Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (12,498)

Search Parameters:
Keywords = antioxidant indices

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 2565 KB  
Article
Characterization of Low-Alcohol Wines Obtained by Post-Fermentative Reverse Osmosis and Vacuum Concentration
by Răzvan Vasile Filimon, Florin Dumitru Bora, Constantin Bogdan Nechita, Marius Niculaua, Cătălin Ioan Zamfir, Roxana Mihaela Filimon, Ancuţa Nechita and Valeriu V. Cotea
Foods 2026, 15(2), 321; https://doi.org/10.3390/foods15020321 - 15 Jan 2026
Abstract
In the context of climate change and the general trend toward a healthy lifestyle, reducing the alcoholic strength of wines poses a major challenge for producers. In order to obtain quality low-alcohol wines (LAWs), Muscat Ottonel conventional wine was subjected to reverse osmosis [...] Read more.
In the context of climate change and the general trend toward a healthy lifestyle, reducing the alcoholic strength of wines poses a major challenge for producers. In order to obtain quality low-alcohol wines (LAWs), Muscat Ottonel conventional wine was subjected to reverse osmosis followed by vacuum concentration of the hydroalcoholic permeate (ROVC) or to two-step vacuum concentration (TSVC), with the recovery of aromas as the first alcoholic fraction (F1). Beverages with alcoholic concentrations of 3.50, 5.50, and 8.50% vol. were obtained, with compositional characteristics and sensory properties varying significantly with alcoholic strength and dealcoholization technique applied. ROVC produced wines with organic acids, volatile constituents, extract, and color intensity decreasing progressively with the reduction in alcohol concentration. At similar alcohol concentration, TSVC LAW showed a significantly higher phenolic content, antioxidant activity, volatile compounds (including esters and terpenes), and overall structural balance, maintaining better the typicity of wines. In both processes, reducing alcohol below 5.50% vol. significantly affected the quality and acceptability of the final product. Hierarchical cluster analysis indicated that TSVC LAWs were statistically closer to the conventional wine (control). These findings improve the understanding of how dealcoholization technologies affect the composition of wine, improving product quality, sustainability, and operational efficiency. Full article
Show Figures

Figure 1

16 pages, 1469 KB  
Article
Molecular Investigation of the Effects of Two Antiepileptic Drugs (Valproic Acid and Levetiracetam) on Alveolar Bone Under Orthodontic Force
by Nurhan Bayindir-Durna, Metin Uckan, Seyma Aydin and Selcuk Ozdemir
Medicina 2026, 62(1), 178; https://doi.org/10.3390/medicina62010178 - 15 Jan 2026
Abstract
Background and Objectives: This study aims to analyze the effects of levetiracetam (LEV) and valproic acid (VPA) administration on oxidative stress, inflammation, apoptosis, extracellular matrix dynamics, and bone remodeling parameters in rat alveolar bone exposed to orthodontic force. Materials and Methods: Four experimental [...] Read more.
Background and Objectives: This study aims to analyze the effects of levetiracetam (LEV) and valproic acid (VPA) administration on oxidative stress, inflammation, apoptosis, extracellular matrix dynamics, and bone remodeling parameters in rat alveolar bone exposed to orthodontic force. Materials and Methods: Four experimental groups were designed for this study: Control, Force, Force + LEV, and Force + VPA. LEV (150 mg/kg/day) or VPA (300 mg/kg/day) was administered intraperitoneally to the experimental groups daily for 6 weeks. At the end of the experimental period, the alveolar bone tissues were used for molecular analyses. RT-PCR analysis was performed to assess the expression levels of antioxidant markers [superoxide dismutase, (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione (GSH)], inflammatory cytokines [tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β)], apoptosis-related genes (Bax, Bcl-2, and Caspase-3), matrix remodeling genes [matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), and metallopeptidase inhibitor 1 (TIMP-1)], and bone metabolism regulators [receptor activator of nuclear factor kappa-Β ligand (RANKL) and osteoprotegerin (OPG)]. Oxidative stress and inflammatory measurements were also confirmed via ELISA assays. Results: The results demonstrated that orthodontic force application increased oxidative stress, inflammation, and apoptosis compared to the Control group, disrupted extracellular matrix homeostasis, and increased bone resorption, while LEV administration (LEV + Force) markedly mitigated these abnormalities. In other words, LEV administration increased levels of antioxidant markers, decreased levels of inflammatory cytokines and pro-apoptotic genes, restored extracellular matrix balance (decrease in MMP-2 and MMP-9 with concurrent upregulation of TIMP-1), and limited tissue destruction (decrease in RANKL along with elevation in OPG). In contrast to LEV, VPA did not correct these molecular alterations induced by orthodontic force and, in several parameters, further exacerbated them. Conclusions: In conclusion, molecular data from the animal model indicate that LEV plays a protective role against orthodontic force by reducing excess levels of oxidative stress, apoptosis, and inflammation and homeostatic pathways. Full article
(This article belongs to the Section Dentistry and Oral Health)
Show Figures

Figure 1

15 pages, 421 KB  
Article
Thiol/Disulfide Homeostasis in Lung Cancer: Insights from a Clinical Study
by Selen Karaoğlanoğlu, Müge Sönmez and Hüseyin Erdal
Antioxidants 2026, 15(1), 114; https://doi.org/10.3390/antiox15010114 - 15 Jan 2026
Abstract
Background: The development of lung cancer is strongly influenced by oxidative stress (OS), which results when the balance between oxidants and antioxidants is disturbed. Evaluation of both specific redox markers such as thiol/disulfide homeostasis (TDH) and overall indicators including total antioxidant status [...] Read more.
Background: The development of lung cancer is strongly influenced by oxidative stress (OS), which results when the balance between oxidants and antioxidants is disturbed. Evaluation of both specific redox markers such as thiol/disulfide homeostasis (TDH) and overall indicators including total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) may provide a more comprehensive view of oxidative imbalance in lung cancer. We examined OS indices and TDH in patients with lung cancer versus healthy controls. Methods: Eighty participants were enrolled, consisting of 40 patients with newly diagnosed lung cancer and 40 age- and sex-matched healthy controls. Serum levels of native thiol (NT), total thiol (TT), and disulfide were determined using an automated spectrophotometric method. Additionally, TAS, TOS, and the OSI were evaluated to provide an overall assessment of oxidative balance. Routine hematological and biochemical parameters were compared between groups. Results: White blood cell and neutrophil counts were notably higher in lung cancer patients compared with controls (p < 0.05). NT and TT levels were remarkably decreased, whereas disulfide levels, TOS, and OSI were significantly elevated in the lung cancer group (p < 0.05). TAS levels tended to be lower in patients, although not reaching statistical significance. No significant association was observed between oxidative parameters and tumor stage or localization. Conclusions: Patients with lung cancer exhibited a marked oxidative imbalance, characterized by elevated oxidant burden and impaired TDH. Combined assessment of TAS, TOS, OSI, and thiol/disulfide parameters may provide valuable insight into the oxidative pathophysiology of lung cancer and hold potential as complementary biomarkers for disease evaluation. Further large scale studies are needed to confirm these findings. Full article
Show Figures

Figure 1

19 pages, 8033 KB  
Article
Luteolin Enhances Endothelial Barrier Function and Attenuates Myocardial Ischemia–Reperfusion Injury via FOXP1-NLRP3 Pathway
by Hanyan Xie, Xinyi Zhong, Nan Li, Mijia Zhou, Miao Zhang, Xiaomin Yang, Hui Wang, Yu Yan, Pengrong Gao, Tianhua Liu, Qiyan Wang and Dongqing Guo
Int. J. Mol. Sci. 2026, 27(2), 874; https://doi.org/10.3390/ijms27020874 - 15 Jan 2026
Abstract
As a natural flavonoid, the flavonoid luteolin is characterized by its powerful antioxidant and anti-inflammatory effects. While its precise mechanisms require further elucidation, existing evidence confirms its efficacy in ameliorating myocardial ischemia–reperfusion injury (MIRI). This research was designed to investigate the mechanism through [...] Read more.
As a natural flavonoid, the flavonoid luteolin is characterized by its powerful antioxidant and anti-inflammatory effects. While its precise mechanisms require further elucidation, existing evidence confirms its efficacy in ameliorating myocardial ischemia–reperfusion injury (MIRI). This research was designed to investigate the mechanism through which luteolin protects against MIRI. We established MIRI rat models through the ligation of left anterior descending coronary artery (LAD). To evaluate the cardioprotective effects of luteolin, echocardiographic analysis was performed, Hematoxylin and Eosin (HE) staining, and serum cardiac injury markers creatine kinase-MB (CK-MB) and lactate dehydrogenase (LDH). Cardiac vascular permeability was determined using Evans blue staining. To mimic ischemia–reperfusion injury, endothelial cells (ECs) were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) in vitro. Endothelial cell barrier function was evaluated through F-actin phalloidin staining and FITC-Dextran fluorescence leakage experiments. To elucidate the molecular mechanism, FOXP1 small interfering RNA (siRNA) and NLRP3 inhibitor MCC950 were administered. In MIRI rats, luteolin significantly improved cardiac function and preserved endothelial barrier integrity. These effects were associated with upregulation of FOXP1 and suppression of NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome. In OGD/R-treated endothelial cells, luteolin restored barrier function and cell viability. The protective effects of luteolin were abolished after FOXP1 silencing. Pharmacological NLRP3 inhibition (MCC950) mirrored luteolin’s protection. Our study indicates that luteolin enhances endothelial barrier function and attenuates MIRI via the FOXP1-NLRP3 pathway. The current study provides a potential drug for MIRI treatment. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

24 pages, 5047 KB  
Article
Gibberellic Acid-Induced Regulation of Antioxidant–Flavonoid Channels Provides Protection Against Oxidative Damage in Safflower Under Salinity Stress
by Zhiling Li, Xiaoyu Liu, Weijie Meng, Julong Shangguan, Jian Zhang, Imran Ali, Na Yao, Min Zhang, Naveed Ahmad and Xiuming Liu
Plants 2026, 15(2), 267; https://doi.org/10.3390/plants15020267 - 15 Jan 2026
Abstract
Salinity is a major constraint that compromises safflower performance by disrupting redox balance and metabolic homeostasis. Although hormonal mechanisms for improving plant resilience to abiotic stresses have been reported, the mechanistic role of gibberellic acid (GA3)-induced regulation of safflower tolerance to [...] Read more.
Salinity is a major constraint that compromises safflower performance by disrupting redox balance and metabolic homeostasis. Although hormonal mechanisms for improving plant resilience to abiotic stresses have been reported, the mechanistic role of gibberellic acid (GA3)-induced regulation of safflower tolerance to salinity remains unclear. This study aimed to investigate the impact of exogenous GA3 application under normal and saline conditions to evaluate its effects on growth, physiology, redox regulation, and flavonoid biosynthesis in safflower. Using phenotypic, physiological, biochemical, and gene expression analysis, it is suggested that GA3 significantly alleviates salt stress by integrating antioxidant defense and flavonoid biosynthesis. The results of phenotypic and physiological assessments showed that GA3 at 400 mg/L GA3 in safflower seedlings suggests enhanced vegetative growth and photosynthetic performance. Under salt stress, GA3 significantly alleviated oxidative damage by reducing H2O2, O2, and malondialdehyde (MDA) levels, while enhancing osmoprotective compounds such as proline, soluble sugars, proteins, and chlorophyll. GA3 also significantly increased the activity of antioxidant enzymes (SOD, POD, CAT, APX, GST, DHAR, and Prx), accompanied by the transcriptional upregulation of their corresponding genes, indicating GA3-mediated regulation of redox homeostasis at both biochemical and molecular levels. In parallel, GA3 enhanced the accumulation of major flavonoids, particularly hydroxy safflor yellow A (HSYA), with strong induction of key HSYA biosynthetic genes (CtF6H, CtCGT, Ct2OGD1), whereas salinity alone suppressed their expression. In contrast, the quercetin branch displayed a regulatory bottleneck at CtF3H, which remained suppressed under all treatments, although upstream genes were GA3-responsive. Together, these findings demonstrate that GA3 enhances salinity tolerance in safflower by simultaneously activating antioxidant defenses and stimulating flavonoid biosynthesis, providing mechanistic insight with practical implications for developing salt-resilient safflower varieties. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

15 pages, 737 KB  
Article
Assessment of Oxidative Stress and Antioxidant Status in Allergic Rhinitis
by Ahmet Burak Gürpınar and Selen Karaoğlanoğlu
Biomedicines 2026, 14(1), 189; https://doi.org/10.3390/biomedicines14010189 - 15 Jan 2026
Abstract
Background: Allergic rhinitis (AR) is a chronic immunoglobulin E (IgE)-mediated inflammatory disorder triggered by aeroallergens. Oxidative stress (OS) is increasingly recognized as a key factor in AR pathophysiology. This study aimed to investigate dynamic thiol–disulfide homeostasis (TDH) and OS markers in AR patients [...] Read more.
Background: Allergic rhinitis (AR) is a chronic immunoglobulin E (IgE)-mediated inflammatory disorder triggered by aeroallergens. Oxidative stress (OS) is increasingly recognized as a key factor in AR pathophysiology. This study aimed to investigate dynamic thiol–disulfide homeostasis (TDH) and OS markers in AR patients compared to healthy controls. Methods: Sixty-two participants (31 AR patients, 31 controls) were enrolled. Hematological and biochemical parameters were measured. OS markers including total thiol (TT), native thiol (NT), disulfide, total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) were assessed. Correlations between OS markers and laboratory parameters were analyzed. Receiver operating characteristic (ROC) analysis evaluated the diagnostic performance of OS markers. Results: TT and NT levels were significantly lower in AR patients, whereas disulfide, disulfide/NT and disulfide/TT ratios, TOS and OSI were significantly higher. TAS levels were slightly lower in AR patients. TT and NT correlated positively with eosinophil counts and negatively with monocyte, platelet, AST, and creatinine levels. ROC analysis indicated strong diagnostic potential: TT (AUC = 0.749, cutoff 415 µmol/L, sensitivity 90%, specificity 61%), NT (AUC = 0.786, cutoff 373.2 µmol/L, sensitivity 90%, specificity 71%), and disulfide (AUC = 0.690, cutoff 20 µmol/L, sensitivity 74%, specificity 61%). Conclusions: AR patients exhibit disrupted TDH and elevated OS. These markers may serve as sensitive indicators of oxidative imbalance, offering potential diagnostic and therapeutic insights into AR management. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

17 pages, 5457 KB  
Article
Bioactive Compounds of Momordica charantia L. Downregulate the Protein Expression of ACE2 and TMPRSS2 In Vivo and In Vitro
by Che-Yi Chao, Woei-Cheang Shyu, Chih-Lung Lin, Wen-Ping Jiang, Atsushi Inose, Song-Jie Chiang, Wen-Liang Wu, Jaung-Geng Lin and Guan-Jhong Huang
Int. J. Mol. Sci. 2026, 27(2), 868; https://doi.org/10.3390/ijms27020868 - 15 Jan 2026
Abstract
The emergence of SARS-CoV-2, the etiological agent of COVID-19, has resulted in widespread global infection and millions of deaths. Viral entry is initiated by the interaction between the viral spike (S) protein and the host cell receptor ACE2, followed by TMPRSS2-mediated proteolytic activation [...] Read more.
The emergence of SARS-CoV-2, the etiological agent of COVID-19, has resulted in widespread global infection and millions of deaths. Viral entry is initiated by the interaction between the viral spike (S) protein and the host cell receptor ACE2, followed by TMPRSS2-mediated proteolytic activation that facilitates membrane fusion. Bitter melon (Momordica charantia L., MC), a traditional medicinal and edible plant widely used in tropical Asia, possesses notable anti-inflammatory, antioxidant, antitumor, and hypoglycemic properties. In this study, the ethanol extract of bitter melon (EMC) markedly downregulated ACE2 and TMPRSS2 expression in both in vitro and in vivo models without inducing cytotoxicity. Furthermore, phytochemicals isolated from EMC—including p-coumaric acid, rutin, and quercetin—exhibited comparable inhibitory effects. These results indicate that EMC and its bioactive constituents may interfere with SARS-CoV-2 entry by modulating the ACE2/TMPRSS2 axis, highlighting their potential as natural adjuncts for COVID-19 prevention or management. Full article
Show Figures

Figure 1

31 pages, 3317 KB  
Review
Reactive Oxygen Species in Embryo Development: Sources, Impacts, and Implications for In Vitro Culture Systems
by Sajuna Sunuwar and Yun Seok Heo
Life 2026, 16(1), 136; https://doi.org/10.3390/life16010136 - 15 Jan 2026
Abstract
Reactive oxygen species (ROS) are essential regulators of fertilization and early embryo development in mammals, including humans and various animal models, but they exert detrimental effects when produced in excess. In assisted reproductive technologies (ART), particularly in vitro fertilization (IVF), exposure to non-physiological [...] Read more.
Reactive oxygen species (ROS) are essential regulators of fertilization and early embryo development in mammals, including humans and various animal models, but they exert detrimental effects when produced in excess. In assisted reproductive technologies (ART), particularly in vitro fertilization (IVF), exposure to non-physiological conditions increases oxidative stress (OS), impairing gamete quality, embryo viability, and clinical outcomes. This review synthesizes experimental and clinical studies describing the endogenous and exogenous sources of ROS relevant to embryo development in IVF. Endogenous ROS arise from intrinsic metabolic pathways such as oxidative phosphorylation, NADPH oxidase, and xanthine oxidase. Exogenous sources include suboptimal laboratory conditions characterized by factors such as high oxygen tension, temperature shifts, pH instability, light exposure, media composition, osmolarity, and cryopreservation procedures. Elevated ROS disrupt oocyte fertilization, embryonic cleavage, compaction, blastocyst formation, and implantation by inducing DNA fragmentation, lipid peroxidation, mitochondrial dysfunction, and apoptosis. In addition, the review highlights how parental health factors establish the initial redox status of gametes, which influences subsequent embryo development in vitro. While antioxidant supplementation and optimized culture conditions can mitigate oxidative injury, the precise optimal redox environment remains a subject of ongoing research. This review emphasizes that future research should focus on defining specific redox thresholds and developing reliable, non-invasive indicators of embryo oxidative status to improve the success rates of ART. Full article
(This article belongs to the Special Issue Advances in Livestock Breeding, Nutrition and Metabolism)
Show Figures

Figure 1

16 pages, 2586 KB  
Article
Copper-Induced Thyroid Disruption and Oxidative Stress in Schizopygopsis younghusbandi Larvae
by Liqiao Zhong, Chi Zhang, Fei Liu, Haitao Gao, Dengyan Di, Fan Yao, Baoshan Ma, Mingdian Liu and Xinbin Duan
Antioxidants 2026, 15(1), 112; https://doi.org/10.3390/antiox15010112 - 15 Jan 2026
Abstract
In recent years, heavy metal emissions in Lhasa have been increasing, which has an impact on the local water environment. The negative effects of copper (Cu2+) on aquatic ecosystems have attracted much attention, as even low concentrations of Cu2+ can [...] Read more.
In recent years, heavy metal emissions in Lhasa have been increasing, which has an impact on the local water environment. The negative effects of copper (Cu2+) on aquatic ecosystems have attracted much attention, as even low concentrations of Cu2+ can exert toxic effects on aquatic organisms. However, the impact of Cu2+ on native fish species from the Lhasa River remains poorly understood. In this study, Schizopygopsis younghusbandi (S. younghusbandi) larvae were exposed to Cu2+ at concentrations of 0. 5, 5, 50, and 500 μg/L for 7 or 14 days to evaluate its toxic effects on thyroid function and the antioxidant system. The results indicate that whole-body total thyroxine (T4) and triiodothyronine (T3) levels were significantly decreased following Cu2+ exposure. This decrease was accompanied by a marked increase in dio1 and dio2 gene expression and decreased expression of thyroid hormone synthesis genes (nis, tg, ttf1 and pax8) after exposure to Cu2+. Furthermore, the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR) and the content of lipid peroxidation were increased, while the content of glutathione (GSH) was decreased. In addition, the survival rates and body lengths of S. younghusbandi larvae were significantly reduced following 7- and 14-day Cu2+ exposure. The Integrated Assessment of Biomarker Response (IBR) analysis further revealed dose- and time-dependent effects of Cu2+ on the larvae. In conclusion, the findings demonstrate that Cu2+ exposure induced disruption of thyroid endocrine and antioxidant systems and caused developmental toxicity in S. younghusbandi larvae. Full article
(This article belongs to the Special Issue The Role of Oxidative Stress in Environmental Toxicity—2nd Edition)
Show Figures

Figure 1

35 pages, 1471 KB  
Review
β-Alanine Is an Unexploited Neurotransmitter in the Pathogenesis and Treatment of Alzheimer’s Disease
by Cindy M. Wozniczka and Donald F. Weaver
NeuroSci 2026, 7(1), 13; https://doi.org/10.3390/neurosci7010013 - 15 Jan 2026
Abstract
Alzheimer’s disease (AD) remains an unmet medical challenge, as there are no effective therapies that alter the disease’s progression. While approaches have targeted molecules like acetylcholine (ACh) and glutamate, these strategies have provided only limited benefits and do not address the complex molecular [...] Read more.
Alzheimer’s disease (AD) remains an unmet medical challenge, as there are no effective therapies that alter the disease’s progression. While approaches have targeted molecules like acetylcholine (ACh) and glutamate, these strategies have provided only limited benefits and do not address the complex molecular mechanisms underlying AD development. This review suggests that β-alanine (3-aminopropanoic acid) is an underexplored neurotransmitter that could serve as a potential AD drug target. Existing evidence indicates that β-alanine modulates GABAergic and glutamatergic neurotransmission, thereby affecting neuronal hyperexcitability. Additionally, studies suggest that β-alanine has antioxidant effects, reducing oxidative stress caused by reactive oxygen species (ROS). We propose that β-alanine might bind to Aβ/tau proteins, possibly targeting the six-amino acid sequences EVHHQK/DDKKAK, which are involved in protein aggregation. β-Alanine may also influence the release of pro-inflammatory cytokines from microglia, potentially reducing neuroinflammation. We also hypothesize that β-alanine may help regulate metal dyshomeostasis, which leads to ROS production. Taurine, structurally like β-alanine, appears to influence comparable mechanisms. Although structural similarity doesn’t ensure therapeutic effectiveness, this evidence supports considering β-alanine as a treatment for AD. Furthermore, β-alanine and its analogues face challenges, including crossing the blood–brain barrier (BBB) and optimizing structure–activity relationships (SAR). This review includes articles through September 2025, sourced from four databases. Full article
Show Figures

Figure 1

24 pages, 524 KB  
Review
Algae and Algal Protein in Human Nutrition: A Narrative Review of Health Outcomes from Clinical Studies
by Zixuan Wang, Marie Scherbinek and Thomas Skurk
Nutrients 2026, 18(2), 277; https://doi.org/10.3390/nu18020277 - 15 Jan 2026
Abstract
As global interest in sustainable nutrition grows, algae have emerged as a promising functional food resource. This review analyzes the nutritional value of edible algae, with a particular focus on protein-rich microalgae, and synthesizes current clinical evidence regarding their health benefits. Algae have [...] Read more.
As global interest in sustainable nutrition grows, algae have emerged as a promising functional food resource. This review analyzes the nutritional value of edible algae, with a particular focus on protein-rich microalgae, and synthesizes current clinical evidence regarding their health benefits. Algae have been demonstrated to provide a broad spectrum of physiologically active nutrients, encompassing a range of vitamins and minerals as well as polyunsaturated fatty acids, antioxidant molecules and various bioactive compounds including dietary fiber. These nutrients have been linked to improved cardiovascular and metabolic health, enhanced immune function, and anti-inflammatory effects. A particular emphasis is placed on algal proteins as a novel alternative to traditional dietary proteins. Genera such as Spirulina and Chlorella offer high-quality, complete proteins with amino acid profiles and digestibility scores comparable to those of animal and soy proteins, thereby supporting muscle maintenance and overall nutritional status. Recent clinical studies have demonstrated that the ingestion of microalgae can stimulate muscle protein synthesis and improve lipid profiles, blood pressure, and inflammation markers, indicating functional benefits beyond basic nutrition. Algal proteins also contain bioactive peptides with antioxidative properties that may contribute to positive outcomes. This review synthesizes current studies, which demonstrate that algae represent a potent, sustainable protein source capable of enhancing dietary quality and promoting health. The integration of algae-based products into plant-forward diets has the potential to contribute to global nutritional security and long-term public health. However, the available clinical evidence remains heterogeneous and is largely based on small, short-term intervention studies, with substantial variability in algae species, processing methods and dosages. Consequently, while the evidence suggests the possibility of functional effects, the strength of the evidence and its generalizability across populations remains limited. Full article
(This article belongs to the Section Micronutrients and Human Health)
Show Figures

Figure 1

26 pages, 6540 KB  
Review
Development of Curcumin-Loaded Nanoemulsions for Fortification and Stabilization of Dairy Beverages
by Roberta Pino, Vincenzo Sicari, Mudassar Hussain, Stockwin Kwame Kyei Boakye, Faiza Kanwal, Ramsha Yaseen, Manahel Azhar, Zeeshan Ahmad, Benic Degraft-Johnson, Amanuel Abebe Kebede, Rosa Tundis and Monica Rosa Loizzo
Appl. Sci. 2026, 16(2), 885; https://doi.org/10.3390/app16020885 - 15 Jan 2026
Abstract
Curcumin is a polyphenolic compound isolated from Curcuma longa, which is widely recognized for its therapeutic properties: particularly its strong anti-inflammatory and antioxidant activities. However, its practical incorporation into functional foods, especially aqueous dairy beverages, is severely hindered by its extremely low [...] Read more.
Curcumin is a polyphenolic compound isolated from Curcuma longa, which is widely recognized for its therapeutic properties: particularly its strong anti-inflammatory and antioxidant activities. However, its practical incorporation into functional foods, especially aqueous dairy beverages, is severely hindered by its extremely low water solubility, poor chemical stability (notably at the near-neutral pH of milk), and very limited oral bioavailability. This review provides a critical synthesis of the literature published in the last two decades, with a focus on the development and application of food-grade oil-in-water (O/W) nanoemulsions to advanced colloidal delivery systems. It covers the fundamental principles of nanoemulsion formulation, including the selection of the oil phase, surfactants, and stabilizers, as well as both high-energy and low-energy fabrication techniques. It further examines the integration of these nano-delivery systems into dairy matrices (milk, yogurt, cheese), highlighting key interactions between nanoemulsion droplets and native dairy constituents such as casein micelles and whey proteins. Critically, findings indicate that nanoencapsulation not only enhances curcumin’s solubility but also protects it from chemical degradation during industrial processes, including pasteurization and sterilization. Moreover, the dairy matrix structure plays a key role in modulating curcumin bioaccessibility, with fortified products frequently exhibiting enhanced stability, shelf life, and sensory attributes. Finally, key technological challenges addressed the heterogeneous global regulatory landscape surrounding biopolymers and future trends: most notably, the growing shift toward “clean-label” biopolymer-based delivery systems. Full article
(This article belongs to the Special Issue Antioxidant Compounds in Food Processing: Second Edition)
Show Figures

Figure 1

11 pages, 1833 KB  
Article
Anthocyanin Enhances Development, Hatching, and GLUT4 Expression in In Vitro-Cultured ICR Mouse Blastocysts
by Imran Khan and Yun Seok Heo
Life 2026, 16(1), 132; https://doi.org/10.3390/life16010132 - 15 Jan 2026
Abstract
Anthocyanin is a flavonoid known for its strong antioxidant and anti-inflammatory activities in both in vitro and in vivo systems. This study investigated whether anthocyanin supplementation could improve the developmental competence, hatching rate, and the expression of development- and proliferation-related markers in ICR [...] Read more.
Anthocyanin is a flavonoid known for its strong antioxidant and anti-inflammatory activities in both in vitro and in vivo systems. This study investigated whether anthocyanin supplementation could improve the developmental competence, hatching rate, and the expression of development- and proliferation-related markers in ICR mouse blastocysts cultured in vitro. Mouse embryos were cultured in KSOM medium supplemented with 2, 4, or 8 μM anthocyanin. Among these, 4 μM was selected as the working concentration within the tested range. Morphological assessment was used to evaluate blastocyst development and hatching, while quantitative real-time polymerase chain reaction (qPCR) was performed to measure the expression of GLUT4 and PI3K. Anthocyanin supplementation significantly enhanced blastocyst quality, as reflected by higher developmental competence and increased hatching rates compared with the control group. In addition, anthocyanin-treated blastocysts displayed elevated mRNA expression of GLUT4 and PI3K, indicating a potential association with enhanced metabolic readiness and cellular proliferation. Overall, these findings indicate that anthocyanin supports embryo quality during preimplantation development in vitro, with potential relevance to implantation-related processes. Further research is needed to clarify the underlying mechanisms and explore the potential applications of anthocyanin in reproductive medicine. Full article
(This article belongs to the Special Issue Animal Reproduction and Health)
Show Figures

Figure 1

17 pages, 719 KB  
Article
Phenolic Composition and Antioxidant Properties of Bee Bread Collected in Three Consecutive Beekeeping Seasons in Poland
by Teresa Szczęsna, Katarzyna Jaśkiewicz, Natalia Skubij and Jacek Jachuła
Molecules 2026, 31(2), 304; https://doi.org/10.3390/molecules31020304 - 15 Jan 2026
Abstract
Bee bread contains numerous bioactive compounds, including phenolic compounds, which have been associated with antioxidant properties. In this study, we determined the phenolic composition of Polish bee bread collected over three consecutive years using HPLC-DAD. We also measured total phenolic content (TPC) and [...] Read more.
Bee bread contains numerous bioactive compounds, including phenolic compounds, which have been associated with antioxidant properties. In this study, we determined the phenolic composition of Polish bee bread collected over three consecutive years using HPLC-DAD. We also measured total phenolic content (TPC) and antioxidant activity, expressed as DPPH radical scavenging activity. The highest concentrations were observed for p-coumaric, trans-ferulic, and caffeic acids, as well as for two flavonoids—rutin and hesperidin. The contents of individual phenolic compounds varied across the years of sample collection, with the exception of p-coumaric and vanillic acids. Despite year-to-year differences in TPC, no significant correlation with antioxidant activity (>90% in all samples) was observed, indicating a substantial contribution of non-phenolic compounds to antioxidant capacity. Principal Component Analysis revealed that almost all samples clustered into three groups according to their year of collection. We conclude that the year-to-year variation in phenolic compound content in bee bread is likely attributable to differences in available pollen sources. Our findings expand the current knowledge of the nutritional value of bee bread produced in Poland and strengthen the premises for its use as a functional food. Full article
(This article belongs to the Special Issue Biological Activity and Chemical Composition of Honeybee Products)
Show Figures

Figure 1

25 pages, 3149 KB  
Article
Design and Factorial Optimization of Curcumin and Resveratrol Co-Loaded Lipid Nanocarriers for Topical Delivery
by Daniela Pastorim Vaiss, Débora Cristine Chrisostomo Dias, Virginia Campello Yurgel, Fernanda Beatriz Venturi Araujo, Ledilege Cucco Porto, Janaina Fernandes de Medeiros Burkert, Marcelo Augusto Germani Marinho, Daza de Moraes Vaz Batista Filgueira and Cristiana Lima Dora
Pharmaceutics 2026, 18(1), 109; https://doi.org/10.3390/pharmaceutics18010109 - 15 Jan 2026
Abstract
Background: Nanotechnology provides innovative strategies to enhance drug delivery and therapeutic efficacy through advanced nanocarrier systems. Objectives: This study aimed to develop and optimize a nanostructured lipid carrier (NLC) co-encapsulating curcumin (CUR) and resveratrol (RESV) using a fractional factorial design to [...] Read more.
Background: Nanotechnology provides innovative strategies to enhance drug delivery and therapeutic efficacy through advanced nanocarrier systems. Objectives: This study aimed to develop and optimize a nanostructured lipid carrier (NLC) co-encapsulating curcumin (CUR) and resveratrol (RESV) using a fractional factorial design to develop a topical formulation with antioxidant and anti-inflammatory properties. Methods: NLCs were produced via hot emulsification followed by high-pressure homogenization, and their physicochemical characteristics, drug content, stability, release profile, antioxidant activity, skin delivery, and cellular compatibility were evaluated. Results: The optimized formulation exhibited an average particle size of approximately 300 nm, a polydispersity index below 0.3, and high drug loading for both compounds. Stability studies over 90 days revealed no significant changes in physicochemical parameters, confirming the formulation’s robustness. In vitro release assays demonstrated sustained release of both actives, with 58.6 ± 2.9% of CUR and 97 ± 3% of RESV released after 72 h. Antioxidant activity, assessed by the DPPH and ABTS assays, showed concentration-dependent radical-scavenging effects, indicating antioxidant potential. Skin permeation/retention experiments using porcine skin showed enhanced retention of CUR and RESV within the tissue, with no detectable permeation, indicating suitability for topical delivery. In addition, in vitro cell assays using human keratinocytes showed concentration-dependent responses and acceptable cellular compatibility. Conclusions: Overall, this study demonstrates the successful application of nanotechnology and experimental design to develop stable and efficient lipid-based nanocarriers containing natural polyphenol for topical therapy targeting oxidative and inflammatory skin disorders. Full article
Show Figures

Graphical abstract

Back to TopTop