The Influence of Maternal Nutrition on the Lifetime Performance of Nellore Cattle Offspring
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Dams Phenotypes Evaluation
2.3. Offspring Phenotypes Evaluation
2.4. Statistical Analyses
3. Results
3.1. Body Condition Score of Dams
3.2. Body Weight and Ultrasound Measurements of Dams
3.3. Offspring Phenotypes Measurements
3.4. Ultrasound Measurements
3.5. Morphological Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Du, M.; Zhao, J.X.; Yan, X.; Huang, Y.; Nicodemus, L.V.; Yue, W.; McCormick, R.J.; Zhu, M.J. Fetal muscle development, mesenchymal multipotent cell differentiation, and associated signaling pathways. J. Anim. Sci. 2011, 89, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Vautier, A.N.; Cadaret, C.N. Long-Term Consequences of Adaptive Fetal Programming in Ruminant Livestock. Front. Anim. Sci. 2022, 3, 778440. [Google Scholar] [CrossRef]
- Du, M.; Tong, J.; Zhao, J.; Underwood, K.R.; Zhu, M.; Ford, S.P.; Nathanielsz, P.W. Fetal programming of skeletal muscle development in ruminant animals. J. Anim. Sci. 2010, 88, E51–E60. [Google Scholar] [CrossRef]
- Du, M.; Ford, S.P.; Zhu, M.J. Optimizing livestock production efficiency through maternal nutritional management and fetal developmental programming. Anim. Front. 2017, 7, 5–11. [Google Scholar] [CrossRef]
- Ji, Y.; Wu, Z.; Dai, Z.; Wang, X.; Li, J.; Wang, B.; Wu, G. Fetal and neonatal programming of postnatal growth and feed efficiency in swine. J. Anim. Sci. Biotechnol. 2017, 8, 764–778. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Z.; Li, D.; Li, N.; Dindot, S.V.; Satterfield, M.C.; Bazer, F.W.; Wu, G.Y. Nutrition, epigenetics, and metabolic syndrome. Antioxid. Redox Signal. 2012, 17, 282–301. [Google Scholar] [CrossRef]
- Feeney, A.; Nilsson, E.; Skinner, M.K. Epigenetics and transgenerational inheritance in domesticated farm animals. J. Anim. Sci. Biotechnol. 2014, 5, 48. [Google Scholar] [CrossRef]
- Mikovic, J.; Lamon, S. The effect of maternal metabolic status on offspring health: A role for skeletal muscle? J. Physiol. 2018, 596, 5079. [Google Scholar] [CrossRef]
- Ithurralde, J.; Genovese, P.; Abud, M.J.; López-Pérez, Á.; Pérez-Clariget, R.; Bielli, A. Maternal undernutrition affects secondary myogenesis in a muscle-dependent way across the major muscles of 70-day old ovine fetuses. Small Rumin. Res. 2020, 191, 106174. [Google Scholar] [CrossRef]
- Picard, B.; Lefaucheur, L.; Berri, C.; Duclos, M.J. Muscle fibre ontogenesis in farm animal species. Reprod. Nutr. Dev. 2002, 42, 415–431. [Google Scholar] [CrossRef]
- Wu, G.; Bazer, F.W.; Wallace, J.M.; Spencer, T.E. Board-invited review: Intrauterine growth retardation: Implications for the animal sciences. J. Anim. Sci. 2006, 84, 2316–2337. [Google Scholar] [CrossRef] [PubMed]
- Funston, R.N.; Larson, D.M.; Vonnahme, K.A. Effects of maternal nutrition on conceptus growth and offspring performance: Implications for beef cattle production. J. Anim. Sci. 2010, 88, E205–E215. [Google Scholar] [CrossRef]
- Polizel, G.H.G.; de Francisco Strefezzi, R.; Cracco, R.C.; Fernandes, A.C.; Zuca, C.B.; Castellar, H.H.; Baldin, G.C.; de Almeida Santana, M.H. Effects of different maternal nutrition approaches on weight gain and on adipose and muscle tissue development of young bulls in the rearing phase. Trop. Anim. Health Prod. 2021, 53, 536. [Google Scholar] [CrossRef]
- Costa, T.C.; Gionbelli, M.P.; Duarte, M.d.S. Fetal programming in ruminant animals: Understanding the skeletal muscle development to improve meat quality. Anim. Front. 2021, 11, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Otomaru, K.; Oshima, K.; Goto, Y.; Oshima, I.; Muroya, S.; Saneshima, R.; Nagao, Y.; Kinoshita, A. Effects of low and high levels of maternal nutrition consumed for the entirety of gestation on the development of muscle, adipose tissue, bone, and the organs of Wagyu cattle fetuses. Anim. Sci. J. 2021, 92, e13600. [Google Scholar] [CrossRef] [PubMed]
- Cracco, R.C.; Ruy, I.M.; Polizel, G.H.G.; Fernandes, A.C.; Furlan, É.; Baldin, G.C.; Chagas Santos, G.E.; de Almeida Santana, M.H. Evaluation of Maternal Nutrition Effects in the Lifelong Performance of Male Beef Cattle Offspring. Vet. Sci. 2023, 10, 443. [Google Scholar] [CrossRef]
- Valiente, S.L.; Rodríguez, A.M.; Long, N.M.; Quintans, G.; Miccoli, F.E.; Lacau-Mengido, I.M.; Maresca, S. Age at First Gestation in Beef Heifers Affects Fetal and Postnatal Growth, Glucose Metabolism and IGF1 Concentration. Animals 2021, 11, 3393. [Google Scholar] [CrossRef]
- Polizel, G.H.G.; Cançado, F.A.; Dias, E.; Fernandes, A.C.; Cracco, R.C.; Carmona, B.T.; Castellar, H.; Daiana Poleti, M.; de Almeida Santana, M.H. Effects of Different Prenatal Nutrition Strategies on the Liver Metabolome of Bulls and Its Correlation with Body and Liver Weight. Metabolites 2022, 12, 441. [Google Scholar] [CrossRef]
- Martins, T.S.; Sanglard, L.M.P.; Silva, W.; Chizzotti, M.L.; Rennó, L.N.; Serão, N.V.L.; Silva, F.F.; Guimarães, S.E.F.; Ladeira, M.M.; Dodson, M.V.; et al. Molecular Factors Underlying the Deposition of Intramuscular Fat and Collagen in Skeletal Muscle of Nellore and Angus Cattle. PLoS ONE 2015, 10, e0139943. [Google Scholar] [CrossRef]
- Cracco, R.C.; Alexandre, P.A.; Polizel, G.H.G.; Fernandes, A.C.; de Almeida Santana, M.H. Evaluation of Muscle Long Non-Coding RNA Profile during Rearing and Finishing Phase of Bulls Subjected to Different Prenatal Nutritional Strategies. Animals 2024, 14, 652. [Google Scholar] [CrossRef]
- Santana, M.H.A.; Ventura, R.V.; Utsunomiya, Y.T.; Neves, H.H.R.; Alexandre, P.A.; Oliveira Junior, G.A.; Gomes, R.C.; Bonin, M.N.; Coutinho, L.L.; Garcia, J.F.; et al. A genomewide association mapping study using ultrasound-scanned information identifies potential genomic regions and candidate genes affecting carcass traits in Nellore cattle. J. Anim. Breed. Genet. 2015, 132, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Beef Improvement Federation. Guidelines for Uniform Beef Improvement Program; Beef Improvement Federation: Prairie, MS, USA, 2018. [Google Scholar]
- R Development Core Team. R. A language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2008. [Google Scholar]
- Forsén, T.; Eriksson, J.G.; Tuomilehto, J.; Osmond, C.; Barker, D.J. Growth In Utero and During Childhood Among Women Who Develop Coronary Heart Disease: Longitudinal Study. BMJ 1999, 319, 1403–1407. [Google Scholar] [CrossRef]
- Keogh, K.; Waters, S.M.; Kelly, A.K.; Kenny, D.A. Feed restriction and subsequent realimentation in Holstein Friesian bulls: I. Effect on animal performance; muscle, fat, and linear body measurements; and slaughter characteristics. J. Anim. Sci. 2015, 93, 3578–3589. [Google Scholar] [CrossRef] [PubMed]
- Hornick, J.L.; Van Eenaeme, C.; Gérard, O.; Dufrasne, I.; Istasse, L. Mechanisms of reduced and compensatory growth. Domest. Anim. Endocrinol. 2000, 19, 121–132. [Google Scholar] [CrossRef]
- da Silva, A.G.; Paulino, M.F.; Detmann, E.; Fernandes, H.J.; da Silva Amorim, L.; Ortega, R.E.M.; de Carvalho, V.V.; da Costa Lima, J.A.; de Moura, F.H.; Benevides Monteiro, M.; et al. Energetic-protein supplementation in the last 60 days of gestation improves performance of beef cows grazing tropical pastures. J. Anim. Sci. Biotechnol. 2017, 8, 78. [Google Scholar] [CrossRef]
- Nascimento, K.B.; Galvão, M.C.; Meneses, J.A.M.; Ramírez-Zamudio, G.D.; Pereira, D.G.; Paulino, P.V.R.; Casagrande, D.R.; Gionbelli, T.R.S.; Ladeira, M.M.; Duarte, M.S.; et al. Maternal protein supplementation during mid-gestation improves offspring performance and metabolism in beef cows. J. Anim. Sci. 2024, 102, skae058. [Google Scholar] [CrossRef] [PubMed]
- Duarte, M.S.; Paulino, P.V.R.; Nascimento, C.S.; Botelho, M.E.; Martins, T.S.; Filho, S.C.V.; Dodson, M.V.; Guimarães, S.E.F.; Du, M. Maternal overnutrition enhances mRNA expression of adipogenic markers and collagen deposition in skeletal muscle of beef cattle fetuses. J. Anim. Sci. 2014, 92, 3846–3854. [Google Scholar] [CrossRef]
- Noya, A.; Casasús, I.; Ferrer, J.; Sanz, A. Long-Term Effects of Maternal Subnutrition in Early Pregnancy on Cow-Calf Performance, Immunological and Physiological Profiles during the Next Lactation. Animals 2019, 9, 936. [Google Scholar] [CrossRef]
- Stalker, L.A.; Adams, D.C.; Klopfenstein, T.J.; Feuz, D.M.; Funston, R.N. Effects of pre- and postpartum nutrition on reproduction in spring calving cows and calf feedlot performance. J. Anim. Sci. 2006, 84, 2582–2589. [Google Scholar] [CrossRef]
- Warner, J.M.; Martin, J.L.; Hall, Z.C.; Kovarik, L.M.; Hanford, K.J.; Rasby, R.J. The effects of supplementing beef cows grazing cornstalk residue with a dried distillers grain based cube on cow and calf performance. Prof. Anim. Sci. 2011, 27, 540–546. [Google Scholar] [CrossRef]
- Rodrigues, L.M.; Schoonmaker, J.P.; Resende, F.D.; Siqueira, G.R.; Rodrigues MacHado Neto, O.; Gionbelli, M.P.; Ramalho Santos Gionbelli, T.; Ladeira, M.M. Effects of protein supplementation on Nellore cows’ reproductive performance, growth, myogenesis, lipogenesis and intestine development of the progeny. Anim. Prod. Sci. 2020, 61, 371–380. [Google Scholar] [CrossRef]
- Sartori, E.D.; Sessim, A.G.; Brutti, D.D.; Lopes, J.F.; McManus, C.M.; Barcellos, J.O.J. Fetal programming in sheep: Effects on pre- and postnatal development in lambs. J. Anim. Sci. 2020, 98, skaa294. [Google Scholar] [CrossRef] [PubMed]
- Underwood, K.R.; Tong, J.F.; Price, P.L.; Roberts, A.J.; Grings, E.E.; Hess, B.W.; Means, W.J.; Du, W. Nutrition during mid to late gestation affects growth, adipose tissue deposition, and tenderness in cross-bred beef steers. Meat Sci. 2010, 86, 588–593. [Google Scholar] [CrossRef]
- Brasil I de, G.; Naves, A.C.; Macedo, I.M.; Teixeira, R.C.; Viu MA de, O.; Lopes, D.T.; Gambarini, L.M. Energy-protein supplementation before and after parturition of Nellore primiparous cows in the Brazilian tropical savannah. Res. Soc. Dev. 2021, 10, e14710313231. [Google Scholar] [CrossRef]
NP | FP | |
---|---|---|
Ingredients (%) | ||
Corn | 35.00 | 60.00 |
Soybean meal | 30.00 | |
Dicalcium phosphate | 10.00 | |
Urea 45% | 2.50 | |
Salt | 30.00 | 5.00 |
Minerthal 160 MD 1 | 25.00 | 2.50 |
Chemical composition (%DM) | ||
Total digestible nutrients | 26.76 | 67.55 |
Crude protein | 2.79 | 24.78 |
Non-protein nitrogen | 7.03 | |
Acid detergent fiber | 1.25 | 4.76 |
Neutral detergent fiber | 4.29 | 11.24 |
Ether extract | 1.26 | 2.61 |
Calcium (g/kg) | 74.11 | 6.20 |
Phosphorus (g/kg) | 59.38 | 7.24 |
Traits | Non-Programmed | Fetal Programmed | p-Value 1 | p-Value 2 | p-Value 3 |
---|---|---|---|---|---|
Body weight | |||||
Prepartum | 409.26 ± 36.09 | 413.56 ± 17.96 | 0.65 | <0.01 | <0.01 |
4 months | 456 ± 14.05 | 460.78 ± 12.67 | 0.29 | ||
6 months | 504.83 ± 35.29 | 593.28 ± 36.85 | <0.01 | ||
9 months | 471.28 ± 33.49 | 624.39 ± 39.48 | <0.01 | ||
Postpartum | 493.79 ± 41.63 | 533.8 ± 32.02 | <0.01 | ||
LMA | |||||
Prepartum | 75.03 ± 7.03 | 72.44 ± 6.38 | 0.26 | <0.01 | <0.01 |
4 months | 80.82 ± 4.95 | 87.83 ± 8.27 | <0.01 | ||
6 months | 73.62 ± 9.5 | 88.31 ± 9.97 | <0.01 | ||
9 months | 84.63 ± 13.39 | 107.35 ± 9.56 | <0.01 | ||
STF | |||||
Prepartum | 6.99 ± 2.13 | 6.8 ± 2.58 | 0.81 | <0.01 | <0.01 |
4 months | 12.06 ± 3.66 | 14.67 ± 4.6 | 0.06 | ||
6 months | 9.49 ± 3.28 | 14.81 ± 3.34 | <0.01 | ||
9 months | 0.68 ± 1.32 | 10.15 ± 5.29 | <0.01 | ||
RTF | |||||
Prepartum | 10.7 ± 3.26 | 9.94 ± 2.51 | 0.44 | <0.01 | <0.01 |
4 months | 15.38 ± 4.74 | 19.52 ± 4.95 | 0.01 | ||
6 months | 12.05 ± 3.96 | 20 ± 5.28 | <0.01 | ||
9 months | 4.05 ± 3.77 | 15.49 ± 5.89 | <0.01 |
Age | Non-Programmed | Fetal Programmed | p-Value 1 | p-Value 2 | p-Value 3 |
---|---|---|---|---|---|
Birth | 34.38 ± 3.93 | 35.4 ± 4.17 | 0.51 | <0.01 | 0.40 |
42 days | 58.9 ± 7.68 | 66.58 ± 14.91 | 0.05 | ||
56 days | 68.45 ± 8.7 | 76.58 ± 15.75 | 0.05 | ||
161 days | 147.15 ± 29.67 | 158.6 ± 38.61 | 0.06 | ||
250 days | 226.77 ± 33.88 | 240.6 ± 40.39 | 0.07 | ||
281 days | 233 ± 34.41 | 244.47 ± 35.31 | 0.12 | ||
324 days | 253.77 ± 34.52 | 265.8 ± 36.91 | 0.10 | ||
338 days | 279.62 ± 39.5 | 288.67 ± 38.57 | 0.26 | ||
378 days | 303.15 ± 42.61 | 311.6 ± 39.1 | 0.35 | ||
407 days | 340.15 ± 46.13 | 345 ± 39.36 | 0.58 | ||
440 days | 378.46 ± 45.39 | 386.67 ± 41.86 | 0.39 | ||
461 days | 388.54 ± 44.7 | 396.6 ± 42.48 | 0.39 | ||
484 days | 400.62 ± 46.69 | 410.8 ± 42.47 | 0.33 | ||
504 days | 422.23 ± 44.64 | 427.27 ± 42.8 | 0.59 | ||
513 days | 418.15 ± 43.94 | 423.07 ± 45.96 | 0.61 | ||
532 days | 454.23 ± 51.87 | 453.73 ± 49.41 | 0.96 | ||
533 days | 473.77 ± 50.49 | 473.07 ± 53.22 | 0.95 | ||
545 days | 503.08 ± 54.07 | 499.4 ± 56.6 | 0.77 | ||
559 days | 528.77 ± 54.39 | 522.27 ± 62.72 | 0.65 | ||
573 days | 550.62 ± 58.23 | 549.79 ± 64.38 | 0.95 | ||
587 days | 566.69 ± 59.49 | 563.21 ± 60.34 | 0.80 | ||
Finishing | 568.31 ± 54.69 | 564.64 ± 57.51 | 0.80 |
Trait | Non-Programmed | Fetal Programmed | p-Value 1 | p-Value 2 | p-Value 3 |
---|---|---|---|---|---|
LMA | |||||
56 days | 27.23 ± 3 | 30.78 ± 6.05 | 0.90 | <0.01 | 0.44 |
161 days | 42.43 ± 5.9 | 43.95 ± 8.41 | 0.61 | ||
378 days | 66.05 ± 9.74 | 68.76 ± 8.16 | 0.58 | ||
504 days | 78.29 ± 8.09 | 79.65 ± 6.75 | 0.50 | ||
545 days | 85.65 ± 5.07 | 83.91 ± 8.78 | 0.90 | ||
573 days | 98.47 ± 9.91 | 97.97 ± 9.85 | 0.39 | ||
601 days | 110.75 ± 7.74 | 109.44 ± 10.54 | 0.96 | ||
628 days | 114.58 ± 7.52 | 113.14 ± 8.19 | 0.59 | ||
SFT | |||||
161 days | 0.21 ± 0.54 | 1.1 ± 1.3 | 0.80 | <0.01 | 0.30 |
378 days | 1.17 ± 1.51 | 1.97 ± 1.59 | 0.90 | ||
504 days | 2.95 ± 1.91 | 3.25 ± 1.04 | 0.82 | ||
545 days | 4.62 ± 2.7 | 4.43 ± 1.83 | 0.78 | ||
573 days | 6.67 ± 2.54 | 7.39 ± 1.86 | 0.68 | ||
601 days | 8.18 ± 3.27 | 9.77 ± 3.08 | 0.90 | ||
628 days | 10.41 ± 3.46 | 12.16 ± 3.18 | 0.18 | ||
RFT | |||||
504 days | 0.78 ± 1.09 | 0.67 ± 1.04 | 0.62 | <0.01 | 0.31 |
545 days | 1.42 ± 1.72 | 1.77 ± 1.85 | 0.86 | ||
573 days | 4.11 ± 2.42 | 4.35 ± 2.11 | 0.90 | ||
601 days | 6.35 ± 2.56 | 6.3 ± 2.14 | 0.20 | ||
628 days | 7.92 ± 3.34 | 9.48 ± 3.55 | 0.24 |
Trait | Non-Programmed | Fetal Programmed | p-Value 1 | p-Value 2 | p-Value 3 |
---|---|---|---|---|---|
Withers height | |||||
45 days | 82.8 ± 10.75 | 79.64 ± 17.42 | 0.26 | <0.01 | 0.35 |
Pre-weaning | 107.33 ± 3.63 | 108.33 ± 5.39 | 0.54 | ||
Weaning | 97.5 ± 3.58 | 98.4 ± 6.17 | 0.51 | ||
Rearing | 116.83 ± 3.04 | 115.4 ± 5.46 | 0.35 | ||
Rib depth | |||||
45 days | 31.1 ± 1.91 | 32.75 ± 2.9 | 0.08 | <0.01 | 0.43 |
Pre-weaning | 53.25 ± 3.6 | 53.93 ± 3.47 | 0.52 | ||
Weaning | 45.67 ± 3.39 | 45.47 ± 4.12 | 0.85 | ||
Rearing | 59.25 ± 1.66 | 58.2 ± 4.2 | 0.34 | ||
Thoracic girth | |||||
45 days | 86.8 ± 8.43 | 90.25 ± 11.27 | 0.36 | <0.01 | 0.96 |
Pre-weaning | 145.5 ± 7.33 | 147.87 ± 8.94 | 0.36 | ||
Weaning | 125.08 ± 5.88 | 127 ± 11.18 | 0.85 | ||
Rearing | 153.83 ± 5.02 | 155.4 ± 6.57 | 0.37 | ||
Body lengh | |||||
45 days | 66.1 ± 3.63 | 69.33 ± 5.4 | 0.06 | <0.01 | 0.50 |
Pre-weaning | 119.17 ± 7.33 | 117.8 ± 8.76 | 0.62 | ||
Weaning | 107.75 ± 8.24 | 104.07 ± 12.5 | 0.14 | ||
Rearing | 129.08 ± 5.26 | 128 ± 8.47 | 0.64 | ||
Rump lengh | |||||
45 days | 17.8 ± 1.03 | 19 ± 1.35 | 0.02 | <0.01 | 0.94 |
Pre-weaning | 40.42 ± 2.68 | 40.93 ± 2.71 | 0.56 | ||
Weaning | 36.08 ± 2.27 | 36.93 ± 3.94 | 0.35 | ||
Rearing | 43.04 ± 2.28 | 43.33 ± 2.61 | 0.73 | ||
Rump width | |||||
45 days | 19.6 ± 1.9 | 22.08 ± 3.23 | 0.01 | <0.01 | 0.21 |
Pre-weaning | 32.75 ± 1.76 | 33.2 ± 3.26 | 0.64 | ||
Weaning | 26.33 ± 2.06 | 26.8 ± 2.93 | 0.51 | ||
Rearing | 37.83 ± 1.7 | 37.6 ± 2.59 | 0.72 | ||
Rump height | |||||
45 days | 90.4 ± 3.31 | 91.33 ± 3.96 | 0.36 | <0.01 | 0.92 |
Pre-weaning | 114.08 ± 4.17 | 114.6 ± 6.14 | 0.75 | ||
Weaning | 105.58 ± 3.99 | 105.2 ± 6.72 | 0.76 | ||
Rearing | 123 ± 5.08 | 123.3 ± 5.32 | 0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pombo, G.d.V.; Polizel, G.H.G.; Fernandes, A.C.; Furlan, É.; Prati, B.C.T.; Schalch Junior, F.J.; Nunes, A.T.; Santana, M.H.d.A. The Influence of Maternal Nutrition on the Lifetime Performance of Nellore Cattle Offspring. Ruminants 2025, 5, 18. https://doi.org/10.3390/ruminants5020018
Pombo GdV, Polizel GHG, Fernandes AC, Furlan É, Prati BCT, Schalch Junior FJ, Nunes AT, Santana MHdA. The Influence of Maternal Nutrition on the Lifetime Performance of Nellore Cattle Offspring. Ruminants. 2025; 5(2):18. https://doi.org/10.3390/ruminants5020018
Chicago/Turabian StylePombo, Gabriela do Vale, Guilherme Henrique Gebim Polizel, Arícia Christofaro Fernandes, Édison Furlan, Bárbara Carolina Teixeira Prati, Fernando José Schalch Junior, Alanne Tenório Nunes, and Miguel Henrique de Almeida Santana. 2025. "The Influence of Maternal Nutrition on the Lifetime Performance of Nellore Cattle Offspring" Ruminants 5, no. 2: 18. https://doi.org/10.3390/ruminants5020018
APA StylePombo, G. d. V., Polizel, G. H. G., Fernandes, A. C., Furlan, É., Prati, B. C. T., Schalch Junior, F. J., Nunes, A. T., & Santana, M. H. d. A. (2025). The Influence of Maternal Nutrition on the Lifetime Performance of Nellore Cattle Offspring. Ruminants, 5(2), 18. https://doi.org/10.3390/ruminants5020018