Optimizing a Mix of Forage Cactus (Nopalea cochenillifera), Tifton (Cynodon sp.) Hay and Urea for Efficient Feeding of Ruminants in the Brazilian Semi-Arid Ecotype
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ADF | Acid Detergent Fiber |
| CP | Crude Protein |
| DM | Dry Matter |
| EE | Ether extract |
| FC | Fiber Carbohydrates |
| MM | Mineral Matter |
| NDF | Neutral detergent Fiber |
| NPN | Non-Protein Nitrogen |
| NSC | Non-Structural Carbohydrates |
| NFC | Non-Fiber Carbohydrates |
| TC | Total Carbohydrates |
| OM | Organic Matter |
References
- Balehegn, M.; Ayantunde, A.; Amole, T.; Njarui, D.; Nkosi, B.D.; Müller, F.L.; Meeske, R.; Tjelele, T.J.; Malebana, I.M.; Madibela, O.R.; et al. Forage Conservation in Sub-Saharan Africa: Review of Experiences, Challenges, and Opportunities. Agron. J. 2022, 114, 75–99. [Google Scholar] [CrossRef]
- Lopes, D.S.; Rodrigues, M.T.; De Oliveira, T.S. Effects of Forage Quality and Particle Size on Feed Intake and Ruminoreticulum Content of Goats. Transl. Anim. Sci. 2023, 7, txad101. [Google Scholar] [CrossRef]
- Camacho, L.F.; da Silva, T.E.; Franco, M.d.O.; Detmann, E. Can Associative Effects Affect In Vitro Digestibility Estimates Using Artificial Fermenters? Ruminants 2023, 3, 100–110. [Google Scholar] [CrossRef]
- Torquato, I.A.; Costa, C.T.F.; Jesus, M.S.; Mata, F.; Santos, J.; Santana, H.E.P.; Silva, D.P.; Ruzene, D.S. Spineless Cactus (Opuntia stricta and Nopalea cochenillifera) with Added Sugar Cane (Saccharum officinarum) Bagasse Silage as Bovine Feed in the Brazilian Semi-Arid Region. Ruminants 2025, 5, 37. [Google Scholar] [CrossRef]
- Sipango, N.; Ravhuhali, K.E.; Sebola, N.A.; Hawu, O.; Mabelebele, M.; Mokoboki, H.K.; Moyo, B. Prickly Pear (Opuntia spp.) as an Invasive Species and a Potential Fodder Resource for Ruminant Animals. Sustainability 2022, 14, 3719. [Google Scholar] [CrossRef]
- Godoi, P.F.A.; Magalhães, A.L.R.; de Araújo, G.G.L.; de Melo, A.A.S.; Silva, T.S.; Gois, G.C.; Dos Santos, K.C.; do Nascimento, D.B.; da Silva, P.B.; de Oliveira, J.S. Chemical Properties, Ruminal Fermentation, Gas Production and Digestibility of Silages Composed of Spineless Cactus and Tropical Forage Plants for Sheep Feeding. Animals 2024, 14, 552. [Google Scholar] [CrossRef] [PubMed]
- Moreno, G.M.B.; de Araujo, G.G.L.; de Almeida, V.V.S.; Oliveira, A.C.; dos Santos Silva, M.J.M.; do Sacramento Ribeiro, J.; dos Santos Pina, D.; Neto, O.B.; da Silva, N.I.S.; de Lima Júnior, D.M. Goats Fed with 250 g/Kg of Cactus Do Not Need Drink Water. J. Arid Environ. 2024, 222, 105176. [Google Scholar] [CrossRef]
- Sobral, G.d.C.; Santos, E.M.; Campos, F.S.; Cavalcanti, H.S.; Leite, G.M.; Coelho, D.F.O.; Santana, L.P.; Gomes, P.G.B.; Torres Júnior, P.d.C.; Santos, M.A.C.; et al. Optimizing Silage Quality in Drylands: Corn Stover and Forage Cactus Mixture on Nutritive Value, Microbial Activity, and Aerobic Stability. J. Arid Environ. 2024, 220, 105123. [Google Scholar] [CrossRef]
- Alves, F.A.L.; Santos, D.C. Morphological and Nutritional Characterization of the Cladodes of Seven Varieties of Forage Cactus of the Genus opuntia Cultivated in Brazil. S. Afr. J. Bot. 2024, 169, 46–55. [Google Scholar] [CrossRef]
- Khattab, I.M.; El-Hais, A.M.; El-Hendawy, N.M.; El- Bltagy, E.A.; Allam, A.A.; Hassan, A.A.; Atia, S.E.S. Utilization of Cactus Cladodes as a Replacement for Berseem Clover: Effect on Nutrient Intake, Rumen Fermentation, Blood Metabolites, and Milk Yield, Composition and Fatty Acid Profile in the Diets of Dairy Goats. Anim. Feed Sci. Technol. 2025, 324, 116312. [Google Scholar] [CrossRef]
- Alkhtib, A.; Muna, M.; Darag, M.; Alkhalid, I.; Al-asa’ad, Z.; Mfeshi, H.; Zayod, R.; Burton, E. Spineless Cactus Cladode Is a Viable Replacement to Barley and Maize Grains in the Feed Rations of Dromedary Camel Calves. Vet. Med. Sci. 2023, 9, 2368–2375. [Google Scholar] [CrossRef]
- Lopes, A.S.d.M.; Cruz, G.F.d.L.; Vieira, D.d.S.; Santos, F.N.d.S.; Lemos, M.L.P.; Pinheiro, J.K.; Santos, E.M. Effects of Non-Protein Nitrogen on Buffel Grass Fiber and Ruminal Bacterial Composition in Sheep. Livest. Sci. 2023, 272, 105237. [Google Scholar] [CrossRef]
- Silva, A.; Pereira Filho, J.M.; Oliveira, J.; Lucena, K.; Mazza, P.; Silva Filho, E.; Nascimento, A.; Pereira, E.; Vaz, A.; Barbosa, A.; et al. Effect of Slow-Release Urea on Intake, Ingestive Behavior, Digestibility, Nitrogen Metabolism, Microbial Protein Production, Blood and Ruminal Parameters of Sheep. Trop. Anim. Health Prod. 2023, 55, 414. [Google Scholar] [CrossRef] [PubMed]
- Souza, J.T.A.; Ribeiro, J.E.d.S.; Ramos, J.P.d.F.; Sousa, W.H.d.; Araújo, J.S.; Lima, G.F.C.; Dias, J.A. Quantum Yield and Water Use Efficiency of Genotypes of Forage Spineless Cacti in the Brazilian Semiarid. Arch. De Zootec. 2019, 68, 268–273. [Google Scholar] [CrossRef]
- Mora-Luna, R.E.; Herrera-Angulo, A.M.; Siqueira, M.C.B.; Conceição, M.G.d.; Chagas, J.C.C.; Monteiro, C.C.F.; Véras, A.S.C.; Carvalho, F.F.R.; Ferreira, M.A. Spineless Cactus plus Urea and Tifton-85 Hay: Maximizing the Digestible Organic Matter Intake, Ruminal Fermentation and Nitrogen Utilization of Wethers in Semi-Arid Regions. Animals 2022, 12, 401. [Google Scholar] [CrossRef]
- Mauricio, R.M.; Mould, F.L.; Dhanoa, M.S.; Owen, E.; Channa, K.S.; Theodorou, M.K. A Semi-Automated In Vitro Gas Production Technique for Ruminant Feedstuff Evaluation. Anim. Feed Sci. Technol 1999, 79, 321–330. [Google Scholar] [CrossRef]
- Maurício, R.M.; Pereira, L.G.R.; Gonçalves, L.C.; Rodriguez, N.M. Relationship between Volume and Pressure for Installation of the Semi-Automated in Vitro Gas Production Technique for Tropical Forage Evaluation. Arq. Bras. Med. Vet. Zootec. 2003, 55, 216–219. [Google Scholar] [CrossRef]
- AOAC Association of Official Analytical Chemists. Official Methods of Analysis of Association of Official Analytical Chemists, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Detmann, E.; de Souza, M.; Filho, S.d.C.V.; Queiroz, A.d.; Berchielli, T.; Saliba, E.d.O.; Cabral, L.d.S.; Pina, D.d.S.; Ladeira, M.; Azevedo, J. Métodos Para Análise de Alimentos; Suprema: Visconde do Rio Branco, Brazil, 2012. [Google Scholar]
- Van Soest, P.J. Use of Detergents in the Analysis of Fibrous Feeds. 2. A Rapid Method for the Determination of Fiber and Lignin. J. Assoc. Off. Agric. Chem. 1963, 46, 829–835. [Google Scholar]
- Van Soest, P.J.; Wine, R.H. Use of Detergents in the Analysis of Fibrous Feeds. IV. Determination of Plant Cell-Wall Constituents. J. Assoc. Off. Anal. Chem. 1967, 50, 50–55. [Google Scholar]
- Sniffen, C.J.; O’Connor, J.D.; Van Soest, P.J.; Fox, D.G.; Russel, J.B. A Net Carbohydrate and Protein System for Evaluating Cattle Diets: IV. Predicting Amino Acid Adequacy. J. Anim. Sci. 1992, 71, 1298–1311. [Google Scholar] [CrossRef]
- Weiss, W.P.; Conrad, H.R.; St. Pierre, N.R. A Theoretically-Based Model for Predicting Total Digestible Nutrient Values of Forages and Concentrates. Anim. Feed Sci. Technol. 1992, 39, 95–110. [Google Scholar] [CrossRef]
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B.; France, J. A Simple Gas Production Method Using a Pressure Transducer to Determine the Fermentation Kinetics of Ruminant Feeds. Anim. Feed Sci. Technol. 1994, 48, 185–197. [Google Scholar] [CrossRef]
- Pereira, E.S.; Pimentel, P.G.; Duarte, L.S.; Mizubuti, I.Y.; de Araújo, G.G.L.; Carneiro, M.S.d.S.; Lousada Regadas Filho, J.G.; Maia, I.S.G. Determinação Das Frações Proteicas e de Carboidratos e Estimativa Do Valor Energético de Forrageiras e Subprodutos Da Agroindústria Produzidos No Nordeste Brasileiro. Semin. Cienc. Agrar. 2010, 31, 1079. [Google Scholar] [CrossRef]
- SAS. SAS/STAT 9.1 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2003; ISBN 1590472438. [Google Scholar]
- Schofield, P.; Pitt, R.E.; Pell, A.N. Kinetics of Fiber Digestion from In Vitro Gas Production. J. Anim. Sci. 1994, 72, 2980–2991. [Google Scholar] [CrossRef]
- Alipour, D.; Saleem, A.M.; Sanderson, H.; Brand, T.; Santos, L.V.; Mahmoudi-Abyane, M.; Marami, M.R.; McAllister, T.A. Effect of Combinations of Feed-Grade Urea and Slow-Release Urea in a Finishing Beef Diet on Fermentation in an Artificial Rumen System. Transl. Anim. Sci. 2020, 4, 839–847. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.T.F.; Ferreira, M.A.; Campos, J.M.S.; Guim, A.; Silva, J.L.; Siqueira, M.C.B.; Barros, L.J.A.; Siqueira, T.D.Q. Intake, Total and Partial Digestibility of Nutrients, and Ruminal Kinetics in Crossbreed Steers Fed with Multiple Supplements Containing Spineless Cactus Enriched with Urea. Livest. Sci. 2016, 188, 55–60. [Google Scholar] [CrossRef]
- Kand, D.; Bagus Raharjo, I.; Castro-Montoya, J.; Dickhoefer, U. The Effects of Rumen Nitrogen Balance on in Vitro Rumen Fermentation and Microbial Protein Synthesis Vary with Dietary Carbohydrate and Nitrogen Sources. Anim. Feed Sci. Technol. 2018, 241, 184–197. [Google Scholar] [CrossRef]
- Acedo, T.S.; Paulino, M.F.; Detmann, E.; de Campos Valadares Filho, S.; de Moraes, E.H.B.K.; de Figueiredo, D.M. Níveis de Uréia Em Suplementos Para Terminação de Bovinos Em Pastejo Durante a Época Seca. Acta Sci. 2007, 29, 301–308. [Google Scholar]
- Benedeti, P.D.B.; Paulino, P.V.R.; Marcondes, M.I.; Valadares Filho, S.C.; Martins, T.S.; Lisboa, E.F.; Silva, L.H.P.; Teixeira, C.R.V.; Duarte, M.S. Soybean Meal Replaced by Slow Release Urea in Finishing Diets for Beef Cattle. Livest. Sci. 2014, 165, 51–60. [Google Scholar] [CrossRef]
- Santos, R.D.; Neves, A.L.A.; Santos, D.C.; Pereira, L.G.R.; Gonçalves, L.C.; Ferreira, A.L.; Costa, C.T.F.; Araujo, G.G.L.; Scherer, C.B.; Sollenberger, L.E. Divergence in Nutrient Concentration, in Vitro Degradation and Gas Production Potential of Spineless Cactus Genotypes Selected for Insect Resistance. J. Agric. Sci. 2018, 156, 450–456. [Google Scholar] [CrossRef]
- Boukrouh, S.; Noutfia, A.; Moula, N.; Avril, C.; Louvieaux, J.; Hornick, J.L.; Chentouf, M.; Cabaraux, J.F. Ecological, Morpho-Agronomical, and Nutritional Characteristics of Sulla flexuosa (L.) Medik. Ecotypes. Sci. Rep. 2023, 13, 13300. [Google Scholar] [CrossRef]
- Castañeda-Trujano, F.J.; Miranda-Romero, L.A.; Tirado-González, D.N.; Tirado-Estrada, G.; Achiquen-Millán, J.; Améndola-Massiotti, R.D.; Martínez-Hernández, P.A. Gas Production and Environmental Impact Indicators from in Vitro Fermentation of Diets with Nopal Silage (Opuntia ficus-indica L.). Agro Product. 2023, 16, 49–57. [Google Scholar] [CrossRef]
- Barbosa, J.G.; Costa, R.G.; Medeiros, A.N.D.; De, R. Use of Different Urea Levels in the Feeding of Alpine Goats. Rev. Bras. De Zootec. 2012, 41, 1713–1719. [Google Scholar] [CrossRef]
- Zhang, Z.; Shahzad, K.; Shen, S.; Dai, R.; Lu, Y.; Lu, Z.; Li, C.; Chen, Y.; Qi, R.; Gao, P.; et al. Altering Dietary Soluble Protein Levels With Decreasing Crude Protein May Be a Potential Strategy to Improve Nitrogen Efficiency in Hu Sheep Based on Rumen Microbiome and Metabolomics. Front. Nutr. 2022, 8, 815358. [Google Scholar] [CrossRef]
- Lins, S.E.B.; Pessoa, R.A.S.; Ferreira, M.d.A.; Campos, J.M.d.S.; da Silva, J.A.B.A.; de Silva, J.L.; Santos, S.A.; Melo, T.T.d.B. Spineless Cactus as a Replacement for Wheat Bran in Sugar Cane-Based Diets for Sheep: Intake, Digestibility, and Ruminal Parameters. Rev. Bras. Zootec. 2016, 45, 26–31. [Google Scholar] [CrossRef]
- Santos, K.C.; Magalhães, A.L.R.; Silva, D.K.A.; Araújo, G.G.L.; Fagundes, G.M.; Ybarra, N.G.; Abdalla, A.L. Nutritional Potential of Forage Species Found in Brazilian Semiarid Region. Livest. Sci. 2017, 195, 118–124. [Google Scholar] [CrossRef]
- Wang, B.; Ma, T.; Deng, K.D.; Jiang, C.G.; Diao, Q.Y. Effect of Urea Supplementation on Performance and Safety in Diets of Dorper Crossbred Sheep. J. Anim. Physiol. Anim. Nutr. 2015, 100, 902–910. [Google Scholar] [CrossRef]
- Boukrouh, S.; Noutfia, A.; Moula, N.; Avril, C.; Louvieaux, J.; Hornick, J.-L.; Cabaraux, J.-F.; Chentouf, M. Growth Performance, Carcass Characteristics, Fatty Acid Profile, and Meat Quality of Male Goat Kids Supplemented by Alternative Feed Resources: Bitter Vetch and Sorghum Grains. Arch. Anim. Breed 2024, 67, 481–492. [Google Scholar] [CrossRef]
- Paliwal, A.; Srinivas, A.; Pauls, G.; Bg, N.; Reddy, R.; HN, C. Methanogen Colonization and ‘End-of-Life’ Use of Spent Lignocellulose from a Solid-State Reactor as an Inoculum Source. Energy 2023, 278, 127856. [Google Scholar] [CrossRef]
- Moreira, P.C.; Reis, R.B.; Rezende, P.L.d.P.; Wascheck, R.d.C.; Mendonça, A.C.d.; Dutra, A.R. NoProdução Cumulativa de Gases e Parâmetros de France Avaliados Pela Técnica Semiautomática in Vitro de Fontes de Carboidratos de Ruminantes. Rev. Bras. Saúde Prod. Anim. 2010, 11, 452–462. [Google Scholar]
- Faria, B.N.; Reis, R.B.; Maurício, R.M.; Lana, A.M.Q.; Soares, S.R.V.; Saturnino, H.M.; Coelho, S.G. Efeitos Da Adição de Propilenoglicol Ou Monensina à Silagem de Milho Sobre a Cinética de Degradação Dos Carboidratos e Produção Cumulativa de Gases. Arq. Bras. Med. Vet. Zootec. 2008, 60, 896–903. [Google Scholar] [CrossRef]
- Sumadong, P.; Cherdthong, A.; So, S.; Wanapat, M. Sulfur, Fresh Cassava Root and Urea Independently Enhanced Gas Production, Ruminal Characteristics and in Vitro Degradability. BMC Vet. Res. 2021, 17, 304. [Google Scholar] [CrossRef] [PubMed]



| Ingredients | Control | Urea Level (Treatments) | |||
|---|---|---|---|---|---|
| 0% | 1% | 2% | 3% | ||
| Tifton hay | 800 | 800 | 800 | 800 | 800 |
| Wheat bran | 150 | - | - | - | - |
| Soybean meal | 30 | - | - | - | - |
| Spineless Cactus | - | 190 | 180 | 170 | 160 |
| U + AS | 10 | - | 10 | 20 | 30 |
| Mineral mixture | 10 | 10 | 10 | 10 | 10 |
| Component | Control | Treatments | |||
|---|---|---|---|---|---|
| 0% Urea | 1% Urea | 2% Urea | 3% Urea | ||
| Dry matter | 893 a ± 5 | 355 b ± 4 | 366 c ± 4 | 378 d ± 3 | 392 e ± 3 |
| Organic matter | 913 a ± 3 | 903 b ± 3 | 894 c ± 3 | 885 d ± 2 | 877 d ± 2 |
| Crude protein | 115 a ± 5 | 60 b ± 4 | 87 c ± 3 | 115 a ± 3 | 143 d ± 4 |
| Ether extract | 18 a ± 3 | 14 a ± 3 | 14 a ± 3 | 14 a ± 3 | 14 a ± 3 |
| Neutral detergent fiber | 586 a ± 4 | 565 b ± 4 | 563 b ± 3 | 561 a ± 3 | 560 b ± 4 |
| Acid detergent fiber | 274 a ± 4 | 279 a ± 4 | 278 a ± 3 | 277 a ± 3 | 276 a ± 4 |
| Total carbohydrates | 780 a ± 6 | 829 b ± 5 | 793 a ± 6 | 756 c ± 5 | 720 d ± 6 |
| Non-fiber carbohydrates | 212 a ± 3 | 255 b ± 3 | 249 bc ± 2 | 243 cd ± 2 | 237 d ± 3 |
| Treatments (T) | Control | 0% Urea | 1% Urea | 2% Urea | 3% Urea | Total |
|---|---|---|---|---|---|---|
| Time Points (TP) | 6, 12, 24, 48, 96 h | 6, 12, 24, 48, 96 h | 6, 12, 24, 48, 96 h | 6, 12, 24, 48, 96 h | 6, 12, 24, 48, 96 h | |
| Replications | 3 | 3 | 3 | 3 | 3 | |
| T × TP × R | 15 | 15 | 15 | 15 | 15 | 75 |
| Blank | 3 | 3 | 3 | 3 | 3 | |
| Total Flasks | 18 | 18 | 18 | 18 | 18 | 90 |
| Item | Control | Treatments | Effect (p-Value) | |||||
|---|---|---|---|---|---|---|---|---|
| 0% | 1% | 2% | 3% | Treatment | Time | Treatment × Time | ||
| Miúda | 83.40 | 87.51 | 80.05 * | 80.29 * | 7.68 * | <0.001 | <0.001 | 0.513 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Torquato, I.A.; Jesus, M.; Mata, F.; Santos, J.; Santana, H.E.P.; Guimarães, J.M.S.C.; Costa, C.T.F.; Silva, D.P.; Ruzene, D.S. Optimizing a Mix of Forage Cactus (Nopalea cochenillifera), Tifton (Cynodon sp.) Hay and Urea for Efficient Feeding of Ruminants in the Brazilian Semi-Arid Ecotype. Ruminants 2026, 6, 4. https://doi.org/10.3390/ruminants6010004
Torquato IA, Jesus M, Mata F, Santos J, Santana HEP, Guimarães JMSC, Costa CTF, Silva DP, Ruzene DS. Optimizing a Mix of Forage Cactus (Nopalea cochenillifera), Tifton (Cynodon sp.) Hay and Urea for Efficient Feeding of Ruminants in the Brazilian Semi-Arid Ecotype. Ruminants. 2026; 6(1):4. https://doi.org/10.3390/ruminants6010004
Chicago/Turabian StyleTorquato, Iran A., Meirielly Jesus, Fernando Mata, Joana Santos, Hortência E. P. Santana, Júlia M. S. C. Guimarães, Cleber T. F. Costa, Daniel P. Silva, and Denise S. Ruzene. 2026. "Optimizing a Mix of Forage Cactus (Nopalea cochenillifera), Tifton (Cynodon sp.) Hay and Urea for Efficient Feeding of Ruminants in the Brazilian Semi-Arid Ecotype" Ruminants 6, no. 1: 4. https://doi.org/10.3390/ruminants6010004
APA StyleTorquato, I. A., Jesus, M., Mata, F., Santos, J., Santana, H. E. P., Guimarães, J. M. S. C., Costa, C. T. F., Silva, D. P., & Ruzene, D. S. (2026). Optimizing a Mix of Forage Cactus (Nopalea cochenillifera), Tifton (Cynodon sp.) Hay and Urea for Efficient Feeding of Ruminants in the Brazilian Semi-Arid Ecotype. Ruminants, 6(1), 4. https://doi.org/10.3390/ruminants6010004

