Accessing the Efficacy of Sargassum-Based Aqueous Phase Products Derived from Hydrothermal Carbonisation and Hydrothermal Liquefaction on Plant Growth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Sargassum and Hydrothermal Pre-Treatments
2.2. Elemental Composition Analysis
2.3. Arabidopsis Seedling Growth Assays
2.4. Leaf Growth Analysis
2.5. Root Growth Analysis
2.6. Data Analysis
3. Results and Discussion
3.1. Heavy Metal Content and Potential Toxicity
3.2. Elemental and Organic Compounds Breakdown Analysis
3.3. Arabidopsis Plate Trials
3.3.1. Leaf and Root Growth Inhibition in High Concentrations (10%, 5%, and 1%)
3.3.2. Inhibitory Effects of 1% Concentration with MS½ on Lateral Root Formation
3.3.3. Comparison across HTC and HTL Treatments at 0.1%
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
APP | Aqueous phase product |
HTC | Hydrothermal carbonisation |
HTL | Hydrothermal liquefaction |
UKSarg | British-sourced Sargassum |
MexSarg | Mexican-sourced Sargassum |
MS½ | Murashige and Skoog medium at half-strength concentration |
ABA | Abscisic acid |
Appendix A
References
- McHugh, D.J. A Guide to the Seaweed Industry; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003; Volume 441. [Google Scholar]
- Crouch, I.J.; Van Staden, J. Evidence for the presence of plant growth regulators in commercial seaweed products. Plant Growth Regul. 1993, 13, 21–29. [Google Scholar]
- Kuwada, K.; Wamocho, L.S.; Utamura, M.; Matsushita, I.; Ishii, T. Effect of red and green algal extracts on hyphal growth of arbuscular mycorrhizal fungi, and on mycorrhizal development and growth of papaya and passionfruit. Agron. J. 2006, 98, 1340–1344. [Google Scholar] [CrossRef]
- Van Tussenbroek, B.I.; Arana, H.A.H.; Rodríguez-Martínez, R.E.; Espinoza-Avalos, J.; Canizales-Flores, H.M.; González-Godoy, C.E.; Barba-Santos, M.G.; Vega-Zepeda, A.; Collado-Vides, L. Severe impacts of brown tides caused by Sargassum spp. on near-shore Caribbean seagrass communities. Mar. Pollut. Bull. 2017, 122, 272–281. [Google Scholar] [PubMed]
- Rodríguez-Martínez, R.E.; Medina-Valmaseda, A.E.; Blanchon, P.; Monroy-Velázquez, L.V.; Almazán-Becerril, A.; Delgado-Pech, B.; Vásquez-Yeomans, L.; Francisco, V.; García-Rivas, M.C. Faunal mortality associated with massive beaching and decomposition of pelagic Sargassum. Mar. Pollut. Bull. 2019, 146, 201–205. [Google Scholar] [CrossRef]
- Davis, D.; Simister, R.; Campbell, S.; Marston, M.; Bose, S.; McQueen-Mason, S.J.; Gomez, L.D.; Gallimore, W.A.; Tonon, T. Biomass composition of the golden tide pelagic seaweeds Sargassum fluitans and S. natans (morphotypes I and VIII) to inform valorisation pathways. Sci. Total Environ. 2021, 762, 143134. [Google Scholar] [PubMed]
- Khedia, J.; Dangariya, M.; Nakum, A.K.; Agarwal, P.; Panda, A.; Parida, A.K.; Gangapur, D.R.; Meena, R.; Agarwal, P.K. Sargassum seaweed extract enhances Macrophomina phaseolina resistance in tomato by regulating phytohormones and antioxidative activity. J. Appl. Phycol. 2020, 32, 4373–4384. [Google Scholar] [CrossRef]
- Wang, R.; Bai, J.; Yan, G.; Xiao, Z.; Chen, K.; Li, K.; Tang, J.; Lu, D. The enzymatic hydrolysate of fucoidan from Sargassum hemiphyllum triggers immunity in plants. J. Plant Physiol. 2023, 283, 153967. [Google Scholar] [CrossRef]
- Nicholson, F.A.; Smith, S.R.; Alloway, B.J.; Carlton-Smith, C.; Chambers, B.J. An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci. Total Environ. 2003, 311, 205–219. [Google Scholar] [CrossRef]
- Farghali, M.; Mohamed, I.M.; Osman, A.I.; Rooney, D.W. Seaweed for climate mitigation, wastewater treatment, bioenergy, bioplastic, biochar, food, pharmaceuticals, and cosmetics: A review. Environ. Chem. Lett. 2023, 21, 97–152. [Google Scholar] [CrossRef]
- Valdman, E.; Erijman, L.; Pessoa, F.L.P.; Leite, S.G.F. Continuous biosorption of Cu and Zn by immobilized waste biomass Sargassum sp. Process Biochem. 2001, 36, 869–873. [Google Scholar] [CrossRef]
- Areco, M.M.; dos Santos Afonso, M. Copper, zinc, cadmium and lead biosorption by Gymnogongrus torulosus. Thermodynamics and kinetics studies. Colloids Surf. B Biointerfaces 2010, 81, 620–628. [Google Scholar] [CrossRef] [PubMed]
- Vijayaraghavan, K.; Teo, T.T.; Balasubramanian, R.; Joshi, U.M. Application of Sargassum biomass to remove heavy metal ions from synthetic multi-metal solutions and urban storm water runoff. J. Hazard. Mater. 2009, 164, 1019–1023. [Google Scholar] [CrossRef] [PubMed]
- Greger, M.; Malm, T.; Kautsky, L. Heavy metal transfer from composted macroalgae to crops. Eur. J. Agron. 2007, 26, 257–265. [Google Scholar] [CrossRef]
- Athar, R.; Ahmad, M. Heavy metal toxicity: Effect on plant growth and metal uptake by wheat, and on free living Azotobacter. Water Air Soil Pollut. 2002, 138, 165–180. [Google Scholar] [CrossRef]
- Wani, P.A.; Khan, M.S.; Zaidi, A. Impact of heavy metal toxicity on plant growth, symbiosis, seed yield and nitrogen and metal uptake in chickpea. Aust. J. Exp. Agric. 2007, 47, 712–720. [Google Scholar]
- Clemens, S.; Ma, J.F. Toxic heavy metal and metalloid accumulation in crop plants and foods. Annu. Rev. Plant Biol. 2016, 67, 489–512. [Google Scholar] [CrossRef]
- Zhuang, P.; McBride, M.B.; Xia, H.; Li, N.; Li, Z. Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Sci. Total Environ. 2009, 407, 1551–1561. [Google Scholar] [CrossRef]
- Li, H.; Lu, J.; Zhang, Y.; Liu, Z. Hydrothermal liquefaction of typical livestock manures in China: Biocrude oil production and migration of heavy metals. J. Anal. Appl. Pyrolysis 2018, 135, 133–140. [Google Scholar]
- Song, C.; Yuan, W.; Shan, S.; Ma, Q.; Zhang, H.; Wang, X.; Niazi, N.K.; Wang, H. Changes of nutrients and potentially toxic elements during hydrothermal carbonization of pig manure. Chemosphere 2020, 243, 125331. [Google Scholar]
- Raikova, S.; Allen, M.J.; Chuck, C.J. Hydrothermal liquefaction of macroalgae for the production of renewable biofuels. Biofuels Bioprod. Biorefining 2019, 13, 1483–1504. [Google Scholar] [CrossRef]
- Barreiro, D.L.; Bauer, M.; Hornung, U.; Posten, C.; Kruse, A.; Prins, W. Cultivation of microalgae with recovered nutrients after hydrothermal liquefaction. Algal Res. 2015, 9, 99–106. [Google Scholar] [CrossRef]
- Yuan, C.; Zhao, S.; Ni, J.; He, Y.; Cao, B.; Hu, Y.; Wang, S.; Qian, L.; Abomohra, A. Integrated route of fast hydrothermal liquefaction of microalgae and sludge by recycling the waste aqueous phase for microalgal growth. Fuel 2023, 334, 126488. [Google Scholar]
- Piccini, M.; Raikova, S.; Allen, M.J.; Chuck, C.J. A synergistic use of microalgae and macroalgae for heavy metal bioremediation and bioenergy production through hydrothermal liquefaction. Sustain. Energy Fuels 2019, 3, 292–301. [Google Scholar] [CrossRef]
- Williams, A.; Feagin, R. Sargassum as a natural solution to enhance dune plant growth. Environ. Manag. 2010, 46, 738–747. [Google Scholar] [CrossRef] [PubMed]
- Tonon, T.; Machado, C.B.; Webber, M.; Webber, D.; Smith, J.; Pilsbury, A.; Cicéron, F.; Herrera-Rodriguez, L.; Jimenez, E.M.; Suarez, J.V.; et al. Biochemical and Elemental Composition of Pelagic Sargassum Biomass Harvested across the Caribbean. Phycology 2022, 2, 204–215. [Google Scholar] [CrossRef]
- Kaap, R.W., Jr. Arsenic. Encycl. Toxicol. 2014, 3, 308–312. [Google Scholar]
- Lodeiro, P.; Gudina, A.; Herrero, L.; Herrero, R.; de Vicente, M.E.S. Aluminium removal from wastewater by refused beach cast seaweed. Equilibrium and dynamic studies. J. Hazard. Mater. 2010, 178, 861–866. [Google Scholar] [CrossRef]
- Rahman, R.; Upadhyaya, H. Aluminium toxicity and its tolerance in plant: A review. J. Plant Biol. 2021, 64, 101–121. [Google Scholar]
- Hao, X.; Papadopoulos, A.P. Effects of calcium and magnesium on plant growth, biomass partitioning, and fruit yield of winter greenhouse tomato. HortScience 2004, 39, 512–515. [Google Scholar] [CrossRef]
- Long, Y.; Peng, J. Interaction between boron and other elements in plants. Genes 2023, 14, 130. [Google Scholar] [CrossRef]
- Álvarez-Aragón, R.; Haro, R.; Benito, B.; Rodríguez-Navarro, A. Salt intolerance in Arabidopsis: Shoot and root sodium toxicity, and inhibition by sodium-plus-potassium overaccumulation. Planta 2016, 243, 97–114. [Google Scholar] [PubMed]
- Azooz, M.M.; Abou-Elhamd, M.F.; Al-Fredan, M.A. Biphasic effect of copper on growth, proline, lipid peroxidation and antioxidant enzyme activities of wheat (‘Triticum aestivum’ cv. Hasaawi) at early growing stage. Aust. J. Crop Sci. 2012, 6, 688–694. [Google Scholar]
- Akhtar, N.; Sarker, M.A.M.; Akhter, H.; Nada, M.K. Effect of planting time and micronutrient as zinc chloride on the growth, yield and oil content of Mentha piperita. Bangladesh J. Sci. Ind. Res. 2009, 44, 125–130. [Google Scholar] [CrossRef]
- Kovinich, N.; Kayanja, G.; Chanoca, A.; Otegui, M.S.; Grotewold, E. Abiotic stresses induce different localizations of anthocyanins in Arabidopsis. Plant Signal. Behav. 2015, 10, e1027850. [Google Scholar] [CrossRef]
- Watanabe, S.; Sato, M.; Sawada, Y.; Tanaka, M.; Matsui, A.; Kanno, Y.; Hirai, M.Y.; Seki, M.; Sakamoto, A.; Seo, M. Arabidopsis molybdenum cofactor sulfurase ABA3 contributes to anthocyanin accumulation and oxidative stress tolerance in ABA-dependent and independent ways. Sci. Rep. 2018, 8, 16592. [Google Scholar] [CrossRef] [PubMed]
- Kumari, R.; Kaur, I.; Bhatnagar, A.K. Effect of aqueous extract of Sargassum johnstonii Setchell & Gardner on growth, yield and quality of Lycopersicon esculentum Mill. J. Appl. Phycol. 2011, 23, 623–633. [Google Scholar]
- Ghaderiardakani, F.; Collas, E.; Damiano, D.K.; Tagg, K.; Graham, N.S.; Coates, J.C. Effects of green seaweed extract on Arabidopsis early development suggest roles for hormone signalling in plant responses to algal fertilisers. Sci. Rep. 2019, 9, 1983. [Google Scholar]
- Roosta, H.R.; Schjoerring, J.K. Effects of nitrate and potassium on ammonium toxicity in cucumber plants. J. Plant Nutr. 2008, 31, 1270–1283. [Google Scholar] [CrossRef]
- Emenecker, R.J.; Strader, L.C. Auxin-abscisic acid interactions in plant growth and development. Biomolecules 2020, 10, 281. [Google Scholar] [CrossRef]
- Márquez, G.; Alarcón, M.V.; Salguero, J. Cytokinin inhibits lateral root development at the earliest stages of lateral root primordium initiation in maize primary root. J. Plant Growth Regul. 2019, 38, 83–92. [Google Scholar]
- Li, Y.; Zhou, C.; Yan, X.; Zhang, J.; Xu, J. Simultaneous analysis of ten phytohormones in Sargassum horneri by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. J. Sep. Sci. 2016, 39, 1804–1813. [Google Scholar] [CrossRef] [PubMed]
HTC 180 | HTC 250 | HTL 300 | HTL 350 | |
---|---|---|---|---|
Orthophosphate (PO43−-P) | 292.4 ± 3.9 a | 215.6 ± 6.2 a | 316 ± 7.9 a | 276 ± 33.9 a |
Ammonium (NH4+-N) | 109 ± 2.1 a | 398.4 ± 38.9 a | 558.8 ± 10.7 a | 407.2 ± 33 a |
Total N | 1720 ± 79.2 a | 2792 ± 916.4 a | 2328 ± 610 a | 2362 ± 314 a |
TOC | 15,175 ± 35.4 a | 10,030 ± 113.1 a | 11,030 ± 594 a | 13,245 ± 92 a |
Al | 57.92 | 18.4 | 16.35 | 26.92 |
B | 569.68 | 488.93 | 470.87 | 498.13 |
Ba | 28.28 | 51.79 | 42.93 | 40.89 |
Ca | 63,604.77 | 26,197.61 | 36,514.48 | 22,446.34 |
Co | 0.68 | - | - | 0.34 |
Cu | 14.99 | 13.63 | 4.43 | 11.24 |
Fe | 4.09 | 1.7 | 3.75 | 9.54 |
K | 793.87 | 555.03 | 564.57 | 785.69 |
Mg | 10,385.01 | 4494.04 | 5362.86 | 5284.50 |
Mn | 8.52 | 1.36 | 5.79 | 12.27 |
Na | 1641.91 | 1273.25 | 1382.96 | 1367.63 |
Ni | 5.45 | 1.36 | 9.54 | 9.54 |
P | 53.49 | 19.08 | 112.10 | 39.18 |
Si | 482.11 | 97.79 | 314.48 | 139.69 |
Sr | 2257.92 | 1579.22 | 1619.08 | 1168.31 |
Zn | 3.06 | 1.36 | 28.22 | 5.78 |
As | 23.85 | 17.38 | 19.08 | 5.45 |
Cd | - | - | - | - |
Cr | - | - | - | - |
Hg | - | 4.77 | 2.04 | 3.41 |
Pb | - | - | 0.34 | 1.02 |
HTC 180 | HTC 250 | HTL 300 | HTL 350 | |
---|---|---|---|---|
Orthophosphate (PO43−-P) | 790.8 ± 41.2 a | 410.4 ± 46.4 a | 428 ± 3 a | 400 ± 100 a |
Ammonium (NH4+-N) | 468 ± 0.8 a | 1120 ± 24 a | 1204 ± 17 a | 1736 ± 45 a |
Total N | 3276 ± 116 a | 3828 ± 28 a | 3811 ± 39 a | 4264 ± 124 a |
TOC | 15,725 ± 85 a | 17,110 ± 20 a | 14,725 ± 205 a | 17,415 ± 106 a |
Al | 36.46 | 52.47 | 16.01 | 76.66 |
B | 357.07 | 382.28 | 308.01 | 438.16 |
Ba | 7.16 | 6.81 | 12.27 | 8.18 |
Ca | 8190.80 | 5488.93 | 16,446.34 | 7921.64 |
Co | 0.34 | 0.34 | 1.7 | 0.34 |
Cu | 6.47 | 2.04 | 12.27 | 0.68 |
Fe | 15.67 | 3.41 | 278.71 | 6.81 |
K | 96,327.09 | 95,209.54 | 78,729.13 | 127,413.97 |
Mg | 27,734.24 | 5921.64 | 6258.94 | 4603.07 |
Mn | 31.35 | 5.11 | 33.73 | 4.77 |
Na | 12,735.95 | 11,764.91 | 9359.45 | 13,638.84 |
Ni | 2.73 | - | 97.44 | 1.7 |
P | 2918.91 | 94.04 | 594.21 | 135.6 |
Si | 463.71 | 129.81 | 108.01 | 97.10 |
Sr | 933.22 | 202.73 | 1074.28 | 375.13 |
Zn | 8.52 | 0.68 | 54.86 | 0.34 |
As | 84.50 | 67.46 | 46.68 | 45.66 |
Cd | 0.34 | - | - | - |
Cr | - | 0.34 | 3.07 | 0.34 |
Hg | - | - | 3.07 | - |
Pb | - | 0.68 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smith, J.; Pilsbury, A.; Kumar, V.; Karamerou, E.E.; Chuck, C.J.; Herrera-Rodriguez, L.; Suarez, J.V.; Allen, M.J. Accessing the Efficacy of Sargassum-Based Aqueous Phase Products Derived from Hydrothermal Carbonisation and Hydrothermal Liquefaction on Plant Growth. Phycology 2024, 4, 53-64. https://doi.org/10.3390/phycology4010003
Smith J, Pilsbury A, Kumar V, Karamerou EE, Chuck CJ, Herrera-Rodriguez L, Suarez JV, Allen MJ. Accessing the Efficacy of Sargassum-Based Aqueous Phase Products Derived from Hydrothermal Carbonisation and Hydrothermal Liquefaction on Plant Growth. Phycology. 2024; 4(1):53-64. https://doi.org/10.3390/phycology4010003
Chicago/Turabian StyleSmith, James, Amy Pilsbury, Vinod Kumar, Eleni E. Karamerou, Christopher J. Chuck, Leopoldo Herrera-Rodriguez, Julio V. Suarez, and Michael J. Allen. 2024. "Accessing the Efficacy of Sargassum-Based Aqueous Phase Products Derived from Hydrothermal Carbonisation and Hydrothermal Liquefaction on Plant Growth" Phycology 4, no. 1: 53-64. https://doi.org/10.3390/phycology4010003
APA StyleSmith, J., Pilsbury, A., Kumar, V., Karamerou, E. E., Chuck, C. J., Herrera-Rodriguez, L., Suarez, J. V., & Allen, M. J. (2024). Accessing the Efficacy of Sargassum-Based Aqueous Phase Products Derived from Hydrothermal Carbonisation and Hydrothermal Liquefaction on Plant Growth. Phycology, 4(1), 53-64. https://doi.org/10.3390/phycology4010003