The Effect of a Pre-Mix of Essential Organic Minerals on Growth, Antioxidant Indices, and the Diarrhea Incidence in Dairy Calves Breed in Arid Climates
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Diets
2.2. Sample Collection
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Cu-Met | Copper-methionine |
Zn-Met | Zinc-methionine |
Mn-Met | Manganese-methionine |
ROS | Reactive oxygen species |
SOD | Superoxide dismutase |
AI | Artificial insemination |
CTR | Control group |
CP | Crude protein |
DM | Dry matter |
EE | Ether extract |
ADF | Acid detergent fiber |
NDF | Neutral detergent fiber |
TAC | Total antioxidant capacity |
GPx | Glutathione peroxidase |
References
- Perillo, L.; Cascone, G.; Antoci, F.; Piccione, G.; Giannetto, C.; Salonia, R.; Salina, F.; Giudice, E.; Monteverde, V.; Licitra, F. Prevalence of Infectious Diseases on Dairy Farms Classified on The Basis of Their Biosecurity Score. J. Vet. Res. 2022, 66, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Cavallini, D.; Giammarco, M.; Buonaiuto, G.; Vignola, G.; De Matos Vettori, J.; Lamanna, M.; Prasinou, P.; Colleluori, R.; Formigoni, A.; Fusaro, I. Two Years of Precision Livestock Management: Harnessing Ear Tag Device Behavioral Data for Pregnancy Detection in Free-Range Dairy Cattle on Silage/Hay-Mix Ration. Front. Anim. Sci. 2025, 6, 1547395. [Google Scholar] [CrossRef]
- Felini, R.; Cavallini, D.; Buonaiuto, G.; Bordin, T. Assessing the Impact of Thermoregulatory Mineral Supplementation on Thermal Comfort in Lactating Holstein Cows. Vet. Anim. Sci. 2024, 24, 100363. [Google Scholar] [CrossRef]
- El-Seedy, F.R.; Abed, A.H.; Yanni, H.A.; Abd El-Rahman, S.A.A. Prevalence of Salmonella and E. coli in Neonatal Diarrheic Calves. Beni-Suef Univ. J. Basic Appl. Sci. 2016, 5, 45–51. [Google Scholar] [CrossRef]
- Cho, Y.; Yoon, K.-J. An Overview of Calf Diarrhea—Infectious Etiology, Diagnosis, and Intervention. J. Vet. Sci. 2014, 15, 1–17. [Google Scholar] [CrossRef]
- Rocha Valdez, J.; Gonzalez-Avalos, R.; Avila-Cisneros, R.; Peña-Revuelta, B.; Reyes-Romero, A.; Rocha Valdez, J.; Gonzalez-Avalos, R.; Avila-Cisneros, R.; Peña-Revuelta, B.; Reyes-Romero, A. Economic Impact of Mortality and Morbidity from Diseases in Dairy Calves. Abanico Vet. 2019, 9, 1–7. [Google Scholar] [CrossRef]
- Heinrichs, A.J.; Heinrichs, B.S.; Harel, O.; Rogers, G.W.; Place, N.T. A Prospective Study of Calf Factors Affecting Age, Body Size, and Body Condition Score at First Calving of Holstein Dairy Heifers. J. Dairy Sci. 2005, 88, 2828–2835. [Google Scholar] [CrossRef]
- Carulla, P.; Villagrá, A.; Estellés, F.; Blanco-Penedo, I. Welfare Implications on Management Strategies for Rearing Dairy Calves: A Systematic Review. Part 1—Feeding Management. Front. Vet. Sci. 2023, 10, 1148823. [Google Scholar] [CrossRef]
- Barcelos, S.d.S.; Nascimento, K.B.; da Silva, T.E.; Mezzomo, R.; Alves, K.S.; de Souza Duarte, M.; Gionbelli, M.P. The Effects of Prenatal Diet on Calf Performance and Perspectives for Fetal Programming Studies: A Meta-Analytical Investigation. Animals 2022, 12, 2145. [Google Scholar] [CrossRef]
- Mammi, L.M.E.; Cavallini, D.; Fustini, M.; Fusaro, I.; Giammarco, M.; Formigoni, A.; Palmonari, A. Calving Difficulty Influences Rumination Time and Inflammatory Profile in Holstein Dairy Cows. J. Dairy Sci. 2021, 104, 750–761. [Google Scholar] [CrossRef]
- Hammon, H.M.; Liermann, W.; Frieten, D.; Koch, C. Review: Importance of Colostrum Supply and Milk Feeding Intensity on Gastrointestinal and Systemic Development in Calves. Animal 2020, 14, s133–s143. [Google Scholar] [CrossRef] [PubMed]
- Ollivett, T.L.; Nydam, D.V.; Linden, T.C.; Bowman, D.D.; Van Amburgh, M.E. Effect of Nutritional Plane on Health and Performance in Dairy Calves after Experimental Infection with Cryptosporidium parvum. J. Am. Vet. Med. Assoc. 2012, 241, 1514–1520. [Google Scholar] [CrossRef]
- Cavallini, D.; Raspa, F.; Marliani, G.; Nannoni, E.; Martelli, G.; Sardi, L.; Valle, E.; Pollesel, M.; Tassinari, M.; Buonaiuto, G. Growth Performance and Feed Intake Assessment of Italian Holstein Calves Fed a Hay-Based Total Mixed Ration: Preliminary Steps towards a Prediction Model. Vet. Sci. 2023, 10, 554. [Google Scholar] [CrossRef]
- Olivera, M.T.; Mellado, J.; García, J.E.; Encina, J.A.; Álvarez, P.; Macías-Cruz, U.; Avendaño, L.; Mellado, M. The Influence of Calfhood Diarrhea and Pneumonia on Preweaning Growth and Reproductive Performance of Holstein Heifers. Span. J. Agric. Res. 2024, 22, 21154. [Google Scholar] [CrossRef]
- Teixeira, A.G.V.; Lima, F.S.; Bicalho, M.L.S.; Kussler, A.; Lima, S.F.; Felippe, M.J.; Bicalho, R.C. Effect of an Injectable Trace Mineral Supplement Containing Selenium, Copper, Zinc, and Manganese on Immunity, Health, and Growth of Dairy Calves. J. Dairy Sci. 2014, 97, 4216–4226. [Google Scholar] [CrossRef]
- Bates, A.; Wells, M.; Laven, R.A.; Simpson, M. Reduction in Morbidity and Mortality of Dairy Calves from an Injectable Trace Mineral Supplement. Vet. Rec. 2019, 184, 680. [Google Scholar] [CrossRef]
- Chang, M.N.; Wei, J.Y.; Hao, L.Y.; Ma, F.T.; Li, H.Y.; Zhao, S.G.; Sun, P. Effects of Different Types of Zinc Supplement on the Growth, Incidence of Diarrhea, Immune Function, and Rectal Microbiota of Newborn Dairy Calves. J. Dairy Sci. 2020, 103, 6100–6113. [Google Scholar] [CrossRef]
- Liu, J.; Ma, F.; Degen, A.; Sun, P. The Effects of Zinc Supplementation on Growth, Diarrhea, Antioxidant Capacity, and Immune Function in Holstein Dairy Calves. Animals 2023, 13, 2493. [Google Scholar] [CrossRef]
- Carroll, J.A.; Forsberg, N.E. Influence of Stress and Nutrition on Cattle Immunity. Vet. Clin. N. Am. Food Anim. Pract. 2007, 23, 105–149. [Google Scholar] [CrossRef]
- Lv, Y.; Peng, J.; Ma, X.; Liang, Z.; Salekdeh, G.H.; Ke, Q.; Shen, W.; Yan, Z.; Li, H.; Wang, S.; et al. Network Analysis of Gut Microbial Communities Reveals Key Reason for Quercetin Protects against Colitis. Microorganisms 2024, 12, 1973. [Google Scholar] [CrossRef]
- Glover, A.D.; Puschner, B.; Rossow, H.A.; Lehenbauer, T.W.; Champagne, J.D.; Blanchard, P.C.; Aly, S.S. A Double-Blind Block Randomized Clinical Trial on the Effect of Zinc as a Treatment for Diarrhea in Neonatal Holstein Calves under Natural Challenge Conditions. Prev. Vet. Med. 2013, 112, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Ma, F.; Hao, L.; Shan, Q.; Sun, P. Effect of Differing Amounts of Zinc Oxide Supplementation on the Antioxidant Status and Zinc Metabolism in Newborn Dairy Calves. Livest. Sci. 2019, 230, 103819. [Google Scholar] [CrossRef]
- Byrne, L.; Murphy, R.A. Relative Bioavailability of Trace Minerals in Production Animal Nutrition: A Review. Animals 2022, 12, 1981. [Google Scholar] [CrossRef] [PubMed]
- Feldmann, H.R.; Williams, D.R.; Champagne, J.D.; Lehenbauer, T.W.; Aly, S.S. Effectiveness of Zinc Supplementation on Diarrhea and Average Daily Gain in Pre-Weaned Dairy Calves: A Double-Blind, Block-Randomized, Placebo-Controlled Clinical Trial. PLoS ONE 2019, 14, e0219321. [Google Scholar] [CrossRef]
- Wen, Y.; Li, R.; Piao, X.; Lin, G.; He, P. Different Copper Sources and Levels Affect Growth Performance, Copper Content, Carcass Characteristics, Intestinal Microorganism and Metabolism of Finishing Pigs. Anim. Nutr. 2021, 8, 321–330. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine; Division on Earth and Life Studies; Board on Agriculture and Natural Resources; Committee on Nutrient Requirements of Dairy Cattle. Nutrient Requirements of the Young Calf. In Nutrient Requirements of Dairy Cattle: Eighth Revised Edition; National Academies Press (US): Washington, DC, USA, 2021. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Koakoski, D.L.; Bordin, T.; Cavallini, D.; Buonaiuto, G. A Preliminary Study of the Effects of Gaseous Ozone on the Microbiological and Chemical Characteristics of Whole-Plant Corn Silage. Fermentation 2024, 10, 398. [Google Scholar] [CrossRef]
- Marcondes, M.I.; Jácome, D.C.; da Silva, A.L.; Rennó, L.N.; Pires, A.C.d.S. Evaluation of Raw Milk Quality in Different Production Systems and Periods of the Year. R. Bras. Zootec. 2014, 43, 670–676. [Google Scholar] [CrossRef]
- Enjalbert, F.; Rapior, S.; Nouguier-Soulé, J.; Guillon, S.; Amouroux, N.; Cabot, C. Treatment of Amatoxin Poisoning: 20-Year Retrospective Analysis. J. Toxicol. Clin. Toxicol. 2002, 40, 715–757. [Google Scholar] [CrossRef]
- Cavallini, D.; Mammi, L.M.E.; Palmonari, A.; García-González, R.; Chapman, J.D.; McLean, D.J.; Formigoni, A. Effect of an Immunomodulatory Feed Additive in Mitigating the Stress Responses in Lactating Dairy Cows to a High Concentrate Diet Challenge. Animals 2022, 12, 2129. [Google Scholar] [CrossRef]
- Nair, P.M.; Srivastava, R.; Chaudhary, P.; Kuraichya, P.; Dhaigude, V.; Naliyapara, H.B.; Mondal, G.; Mani, V. Impact of Zinc, Copper, Manganese and Chromium Supplementation on Growth Performance and Blood Metabolic Profile of Sahiwal (Bos indicus) Male Calves. Biometals 2023, 36, 1421–1439. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.H.; Xiao, K.; Song, J.; Luan, Z.S. Effects of Zinc Oxide Supported on Zeolite on Growth Performance, Intestinal Microflora and Permeability, and Cytokines Expression of Weaned Pigs. Anim. Feed. Sci. Technol. 2013, 181, 65–71. [Google Scholar] [CrossRef]
- Roshanzamir, H.; Rezaei, J.; Fazaeli, H. Colostrum and Milk Performance, and Blood Immunity Indices and Minerals of Holstein Cows Receiving Organic Mn, Zn and Cu Sources. Anim. Nutr. 2020, 6, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Thakur, M.; Deen, A.U.; Mani, V.; Bhakat, M.; Mohanty, T.K.; Mondal, G. Effect of Dietary Supplementation of Trace Minerals on Semen Production Performance of Sahiwal Bulls During Winter Season. Indian J. Anim. Nutr. 2019, 36, 136–145. [Google Scholar] [CrossRef]
- Kumar, M.; Kaur, H.; Tyagi, A.; Mani, V.; Deka, R.S.; Chandra, G.; Sharma, V.K. Assessment of Chromium Content of Feedstuffs, Their Estimated Requirement, and Effects of Dietary Chromium Supplementation on Nutrient Utilization, Growth Performance, and Mineral Balance in Summer-Exposed Buffalo Calves (Bubalus bubalis). Biol. Trace Elem. Res. 2013, 155, 29–37. [Google Scholar] [CrossRef]
- Malcolm-Callis, K.J.; Duff, G.C.; Gunter, S.A.; Kegley, E.B.; Vermeire, D.A. Effects of Supplemental Zinc Concentration and Source on Performance, Carcass Characteristics, and Serum Values in Finishing Beef Steers. J. Anim. Sci. 2000, 78, 2801–2808. [Google Scholar] [CrossRef]
- Mudgal, V.; Garg, A.; Dass, R. Effect of Zinc, Copper and Selenium Supplementation on Growth Rate and Nutrient Utilization in Buffalo (Bubalus bubalis) Calves. Indian J. Anim. Nutr. 2008, 25, 272–277. [Google Scholar]
- Cazarotto, C.J.; Boito, J.P.; Gebert, R.R.; Reis, J.H.; Machado, G.; Bottari, N.B.; Morsch, V.M.; Schetinger, M.R.C.; Doleski, P.H.; Leal, M.L.R.; et al. Metaphylactic Effect of Minerals on Immunological and Antioxidant Responses, Weight Gain and Minimization of Coccidiosis of Newborn Lambs. Res. Vet. Sci. 2018, 121, 46–52. [Google Scholar] [CrossRef]
- Xin, Z.; Waterman, D.F.; Hemken, R.W.; Harmon, R.J. Copper Status and Requirement During the Dry Period and Early Lactation in Multiparous Holstein Cows1. J. Dairy Sci. 1993, 76, 2711–2716. [Google Scholar] [CrossRef]
- Kincaid, R.L.; Chew, B.P.; Cronrath, J.D. Zinc Oxide and Amino Acids as Sources of Dietary Zinc for Calves: Effects on Uptake and Immunity. J. Dairy Sci. 1997, 80, 1381–1388. [Google Scholar] [CrossRef]
- Wright, C.L.; Spears, J.W. Effect of Zinc Source and Dietary Level on Zinc Metabolism in Holstein Calves. J. Dairy Sci. 2004, 87, 1085–1091. [Google Scholar] [CrossRef] [PubMed]
- Legleiter, L.R.; Spears, J.W. Plasma Diamine Oxidase: A Biomarker of Copper Deficiency in the Bovine. J. Anim. Sci. 2007, 85, 2198–2204. [Google Scholar] [CrossRef] [PubMed]
- Masters, D.G.; Fels, H.E. Zinc Supplements and Reproduction in Grazing Ewes. Biol. Trace Elem. Res. 1985, 7, 89–93. [Google Scholar] [CrossRef] [PubMed]
- VanValin, K.R.; Genther-Schroeder, O.N.; Carmichael, R.N.; Blank, C.P.; Deters, E.L.; Hartman, S.J.; Niedermayer, E.K.; Laudert, S.B.; Hansen, S.L. Influence of Dietary Zinc Concentration and Supplemental Zinc Source on Nutrient Digestibility, Zinc Absorption, and Retention in Sheep. J. Anim. Sci. 2018, 96, 5336–5344. [Google Scholar] [CrossRef]
- Glombowsky, P.; Soldá, N.M.; Campigotto, G.; Volpato, A.; Galli, G.M.; Fávero, J.F.; Bottari, N.B.; Schetinger, M.R.C.; Morsch, V.M.; Baldissera, M.D.; et al. Cholinesterase’s Activities in Cows Supplemented with Selenium, Copper, Phosphorus, Potassium, and Magnesium Intramuscularly during the Transition Period. Comp. Clin. Pathol. 2017, 26, 575–579. [Google Scholar] [CrossRef]
- Tomasi, T.; Volpato, A.; Pereira, W.a.B.; Debastiani, L.H.; Bottari, N.B.; Morsch, V.M.; Schetinger, M.R.C.; Leal, M.L.R.; Machado, G.; Da Silva, A.S. Metaphylactic Effect of Minerals on the Immune Response, Biochemical Variables and Antioxidant Status of Newborn Calves. J. Anim. Physiol. Anim. Nutr. 2018, 102, 819–824. [Google Scholar] [CrossRef]
- Jin, Y.; Ma, Z.; Gao, D.; Shan, Q.; Zhang, Y.; Chu, K.; Sun, P. Effects of different zinc sources on growth performance, serum immune and antioxidant indices and plasma trace element contents of newborn Holstein dairy calves. Chin. J. Anim. Nutr. 2021, 33, 3334–3342. [Google Scholar] [CrossRef]
- Ma, F.T.; Wo, Y.Q.L.; Shan, Q.; Wei, J.Y.; Zhao, S.G.; Sun, P. Zinc-Methionine Acts as an Anti-Diarrheal Agent by Protecting the Intestinal Epithelial Barrier in Postnatal Holstein Dairy Calves. Anim. Feed. Sci. Technol. 2020, 270, 114686. [Google Scholar] [CrossRef]
- Ortunho, V.V. Revisão da literatura: Mineralização e perfil metabólico em ovinos. Pubvet 2013, 7, 776–884. [Google Scholar] [CrossRef]
- Holley, A.K.; Bakthavatchalu, V.; Velez-Roman, J.M.; St. Clair, D.K. Manganese Superoxide Dismutase: Guardian of the Powerhouse. Int. J. Mol. Sci. 2011, 12, 7114–7162. [Google Scholar] [CrossRef]
- Suttle, N. The Requirement for Minerals. In Mineral Nutrition of Livestock; CABI Books: London, UK, 2010; pp. 1–13. [Google Scholar]
- El-Deeb, W.M.; Younis, E.E. Clinical and Biochemical Studies on Theileria annulata in Egyptian Buffaloes (Bubalus bubalis) with Particular Orientation to Oxidative Stress and Ketosis Relationship. Vet. Parasitol. 2009, 164, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Turunç, V.; Aşkar, T.K. The Determination of Oxidative Stress by Paraoxonase Activity, Heat Shock Protein and Lipid Profile Levels in Cattle with Theileriosis [Theileriosisli Sıǧırlarda Oksidatif Stresin Paraoksonaz Aktivitesi, Isı Şok Protein ve Lipid Profıli Düzeyleri Ile Belirlenmesi]. Kafkas Univ. Vet. Fak. Derg. 2012, 18, 647–651. [Google Scholar]
- Nockels, C.F.; DeBonis, J.; Torrent, J. Stress Induction Affects Copper and Zinc Balance in Calves Fed Organic and Inorganic Copper and Zinc Sources. J. Anim. Sci. 1993, 71, 2539–2545. [Google Scholar] [CrossRef] [PubMed]
- Spears, J.W.; Weiss, W.P. Role of Antioxidants and Trace Elements in Health and Immunity of Transition Dairy Cows. Vet. J. 2008, 176, 70–76. [Google Scholar] [CrossRef]
- Soldá, N.M.; Glombowsky, P.; Campigotto, G.; Bottari, N.B.; Schetinger, M.R.C.; Morsch, V.M.; Favero, J.F.; Baldissera, M.D.; Schogor, A.L.B.; Barreta, D.; et al. Injectable Mineral Supplementation to Transition Period Dairy Cows and Its Effects on Animal Health. Comp. Clin. Pathol. 2017, 26, 335–342. [Google Scholar] [CrossRef]
- Smethurst, D.G.J.; Shcherbik, N. Interchangeable Utilization of Metals: New Perspectives on the Impacts of Metal Ions Employed in Ancient and Extant Biomolecules. J. Biol. Chem. 2021, 297, 101374. [Google Scholar] [CrossRef]
- Aparecida Martins, R.; de Almeida Assunção, A.S.; Cavalcante Souza Vieira, J.; Campos Rocha, L.; Michelin Groff Urayama, P.; Afonso Rabelo Buzalaf, M.; Roberto Sartori, J.; de Magalhães Padilha, P. Metalloproteomic Analysis of Liver Proteins Isolated from Broilers Fed with Different Sources and Levels of Copper and Manganese. Sci. Rep. 2024, 14, 4883. [Google Scholar] [CrossRef]
- Prasad, A.S. Zinc Is an Antioxidant and Anti-Inflammatory Agent: Its Role in Human Health. Front. Nutr. 2014, 1, 14. [Google Scholar] [CrossRef]
- Gaetke, L.M.; Chow, C.K. Copper Toxicity, Oxidative Stress, and Antioxidant Nutrients. Toxicology 2003, 189, 147–163. [Google Scholar] [CrossRef]
- Lamanna, M.; Muca, E.; Buonaiuto, G.; Formigoni, A.; Cavallini, D. From Posts to Practice: Instagram’s Role in Veterinary Dairy Cow Nutrition Education—How Does the Audience Interact and Apply Knowledge? A Survey Study. J. Dairy Sci. 2025, 108, 1659–1671. [Google Scholar] [CrossRef]
Ingredient (g/kg DM) | |
---|---|
Legume hay, mature | 91.9 |
Barley grain, dry, ground | 241.4 |
Corn grain dry, coarse grind | 313.6 |
Soybean meal, solvent 48CP | 233.6 |
Canola meal | 27.6 |
Wheat bran | 65.3 |
Calcium carbonate | 10.2 |
Sodium bicarbonate | 5.7 |
Sodium chloride (salt) | 5.7 |
Mineral vitamin premix 1 | 5 |
Chemical Composition | |
Dry matter | 885 |
Crude protein | 183 |
Metabolizable energy, (Mcal/kg) | 3.24 |
Neutral detergent fiber | 179 |
Acid detergent fiber | 95 |
Ash | 65 |
Copper | 0.0407 |
Zinc | 0.1147 |
Manganese | 0.1988 |
Performance | CTR | G1 | G2 | G3 | Pre-Mix | SEM | p-Value |
---|---|---|---|---|---|---|---|
Starter intake (g/day) | 766.80 | 877.21 | 685.4 | 694.32 | 803.90 | 173.35 | 0.93 |
Initial body weight (kg) | 41.32 | 41.96 | 40.68 | 40.56 | 41.04 | 2.44 | 0.99 |
Final body weight (kg) | 51.08 | 56.14 | 55.48 | 55.00 | 52.78 | 3.28 | 0.80 |
Average daily gain (g/day) | 0.69 | 0.67 | 0.7 | 0.69 | 0.60 | 0.08 | 0.99 |
Feed efficiency (%) | 7.01 | 6.18 | 6.86 | 6.95 | 7.49 | 1.12 | 0.60 |
Average fecal score | 2.05 | 2.05 | 2.07 | 2 | 2.04 | 0.03 | 0.52 |
Incidences of diarrhea (%) | 8.57 | 8.57 | 3.80 | 3.80 | 3.80 | 1.27 | 0.94 |
Concentration | CTR | G1 | G2 | G3 | Pre-Mix | SEM | p-Value |
---|---|---|---|---|---|---|---|
In plasma | |||||||
Manganese | 0.00004 c | 0.0001 b | 0.0015 a | 0.00038 b | 0.0005 b | 0.870 | 0.001 |
Zinc | 0. 042 d | 0.054 c | 0.083 a | 0.039 d | 0.075 b | 0.001 | 0.0001 |
Copper | 0.105 b | 0.134 b | 0.107 b | 0.232 a | 0.126 b | 0.013 | 0.0001 |
In feces | |||||||
Manganese | 14.11 c | 27.10 a | 23.55 ab | 20.29 b | 20.50 b | 1.414 | 0.0001 |
Zinc | 47.57 b | 49.36 b | 57.03 ab | 53.89 b | 70.33 a | 4.651 | 0.0172 |
Copper | 6.40 b | 8.81 a | 8.50 ab | 8.64 ab | 8.08 ab | 0.702 | 0.0196 |
Parameter 2 | CTR | G1 | G2 | G3 | Pre-Mix | SEM | p-Value |
---|---|---|---|---|---|---|---|
SOD | 0.00004 c | 0.0001 b | 0.0015 a | 0.00038 b | 0.0005 b | 0.870 | 0.001 |
GPx | 0. 042 d | 0.054 c | 0.083 a | 0.039 d | 0.075 b | 0.001 | 0.0001 |
TAC | 0.105 b | 0.134 b | 0.107 b | 0.232 a | 0.126 b | 0.013 | 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mortazavi, M.S.; Hajmohammadi, M.; Buonaiuto, G.; Colleluori, R.; Lamanna, M.; Cavallini, D.; Valizadeh, R.; Ebrahimi, S.H.; Oliveira, C.A.F. The Effect of a Pre-Mix of Essential Organic Minerals on Growth, Antioxidant Indices, and the Diarrhea Incidence in Dairy Calves Breed in Arid Climates. Ruminants 2025, 5, 22. https://doi.org/10.3390/ruminants5020022
Mortazavi MS, Hajmohammadi M, Buonaiuto G, Colleluori R, Lamanna M, Cavallini D, Valizadeh R, Ebrahimi SH, Oliveira CAF. The Effect of a Pre-Mix of Essential Organic Minerals on Growth, Antioxidant Indices, and the Diarrhea Incidence in Dairy Calves Breed in Arid Climates. Ruminants. 2025; 5(2):22. https://doi.org/10.3390/ruminants5020022
Chicago/Turabian StyleMortazavi, M. S., M. Hajmohammadi, Giovanni Buonaiuto, Riccardo Colleluori, Martina Lamanna, Damiano Cavallini, R. Valizadeh, S. H. Ebrahimi, and C. A. F. Oliveira. 2025. "The Effect of a Pre-Mix of Essential Organic Minerals on Growth, Antioxidant Indices, and the Diarrhea Incidence in Dairy Calves Breed in Arid Climates" Ruminants 5, no. 2: 22. https://doi.org/10.3390/ruminants5020022
APA StyleMortazavi, M. S., Hajmohammadi, M., Buonaiuto, G., Colleluori, R., Lamanna, M., Cavallini, D., Valizadeh, R., Ebrahimi, S. H., & Oliveira, C. A. F. (2025). The Effect of a Pre-Mix of Essential Organic Minerals on Growth, Antioxidant Indices, and the Diarrhea Incidence in Dairy Calves Breed in Arid Climates. Ruminants, 5(2), 22. https://doi.org/10.3390/ruminants5020022