. B Biol. Sci. 2013, 280, 20122829. [Google Scholar] [CrossRef] [PubMed]
- Smale, D.A.; Burrows, M.T.; Moore, P.; O’Connor, N.; Hawkins, S.J. Threats and knowledge gaps for ecosystem services provided by kelp forests: A northeast Atlantic perspective. Ecol. Evol. 2013, 3, 4016–4038. [Google Scholar] [CrossRef]
- Rasher, D.B.; Hoey, A.S.; Hay, M.E. Consumer diversity interacts with prey defences to drive ecosystem function. Ecology 2013, 94, 1347–1358. [Google Scholar] [CrossRef]
- Teagle, H.; Hawkins, S.J.; Moore, P.J.; Smale, D.A. The role of kelp species as biogenic habitat formers in coastal marine ecosystems. J. Exp. Mar. Biol. Ecol. 2017, 492, 81–98. [Google Scholar] [CrossRef]
- Fabricius, K.; De’ath, G.; McCook, L.; Turak, E.; Williams, D.M. Changes in algal, coral and fish assemblages along water quality gradients on the inshore Great Barrier Reef. Mar. Pollut. Bull. 2005, 51, 384–398. [Google Scholar] [CrossRef]
- Clarivate Analytics. InCites Journal Citation Reports; Clarivate Analytics: Philadelphia, PA, USA, 2024; Available online: https://jcr.clarivate.com/ (accessed on 28 October 2024).
- Hoarau, G.; Coyer, J.A.; Veldsink, J.H.; Stam, W.T.; Olsen, J.L. Glacial refugia and recolonization pathways in the brown seaweed Fucus serratus. Mol. Ecol. 2007, 16, 3606–3616. [Google Scholar] [CrossRef]
- Wiencke, C.; Bartsch, I.; Bischoff, B.; Peters, A.F.; Breeman, A.M. Temperature requirements and biogeography of Antarctic, Arctic, and Amphiequatorial seaweeds. Bot. Mar. 1994, 37, 247–260. [Google Scholar] [CrossRef]
- Phillips, J.A. Marine macroalgal biodiversity hotspots: Why is there high species richness and endemism in southern Australian marine benthic flora? Biodivers. Conserv. 2001, 10, 1555–1577. [Google Scholar] [CrossRef]
- Verlaque, M.; Durand, C.; Huisman, J.M.; Boudouresque, C.F.; Le Parco, Y. On the identity and origin of the Mediterranean invasive Caulerpa racemosa (Caulerpales, Chlorophyta). Eur. J. Phycol. 2003, 38, 325–339. [Google Scholar] [CrossRef]
- Neiva, J.; Assis, J.; Fernandes, F.; Pearson, G.A.; Serrão, E.A. Species distribution models and mitochondrial DNA phylogeography suggest an extensive biogeographical shift in the high-intertidal seaweed Pelvetia canaliculata. J. Biogeogr. 2014, 41, 1137–1148. [Google Scholar] [CrossRef]
- Brooks, M.T.; Coles, V.J.; Hood, R.R.; Gower, J.F.R. Factors controlling the seasonal distribution of pelagic Sargassum. Mar. Ecol. Prog. Ser. 2018, 599, 1–18. [Google Scholar] [CrossRef]
- Thomsen, M.S.; Mondardini, L.; Alestra, T.; Gerrity, S.; Tait, L.; South, P.M.; Lilley, S.A.; Schiel, D.R. Local extinction of bull kelp (Durvillaea spp.) due to a marine heatwave. Front. Mar. Sci. 2019, 6, 84. [Google Scholar] [CrossRef]
- Ballesteros, E.; Garrabou, J.; Hereu, B.; Zabala, M.; Cebrian, E.; Sala, E. Deep-water stands of Cystoseira zosteroides C. Agardh (Fucales, Ochrophyta) in the Northwestern Mediterranean: Insights into assemblage structure and population dynamics. Estuar. Coast. Shelf Sci. 2009, 82, 477–484. [Google Scholar] [CrossRef]
- Hop, H.; Wiencke, C.; Vögele, B.; Kovaltchouk, N.A. Species composition, zonation, and biomass of marine benthic macroalgae in Kongsfjorden, Svalbard. Bot. Mar. 2012, 55, 399–414. [Google Scholar] [CrossRef]
- Coyer, J.A.; Peters, A.F.; Hoarau, G.; Stam, W.T.; Olsen, J.L. Hybridization of the marine seaweeds, Fucus serratus and Fucus evanescens (Heterokontophyta: Phaeophyceae) in a 100-year-old zone of secondary contact. Proc. R. Soc. B Biol. Sci. 2002, 269, 1829–1834. [Google Scholar] [CrossRef]
- Bracken, M.E.S.; Low, N.H.N. Realistic losses of rare species disproportionately impact higher trophic levels. Ecol. Lett. 2012, 15, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Coombes, M.A.; Naylor, L.A.; Viles, H.A.; Thompson, R.C. Bioprotection and disturbance: Seaweed, microclimatic stability and conditions for mechanical weathering in the intertidal zone. Geomorphology 2013, 202, 4–14. [Google Scholar] [CrossRef]
- Terawaki, T.; Hasegawa, H.; Arai, S.; Ohno, M. Management-free techniques for restoration of Eisenia and Ecklonia beds along the central Pacific coast of Japan. J. Appl. Phycol. 2001, 13, 13–17. [Google Scholar] [CrossRef]
- Terawaki, T.; Yoshikawa, K.; Yoshida, G.; Uchimura, M.; Iseki, K. Ecology and restoration techniques for Sargassum beds in the Seto Inland Sea, Japan. Mar. Pollut. Bull. 2003, 47, 198–201. [Google Scholar] [CrossRef]
- Campbell, A.H.; Marzinelli, E.M.; Vergés, A.; Coleman, M.A.; Steinberg, P.D. Towards Restoration of Missing Underwater Forests. PLoS ONE 2014, 9, e84106. [Google Scholar] [CrossRef]
- Verdura, J.; Sales, M.; Ballesteros, E.; Cefalì, M.E.; Cebrian, E. Restoration of a canopy-forming alga based on recruitment enhancement: Methods and long-term success assessment. Front. Plant Sci. 2018, 9, 1832. [Google Scholar] [CrossRef]
- Vaselli, S.; Bulleri, F.; Benedetti-Cecchi, L. Hard coastal-defence structures as habitats for native and exotic rocky-bottom species. Mar. Environ. Res. 2008, 66, 395–403. [Google Scholar] [CrossRef]
- Nayak, S.; Bahuguna, A. Application of remote sensing data to monitor mangroves and other coastal vegetation of India. Indian J. Mar. Sci. 2001, 30, 195–213. [Google Scholar]
- Wu, J.; Zhang, H.; Pan, Y.; Krause-Jensen, D.; He, Z.; Fan, W.; Xiao, X.; Chung, I.; Marbà, N.; Serrano, O.; et al. Opportunities for blue carbon strategies in China. Ocean Coast. Manag. 2020, 194, 105241. [Google Scholar] [CrossRef]
- Shears, N.T.; Smith, F.; Babcock, R.C.; Duffy, C.A.; Villouta, E. Evaluation of biogeographic classification schemes for conservation planning: Application to New Zealand’s coastal marine environment. Conserv. Biol. 2008, 22, 467–481. [Google Scholar] [CrossRef] [PubMed]
- Hall, D.J.M.; Sudmeyer, R.A.; McLernon, C.K.; Short, R.J. Characterisation of a windbreak system on the south coast of Western Australia. 3. Soil water and hydrology. Aust. J. Exp. Agric. 2002, 42, 729–738. [Google Scholar] [CrossRef]
- Gitay, H. Technical Paper V: Climate Change and Biodiversity; IPCC: Geneva, Switzerland, 2002.
- Bermejo, R.; MacMonagail, M.; Heesch, S.; Mendes, A.; Edwards, M.; Fenton, O.; Knöller, K.; Daly, E.; Morrison, L. The arrival of a red invasive seaweed to a nutrient over-enriched estuary increases the spatial extent of macroalgal blooms. Mar. Environ. Res. 2020, 158, 104944. [Google Scholar] [CrossRef] [PubMed]
- Grebe, G.S.; Byron, C.J.; Gelais, A.S.; Kotowicz, D.M.; Olson, T.K. An ecosystem approach to kelp aquaculture in the Americas and Europe. Aquac. Rep. 2019, 15, 100215. [Google Scholar] [CrossRef]
- Brooker, R.M.; Brandl, S.J.; Dixson, D.L. Cryptic effects of habitat declines: Coral-associated fishes avoid coral-seaweed interactions due to visual and chemical cues. Sci. Rep. 2016, 6, 18842. [Google Scholar] [CrossRef]
- Schaffelke, B.; Smith, J.E.; Hewitt, C.L. Introduced macroalgae—A growing concern. J. Appl. Phycol. 2006, 18, 529–541. [Google Scholar] [CrossRef]
- Buschbaum, C.; Chapman, A.S.; Saier, B. How an introduced seaweed can affect epibiota diversity in different coastal systems. Mar. Biol. 2006, 148, 743–754. [Google Scholar] [CrossRef]
- Konur, O. The scientometric analysis of the research on the algal structures. In Handbook of Algal Science, Technology and Medicine; Elsevier: Amsterdam, The Netherlands, 2020; pp. 41–60. [Google Scholar] [CrossRef]
- Kumaresan, R.; Vinitha, K.; Kannan, K. Scientometric analysis of seaweed research with reference to Web of Science. Libr. Philos. Pract. 2015, 1, 1–15. [Google Scholar]
- Mohan, V.; Ravi, V. Mapping of seaweed research: A global perspective. Kelpro Bull. 2007, 11, 1–14. [Google Scholar]
- Jiménez-Islas, D.; Pérez-Romero, M.E.; Florez-Romero, M.B. The most influential countries in publications of seaweed to biofuels. Int. J. Appl. Eng. Res. 2020, 15, 706–715. [Google Scholar]
- Liu, X.; Zhang, L.; Hong, S. Global biodiversity research during 1900-2009: A bibliometric analysis. Biodivers. Conserv. 2011, 20, 807–826. [Google Scholar] [CrossRef]
- Thomas, C. The United Nations Conference on Environment and Development (UNCED) of 1992 in Context. Environ. Politics 1992, 1, 250–261. [Google Scholar] [CrossRef]
- Zhao, J. Development of China’s biofuel industry and policy making in comparison with international practices. Sci. Bull. 2015, 60, 1049–1054. [Google Scholar] [CrossRef]
- Gamliel, I.; Buba, Y.; Guy-Haim, T.; Garval, T.; Willette, D.; Rilov, G.; Belmaker, J. Incorporating physiology into species distribution models moderates the projected impact of warming on selected Mediterranean marine species. Ecography. 2020, 43, 1090–1106. [Google Scholar] [CrossRef]
- Basher, Z.; Bowden, D.A.; Costello, M.J. GMED: Global Marine Environment Datasets for environment visualisation and species distribution modelling. Earth Syst. Sci. Data Discuss. 2018, 1–62. [Google Scholar] [CrossRef]
- Hu, Z.M.; Fraser, C. Seaweed Phylogeography: Adaptation and Evolution of Seaweeds Under Environmental Change; Springer: Dordrecht, The Netherlands, 2016; p. 395. [Google Scholar]
- Lampert, A. Over-exploitation of natural resources is followed by inevitable declines in economic growth and discount rate. Nat. Commun. 2019, 10, 1419. [Google Scholar] [CrossRef] [PubMed]
- Williams-Subiza, E.A.; Epele, L.B. Drivers of biodiversity loss in freshwater environments: A bibliometric analysis of the recent literature. Aquat. Conserv. Mar. Freshw. 2021, 31, 2469–2480. [Google Scholar] [CrossRef]
- Mazor, T.; Doropoulos, C.; Schwarzmueller, F.; Gladish, D.W.; Kumaran, N.; Merkel, K.; Di Marco, M.; Gagic, V. Global mismatch of policy and research on drivers of biodiversity loss. Nat. Ecol. Evol. 2018, 2, 1071–1074. [Google Scholar] [CrossRef] [PubMed]
- Smale, D.A.; Epstein, G.; Hughes, E.; Mogg, A.O.; Moore, P.J. Patterns and drivers of understory macroalgal assemblage structure within subtidal kelp forests. Biodivers. Conserv. 2020, 29, 4173–4192. [Google Scholar] [CrossRef]
- Williams, J.; Coleman, M.A.; Jordan, A. Depth, nutrients and urchins explain variability in Ecklonia radiata (Laminariales) distribution and cover across ten degrees of latitude. Aquat. Bot. 2020, 166, 103274. [Google Scholar] [CrossRef]
- Bringloe, T.T.; Verbruggen, H.; Saunders, G.W. Unique biodiversity in Arctic marine forests is shaped by diverse recolonization pathways and far northern glacial refugia. Proc. Natl. Acad. Sci. USA 2020, 117, 22590–22596. [Google Scholar] [CrossRef] [PubMed]
- Largo, D.B.; Fukami, K.; Nishijima, T. Occasional pathogenic bacteria promoting ice-ice disease in the carrageenan-producing red algae Kappaphycus alvarezii and Eucheuma denticulatum (Solieriaceae, Gigartinales, Rhodophyta). J. Appl. Phycol. 1995, 7, 545–554. [Google Scholar] [CrossRef]
- Largo, D.B.; Chung, I.K.; Phang, S.M.; Gerung, G.S.; Sondak, C.F. Impacts of Climate change on Eucheuma-Kappaphycus Farming. In Tropical Seaweed Farming Trends, Problems and Opportunities; Hurtado, A., Critchley, A., Neish, I., Eds.; Springer: Cham, Switzerland, 2017; pp. 121–129. [Google Scholar] [CrossRef]
- Valderrama, D.; Cai, J.; Hishamunda, N.; Ridler, N. Social and Economic Dimensions of Carrageenan Seaweed Farming; FAO: Rome, Italy, 2014. [Google Scholar]
- Vergés, A.; Campbell, A.H.; Wood, G.; Kajlich, L.; Eger, A.M.; Cruz, D.; Langley, M.; Bolton, D.; Coleman, M.A.; Turpin, J.; et al. Operation Crayweed: Ecological and sociocultural aspects of restoring Sydney’s underwater forests. Ecol. Manag. Restor. 2020, 21, 74–85. [Google Scholar] [CrossRef]
- Arunachalam, S. Mapping life sciences research in India: A profile based on BIOSIS 1992–1994. Curr. Sci. 1999, 76, 1191–1203. Available online: https://www.jstor.org/stable/24101943 (accessed on 28 October 2024).
- Mayrath, M.C. Attributions of Productive Authors in Educational Psychology Journals. Educ. Psychol. Rev. 2008, 20, 41–56. [Google Scholar] [CrossRef]
- Fox, M.F. Publication Productivity among Scientists: A critical review. Soc. Stud. Sci. 1983, 13, 285–305. [Google Scholar] [CrossRef]
- Lyall, C.; Bruce, A.; Marsden, W.; Meagher, L. The role of funding agencies in creating interdisciplinary knowledge. Sci. Public Policy. 2013, 40, 62–71. [Google Scholar] [CrossRef]
- Melville, J.; Chapple, D.G.; Keogh, J.S.; Sumner, J.; Amey, A.; Bowles, P.; Brennan, I.G.; Couper, P.; Donnellan, S.C.; Doughty, P.; et al. A return-on-investment approach for prioritization of rigorous taxonomic research needed to inform responses to the biodiversity crisis. PLoS Biol. 2021, 19, e3001210. [Google Scholar] [CrossRef] [PubMed]
- Bartley, D.; Menezes, A.; Metzner, R.; Ansah, Y. The FAO Blue Growth Initiative: Strategy for the Development of Fisheries and Aquaculture in Eastern Africa. In FAO Fisheries and Aquaculture Circular; FAO: Rome, Italy, 2018; Volume 1161, pp. 1–55. [Google Scholar]
Countries (WoS) | Academic Institutions | Funding Agencies | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Name | TP | TC | h-Index | Name | TP | TC | h-Index | Name | TP | TC | h-Index |
Australia | 124 | 7559 | 44 | University of Western Australia, Australia | 40 | 3688 | 24 | Australian Research Council, Australia | 32 | 3310 | 24 |
USA | 136 | 5273 | 39 | Australian Institute of Marine Science, Australia | 15 | 2791 | 15 | National Science Foundation NSF, USA | 42 | 1571 | 21 |
England | 68 | 3344 | 27 | Edith Cowan University, Australia | 10 | 2061 | 10 | European Union EU, Belgium | 48 | 1533 | 18 |
Spain | 79 | 3063 | 26 | Queens University Belfast, Ireland | 13 | 1482 | 10 | UK Research Innovation UKRI, UK | 28 | 1354 | 16 |
France | 74 | 1843 | 25 | Marine Biological Association United Kingdom, England | 20 | 1546 | 12 | Natural Environment Research Council NERC, UK | 22 | 1324 | 16 |
Italy | 75 | 1660 | 23 | Centre National De La Recherche Scientifique CNRS, France | 50 | 1319 | 21 | The Foundation for Science and Technology, Portugal | 53 | 1118 | 18 |
Portugal | 68 | 1599 | 22 | Ghent University, Belgium | 19 | 1207 | 12 | Spanish Government, Spain | 22 | 852 | 15 |
Wales | 12 | 1501 | 11 | Sorbonne Universite, France | 38 | 1023 | 19 | Natural Sciences and Engineering Research Council of Canada NSERC, Canada | 25 | 713 | 16 |
North Ireland | 14 | 1488 | 10 | Universidade do Porto, Spain | 33 | 855 | 15 | National Council for Scientific and Technological Development CNPQ, Brazil | 28 | 523 | 12 |
New Zealand | 43 | 1392 | 21 | University of California system, USA | 26 | 806 | 14 | Coordination for the Improvement of Higher Education Personnel CAPES, Brazil | 20 | 432 | 11 |
Source Title | TPs | % of TPs | TCs | ACPP | h-Index |
---|---|---|---|---|---|
Journal of Experimental Marine Biology and Ecology | 14 | 1.87 | 1224 | 87 | 11 |
Ecology | 17 | 2.27 | 1121 | 66 | 15 |
Botanica Marina | 33 | 4.40 | 983 | 30 | 15 |
Plos One | 23 | 3.07 | 931 | 41 | 17 |
Global Ecology and Biogeography | 6 | 0.80 | 832 | 139 | 6 |
Marine Pollution Bulletin | 15 | 2.00 | 756 | 50 | 10 |
Ecology and Evolution | 9 | 1.20 | 649 | 72 | 7 |
Estuarine Coastal and Shelf Science | 18 | 2.40 | 579 | 32 | 14 |
Biological Invasions | 15 | 2.00 | 548 | 37 | 11 |
Journal of Applied Phycology | 20 | 2.67 | 509 | 25 | 10 |
Drivers | Ecological Outcomes | References |
---|---|---|
Main drivers | ||
Climate Change | Changes in biological and physical community, precipitation frequency and intensity, ocean acidification, rise in water temperature, and fluctuations in wind pattern and in hydrology | [16,17,50,51] |
Pollution | Affects the water quality in coastal and estuarine habitats through nutrients and toxins | [16,50] |
Unsustainable exploitation | Exploitation of natural resources and incautious development practices threaten the health of the ecosystem | [17] |
Invasive species | Risk for local biodiversity and ecosystem functioning; replaces slow-growing species with faster growth rate and nutrient uptake. Responsible for anoxic events; massive mortalities of epifauna and infauna | [52] |
Habitat Degradation | Biodiversity loss, productivity decline; altered habitat composition | [53,54] |
Anthropogenic impact | Human-induced changes in hydraulic conditions, exploration, and extraction of oil or gas affect regions | [15] |
Increasing development and mining activity cause the deterioration in coastal and marine environments | [17] | |
Introduced Species | Space monopolization; reduces the abundance of native macrophytes | [55] |
Facilitates associated non-indigenous organisms | [56] | |
Emerging drivers | ||
Outdoor activities (Fishing, sports, harvesting aquatic resources) | Threaten marine protected areas | [15] |
Tourism | Risks of potential invasions | [16] |
Deforestation and coastal development | Causes an increase in turbidity and sedimentation runoff, reclamation of shallow coastal habitats that smother seagrass beds | [17] |
Diseases and epiphytism | Disease outbreaks cause decline and die-off of seaweeds | [18] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rathod, S.G.; Choudhari, A.N.; Mantri, V.A. A Global Bibliometric Analysis of Seaweed Biodiversity, Endemic Taxa, and Conservation (1992–2023). Phycology 2025, 5, 1. https://doi.org/10.3390/phycology5010001
Rathod SG, Choudhari AN, Mantri VA. A Global Bibliometric Analysis of Seaweed Biodiversity, Endemic Taxa, and Conservation (1992–2023). Phycology. 2025; 5(1):1. https://doi.org/10.3390/phycology5010001
Chicago/Turabian StyleRathod, Sachin G., Anand N. Choudhari, and Vaibhav A. Mantri. 2025. "A Global Bibliometric Analysis of Seaweed Biodiversity, Endemic Taxa, and Conservation (1992–2023)" Phycology 5, no. 1: 1. https://doi.org/10.3390/phycology5010001
APA StyleRathod, S. G., Choudhari, A. N., & Mantri, V. A. (2025). A Global Bibliometric Analysis of Seaweed Biodiversity, Endemic Taxa, and Conservation (1992–2023). Phycology, 5(1), 1. https://doi.org/10.3390/phycology5010001